Misc: Distributed Transactions;
Object-oriented and Object-relational
Databases

Amol Deshpande
CMSC424

Spring 2020 - Online Instruction Plan

B Week 1: File Organization and Indexes

B Week 2: Query Processing

B Week 3: Query Optimization; Parallel Databases 1

B Week 4: Parallel Databases; Mapreduce; Transactions 1
B Week 5: Transactions 2

B Week 6: Homework Due May 8

* Transactions: Recovery

% Misc 1: Distributed Transactions, and Object-oriented/Object-
relational databases

Misc 2: OLAP and Data Cubes

Distributed Transactions

M Book Chapters
% 19.1-19.4, 19.6: at a fairly high level
M Key topics:
% Distributed databases and replication
* Transaction processing in distributed databases

2-Phase Commit

% Brief discussion of other protocols including Paxos

Distributed Database System

A distributed database system consists of loosely coupled sites that share
no physical component

B Database systems that run on each site are independent of each other
Or not — lot of variations here

B Transactions may access data at one or more sites

Because of replication, even updating a single data item involves a
“distributed transaction” (to keep all replicas up to date)

= ! |
— < 2

" SOy |

Database System Concepts - 6! Edition 194 ©Silberschatz, Korth and Sudarshan

Data Replication

A relation or fragment of a relation is replicated if it is stored
redundantly in two or more sites

B Advantages:
Availability: failures can be handled through replicas
Parallelism: queries can be run on any replica
Reduced data transfer: queries can go to the “closest” replica

B Disadvantages:
Increased cost of updates: both computation as well as latency

Increased complexity of concurrency control: need to update all
copies of a data item/tuple

B Typically we use the term “data items”, which may be tuples or
relations or relation partitions

Database System Concepts - 6! Edition 19.5 ©Silberschatz, Korth and Sudarshan

Distributed Transactions

B Transaction may access data at several sites
As noted, single data item update is also a distributed transaction
B Each site has a local transaction manager responsible for:
Maintaining a log for recovery purposes
Coordinating the concurrent execution of the transactions
B Each site has a transaction coordinator, which is responsible for:
Starting the execution of transactions that originate at the site.
Distributing sub-transactions at appropriate sites for execution.

Coordinating the termination of each transaction that originates at the site --
transaction may commit at all sites or abort at all sites.

@\ /@ transaction
coordinator

V' N .
@ ° ° o @ transaction
manager

computer 1 computer n

Database System Concepts - 6! Edition 19.6 ©Silberschatz, Korth and Sudarshan

System Failure Modes

B Failures unique to distributed systems:
Failure of a site.
Loss of massages

» Handled by network transmission control protocols such as
TCP-IP

Failure of a communication link

» Handled by network protocols, by routing messages via
alternative links

Network partition

» A network is said to be partitioned when it has been split into
two or more subsystems that lack any connection between
them

Note: a subsystem may consist of a single node
B Network partitioning and site failures are generally indistinguishable.

Database System Concepts - 6! Edition 19.7 ©Silberschatz, Korth and Sudarshan

,.fg. Commit Protocols

B Commit protocols are used to ensure atomicity across sites

a transaction which executes at multiple sites must either be
committed at all the sites, or aborted at all the sites.

not acceptable to have a transaction committed at one site and
aborted at another

B Two-phase commit (2PC) protocol is widely used
B Three-phase commit (3PC) protocol
Handles some situations that 2PC doesn’t
Not widely used
B Paxos
Robust alternative to 2PC that handles more situations as well
Was considered too expensive at one point, but widely used today
B RAFT: Alternative to Paxos

Database System Concepts - 6! Edition 19.8 ©Silberschatz, Korth and Sudarshan

g Two Phase Commit Protocol (2PC)

—

Assumes fail-stop model — failed sites simply stop working, and do
not cause any other harm, such as sending incorrect messages to
other sites.

B Execution of the protocol is initiated by the coordinator after the last
step of the transaction has been reached.

B The protocol involves all the local sites at which the transaction
executed

B Let T be atransaction initiated at site S, and let the transaction
coordinator at S;be C;

Database System Concepts - 6! Edition 19.9 ©Silberschatz, Korth and Sudarshan

Two Phase Commit Protocol (2PC)

Coordinator Log Messages Subordinate Log
PREPARE —

prepare*/abort*

<+ VOTE YES/NO

commit*/abort®

COMMIT/ABORT—

commit*/abort®

+ ACK

end

Goal: Make sure all "sites” commit or abort

Assumption: Some log records can be “forced” (denote * above)

Database System Concepts - 6! Edition 19.10 ©Silberschatz, Korth and Sudarshan

Phase 1: Obtaining a Decision

B Coordinator asks all participants to prepare to commit transaction T,

C; adds the records <prepare T> to the log and forces log to
stable storage

sends prepare T messages to all sites at which T executed

B Upon receiving message, transaction manager at site determines if it
can commit the transaction

if not, add a record <no T> to the log and send abort T message
to C,'

if the transaction can be committed, then:
add the record <ready 7> to the log
force all records for T to stable storage
send ready T message to C;

Database System Concepts - 6! Edition 19.11 ©Silberschatz, Korth and Sudarshan

Phase 2: Recording the Decision

T can be committed of C, received a ready T message from all the
participating sites: otherwise T must be aborted.

B Coordinator adds a decision record, <commit 7> or <abort 7>, to the
log and forces record onto stable storage. Once the record stable
storage it is irrevocable (even if failures occur)

B Coordinator sends a message to each participant informing it of the
decision (commit or abort)

B Participants take appropriate action locally.

Database System Concepts - 6! Edition 19.12 ©Silberschatz, Korth and Sudarshan

g Handling of Failures - Site Failure

When site S;recovers, it examines its log to determine the fate of
transactions active at the time of the failure.

B Log contain <commit 7> record: txn had completed, nothing to be done
B Log contains <abort T> record: txn had completed, nothing to be done

B Log contains <ready T> record: site must consult C, to determine the
fate of T.

If Tcommitted, redo (7); write <commit T> record
If T aborted, undo (7)
B The log contains no log records concerning T:

Implies that S, failed before responding to the prepare T message
from C;

since the failure of Syprecludes the sending of such a response,
coordinator C;must abort T

S, must execute undo (7)

Database System Concepts - 6! Edition 19.13 ©Silberschatz, Korth and Sudarshan

Handling of Failures- Coordinator Failure

m If coordinator fails while the commit protocol for T is executing then
participating sites must decide on T s fate:

If an active site contains a <commit 7> record in its log, then T must be
committed.

If an active site contains an <abort 7> record in its log, then T must be
aborted.

If some active participating site does not contain a <ready 7> record in its
log, then the failed coordinator C; cannot have decided to commit T.

e Can therefore abort T; however, such a site must reject any
subsequent <prepare 7> message from C;

If none of the above cases holds, then all active sites must have a <ready
T> record in their logs, but no additional control records (such as <abort
T> of <commit T7>).

@ In this case active sites must wait for C;to recover, to find decision.

B Blocking problem: active sites may have to wait for failed coordinator to
recover.

Database System Concepts - 6! Edition 19.14 ©Silberschatz, Korth and Sudarshan

=a Handling of Failures - Network Partition

B If the coordinator and all its participants remain in one partition, the
failure has no effect on the commit protocol.

B If the coordinator and its participants belong to several partitions:

Sites that are not in the partition containing the coordinator think
the coordinator has failed, and execute the protocol to deal with
failure of the coordinator.

» No harm results, but sites may still have to wait for decision
from coordinator.

B The coordinator and the sites are in the same partition as the
coordinator think that the sites in the other partition have failed, and

follow the usual commit protocol.
» Again, no harm results

Database System Concepts - 6! Edition 19.15 ©Silberschatz, Korth and Sudarshan

— More...

B Three-phase Commit

2PC can’t handle failure of a coordinator well — everything halts
waiting for the coordinator to come back up

Three-phase commit handles that through another phase

B Paxos and RAFT

Solutions for the “consensus problem”: get a collection of
distributed entities to "choose” a single value

In case of transaction, you are choosing abort/commit
Fairly complex, but well-understood today
Widely used in most distributed systems today
See the Wikipedia pages

A nice recent paper: Paxos vs Raft: Have we reached
consensus on distributed consensus? — Heidi Howard, 2020

Database System Concepts - 6! Edition 19.16 ©Silberschatz, Korth and Sudarshan

Object-oriented and Object-relational

M Book Chapters

Chapter 22: at a fairly high level
M Key topics:

Why Objects?

Object-oriented

Object-relational

Database System Concepts - 6! Edition 19.17 ©Silberschatz, Korth and Sudarshan

Motivation

B Relational model:
* Clean and simple
* Great for much enterprise data
* But lot of applications where not sufficiently rich
> Multimedia, CAD, for storing set data etc
B Object-oriented models in programming languages
* Complicated, but very useful
» Smalltalk, C++, now Java
* Allow
» Complex data types
> Inheritance
> Encapsulation

B People wanted to manage objects in databases.

History

B Inthe 1980’ s and 90’s, DB researchers recognized benefits of objects.

B Two research thrusts:
* OODBMS: extend C++ with transactionally persistent objects
> Used to be a niche Market
> CAD etc.
> More recently, made a comeback as a JSON, Graph Databases

But those usually have a query language and look more like ORDBMS
* ORDBMS: extend Relational DBs with object features
> Much more common
> Efficiency + Extensibility
> SQL:99 support

B Postgres — First ORDBMS

* Berkeley research project
* Became lllustra, became Informix, bought by IBM

Object-Relational Data Models

Extend the relational data model by including object orientation and
constructs to deal with added data types.

B Allow attributes of tuples to have complex types, including non-atomic
values such as nested relations.

B Preserve relational foundations, in particular the declarative access to
data, while extending modeling power.

B Upward compatibility with existing relational languages.

Database System Concepts - 6! Edition 22.20 ©Silberschatz, Korth and Sudarshan

Structured Types and Inheritance in SQL

B Structured types (a.k.a. user-defined types) can be declared and used in SQL
create type Name as

(firstname varchar(20),
lastname varchar(20))
final

create type Address as

(street varchar(20),
city varchar(20),
Zipcode varchar(20))
not final

Note: final and not final indicate whether subtypes can be created

B Structured types can be used to create tables with composite attributes
create table person (
name Name,
address Address,
dateOfBirth date)
B Dot notation used to reference components: name.firstname

Database System Concepts - 6! Edition 22.21 ©Silberschatz, Korth and Sudarshan

Structured Types (cont.)

B User-defined row types

create type PersonType as (
name Name,
address Address,
dateOfBirth date)
not final

B Can then create a table whose rows are a user-defined type
create table customer of CustomerType

B Alternative using unnamed row types.

create table person_r
name row(firstname varchar(20),
lastname varchar(20)),
address row(street varchar(20),
city varchar(20),
Zipcode varchar(20)),
dateOfBirth date)

Database System Concepts - 6! Edition 22.22 ©Silberschatz, Korth and Sudarshan

:’é Methods

B Can add a method declaration with a structured type.
method ageOnDate (onDate date)
returns interval year
B Method body is given separately.
create instance method ageOnDate (onDate date)
returns interval year
for CustomerType
begin
return onDate - self.dateOfBirth;
end
B We can now find the age of each customer:
select name.lastname, ageOnDate (current_date)
from customer

Database System Concepts - 6! Edition 22.23

©Silberschatz, Korth and Sudarshan

- Type Inheritance
 n Suppose that we have the following type definition for people:

create type Person
(name varchar(20),
address varchar(20))

B Using inheritance to define the student and teacher types
create type Student
under Person
(degree varchar(20),
department varchar(20))

create type 7eacher
under Person

(salary integer,
department varchar(20))

B Subtypes can redefine methods by using overriding method in place of
method in the method declaration

Database System Concepts - 6! Edition 22.24 ©Silberschatz, Korth and Sudarshan

B Example of array and multiset declaration:

create type Publisher as
(name varchar(20),
branch varchar(20));

create type Book as
(title varchar(20),
author_array varchar(20) array [10],
pub_date date,
publisher Publisher,
keyword-set varchar(20) multiset);

create table books of Book;

Database System Concepts - 6! Edition 22.25

Array and Multiset Types in SQL

©Silberschatz, Korth and Sudarshan

Creation of Collection Values

Array construction
array [‘Silberschatz’,” Korth’,”Sudarshan’]

B Multisets
multiset [‘computer’, ‘database’, ‘SQL’]

B To create a tuple of the type defined by the books relation:
(‘Compilers’, array[Smith’,” Jones’],
new Publisher (McGraw-Hill’,” New York’),
multiset [parsing’, analysis’])

B To insert the preceding tuple into the relation books

insert into books
values
(‘Compilers’, array[Smith’,” Jones’],
new Publisher (McGraw-Hill’,” New York’),
multiset [parsing’, analysis’]);

Database System Concepts - 6! Edition 22.26 ©Silberschatz, Korth and Sudarshan

:’é Querying Collection-Valued Attributes

B To find all books that have the word “database” as a keyword,

select title
from books
where ‘database’ in (unnest(keyword-set))

B We can access individual elements of an array by using indices
E.g.: If we know that a particular book has three authors, we could write:

select author_array|1], author_array|2], author_array|3]
from books
where title = Database System Concepts’

B To get a relation containing pairs of the form “title, author_name” for each
book and each author of the book
select B.title, A.author
from books as B, unnest (B.author_array) as A (author)
B To retain ordering information we add a with ordinality clause
select B.title, A.author, A.position
from books as B, unnest (B.author_array) with ordinality as
A (author, position)

Database System Concepts - 6! Edition 22.27 ©Silberschatz, Korth and Sudarshan

Path Expressions

B Find the names and addresses of the heads of all departments:

select head —>name, head —>address
from departments

B An expression such as “head—>name” is called a path expression
B Path expressions help avoid explicit joins

If department head were not a reference, a join of departments
with people would be required to get at the address

Makes expressing the query much easier for the user

Database System Concepts - 6! Edition 22.28 ©Silberschatz, Korth and Sudarshan

An Alternative: OODBMS

B Persistent OO programming
* Imagine declaring a Java object to be “persistent”
* Everything reachable from that object will also be persistent

* You then write plain old Java code, and all changes to the persistent
objects are stored in a database

* When you run the program again, those persistent objects have the
same values they used to have!

B Solves the “impedance mismatch” between programming
languages and query languages

* E.g. converting between Java and SQL types, handling rowsets, etc.
* But this programming style doesn’ t support declarative queries
» For this reason (??), OODBMSs haven’ t proven popular
B OQL: A declarative language for OODBMSs
* Was only implemented by one vendor in France (Altair)

OODBMS

B Currently a Niche Market
* Engineering, spatial databases, physics etc...
B Main issues:
* Navigational access
> Programs specify go to this object, follow this pointer

* Not declarative

B Though advantageous when you know exactly what you want,
not a good idea in general

* Kinda similar argument as network databases vs relational
databases

- ~/m
i

-,
e —

Comparison of O-O and O-R Databases

B Relational systems
simple data types, powerful query languages, high protection.
B Persistent-programming-language-based OODBs

complex data types, integration with programming language, high
performance.

B Object-relational systems
complex data types, powerful query languages, high protection.
B Object-relational mapping systems

complex data types integrated with programming language, but built
as a layer on top of a relational database system

B Note: Many real systems blur these boundaries

E.g. persistent programming language built as a wrapper on a
relational database offers first two benefits, but may have poor
performance.

Database System Concepts - 6! Edition 22.31 ©Silberschatz, Korth and Sudarshan

Summary, cont.

B ORDBMS offers many new features
* but not clear how to use them!
* schema design techniques not well understood
> No good logical design theory for non-1st-normal-form!
* query processing techniques still in research phase
» a moving target for OR DBA’ s!

H OODBMS

* Has its advantages
#* Niche market
* Lot of similarities to XML as well...

