
Misc: Distributed Transactions;
Object-oriented and Object-relational

Databases

Amol Deshpande
CMSC424

! Week 1: File Organization and Indexes

! Week 2: Query Processing

! Week 3: Query Optimization; Parallel Databases 1

! Week 4: Parallel Databases; Mapreduce; Transactions 1

! Week 5: Transactions 2

! Week 6: Homework Due May 8
êTransactions: Recovery

êMisc 1: Distributed Transactions, and Object-oriented/Object-
relational databases

êMisc 2: OLAP and Data Cubes

Spring 2020 – Online Instruction Plan

! Book Chapters
ê19.1-19.4, 19.6: at a fairly high level

! Key topics:
êDistributed databases and replication

êTransaction processing in distributed databases

ê2-Phase Commit

êBrief discussion of other protocols including Paxos

Distributed Transactions

©Silberschatz, Korth and Sudarshan19.4Database System Concepts - 6th Edition

Distributed Database System

! A distributed database system consists of loosely coupled sites that share
no physical component

! Database systems that run on each site are independent of each other
! Or not – lot of variations here

! Transactions may access data at one or more sites
! Because of replication, even updating a single data item involves a

“distributed transaction” (to keep all replicas up to date)

©Silberschatz, Korth and Sudarshan19.5Database System Concepts - 6th Edition

Data Replication

! A relation or fragment of a relation is replicated if it is stored
redundantly in two or more sites

! Advantages:
! Availability: failures can be handled through replicas
! Parallelism: queries can be run on any replica
! Reduced data transfer: queries can go to the “closest” replica

! Disadvantages:
! Increased cost of updates: both computation as well as latency
! Increased complexity of concurrency control: need to update all

copies of a data item/tuple

! Typically we use the term “data items”, which may be tuples or
relations or relation partitions

©Silberschatz, Korth and Sudarshan19.6Database System Concepts - 6th Edition

Distributed Transactions
! Transaction may access data at several sites

! As noted, single data item update is also a distributed transaction
! Each site has a local transaction manager responsible for:

! Maintaining a log for recovery purposes
! Coordinating the concurrent execution of the transactions

! Each site has a transaction coordinator, which is responsible for:
! Starting the execution of transactions that originate at the site.
! Distributing sub-transactions at appropriate sites for execution.
! Coordinating the termination of each transaction that originates at the site --

transaction may commit at all sites or abort at all sites.

TM1 TMn

computer 1 computer n

TC1 TCn transaction
coordinator

transaction
manager

©Silberschatz, Korth and Sudarshan19.7Database System Concepts - 6th Edition

System Failure Modes

! Failures unique to distributed systems:
! Failure of a site.
! Loss of massages

4 Handled by network transmission control protocols such as
TCP-IP

! Failure of a communication link
4 Handled by network protocols, by routing messages via

alternative links
! Network partition

4 A network is said to be partitioned when it has been split into
two or more subsystems that lack any connection between
them
– Note: a subsystem may consist of a single node

! Network partitioning and site failures are generally indistinguishable.

©Silberschatz, Korth and Sudarshan19.8Database System Concepts - 6th Edition

Commit Protocols

! Commit protocols are used to ensure atomicity across sites
! a transaction which executes at multiple sites must either be

committed at all the sites, or aborted at all the sites.
! not acceptable to have a transaction committed at one site and

aborted at another
! Two-phase commit (2PC) protocol is widely used
! Three-phase commit (3PC) protocol

! Handles some situations that 2PC doesn’t
! Not widely used

! Paxos
! Robust alternative to 2PC that handles more situations as well
! Was considered too expensive at one point, but widely used today

! RAFT: Alternative to Paxos

©Silberschatz, Korth and Sudarshan19.9Database System Concepts - 6th Edition

Two Phase Commit Protocol (2PC)

! Assumes fail-stop model – failed sites simply stop working, and do
not cause any other harm, such as sending incorrect messages to
other sites.

! Execution of the protocol is initiated by the coordinator after the last
step of the transaction has been reached.

! The protocol involves all the local sites at which the transaction
executed

! Let T be a transaction initiated at site Si, and let the transaction
coordinator at Si be Ci

©Silberschatz, Korth and Sudarshan19.10Database System Concepts - 6th Edition

Two Phase Commit Protocol (2PC)
Overview Optimistic Concurrency Control Locking vs Optimistic Degrees of Consistency Locking in B-Trees Recovery Distributed DatabasesDangers of Replication Eventually Consistent Distributed Commit Protocols Paxos Consensus Commit Protocol Google Megastore VoltDB

Normal 2-Phase Commit

Coordinator Log Messages Subordinate Log
PREPARE!

prepare*/abort*
 VOTE YES/NO

commit*/abort*
COMMIT/ABORT!

commit*/abort*
 ACK

end

* ! forced on log (for durability/atomicity)
Always log before sending a message
Total cost:

subords: 2 forced log-writes (prepare/commit), 2 messages
(YES/ACK)
coord: 1 forced log write (commit), 1 async log write (end),
2 messages/subord (prepare/commit)

Amol Deshpande CMSC724: Transactions and ACID properties

Goal: Make sure all ”sites” commit or abort

Assumption: Some log records can be “forced” (denote * above)

©Silberschatz, Korth and Sudarshan19.11Database System Concepts - 6th Edition

Phase 1: Obtaining a Decision

! Coordinator asks all participants to prepare to commit transaction Ti.
! Ci adds the records <prepare T> to the log and forces log to

stable storage
! sends prepare T messages to all sites at which T executed

! Upon receiving message, transaction manager at site determines if it
can commit the transaction
! if not, add a record <no T> to the log and send abort T message

to Ci

! if the transaction can be committed, then:
! add the record <ready T> to the log
! force all records for T to stable storage
! send ready T message to Ci

©Silberschatz, Korth and Sudarshan19.12Database System Concepts - 6th Edition

Phase 2: Recording the Decision

! T can be committed of Ci received a ready T message from all the
participating sites: otherwise T must be aborted.

! Coordinator adds a decision record, <commit T> or <abort T>, to the
log and forces record onto stable storage. Once the record stable
storage it is irrevocable (even if failures occur)

! Coordinator sends a message to each participant informing it of the
decision (commit or abort)

! Participants take appropriate action locally.

©Silberschatz, Korth and Sudarshan19.13Database System Concepts - 6th Edition

Handling of Failures - Site Failure

When site Si recovers, it examines its log to determine the fate of
transactions active at the time of the failure.
! Log contain <commit T> record: txn had completed, nothing to be done
! Log contains <abort T> record: txn had completed, nothing to be done
! Log contains <ready T> record: site must consult Ci to determine the

fate of T.
! If T committed, redo (T); write <commit T> record
! If T aborted, undo (T)

! The log contains no log records concerning T:
! Implies that Sk failed before responding to the prepare T message

from Ci

! since the failure of Sk precludes the sending of such a response,
coordinator C1 must abort T

! Sk must execute undo (T)

©Silberschatz, Korth and Sudarshan19.14Database System Concepts - 6th Edition

Handling of Failures- Coordinator Failure

" If coordinator fails while the commit protocol for T is executing then
participating sites must decide on T’s fate:
1. If an active site contains a <commit T> record in its log, then T must be

committed.
2. If an active site contains an <abort T> record in its log, then T must be

aborted.
3. If some active participating site does not contain a <ready T> record in its

log, then the failed coordinator Ci cannot have decided to commit T.
! Can therefore abort T; however, such a site must reject any

subsequent <prepare T> message from Ci

4. If none of the above cases holds, then all active sites must have a <ready
T> record in their logs, but no additional control records (such as <abort
T> of <commit T>).
! In this case active sites must wait for Ci to recover, to find decision.

" Blocking problem: active sites may have to wait for failed coordinator to
recover.

©Silberschatz, Korth and Sudarshan19.15Database System Concepts - 6th Edition

Handling of Failures - Network Partition
! If the coordinator and all its participants remain in one partition, the

failure has no effect on the commit protocol.
! If the coordinator and its participants belong to several partitions:

! Sites that are not in the partition containing the coordinator think
the coordinator has failed, and execute the protocol to deal with
failure of the coordinator.
4 No harm results, but sites may still have to wait for decision

from coordinator.
! The coordinator and the sites are in the same partition as the

coordinator think that the sites in the other partition have failed, and
follow the usual commit protocol.

4 Again, no harm results

©Silberschatz, Korth and Sudarshan19.16Database System Concepts - 6th Edition

More…
! Three-phase Commit

! 2PC can’t handle failure of a coordinator well – everything halts
waiting for the coordinator to come back up

! Three-phase commit handles that through another phase

! Paxos and RAFT
! Solutions for the “consensus problem”: get a collection of

distributed entities to ”choose” a single value
4 In case of transaction, you are choosing abort/commit

! Fairly complex, but well-understood today
! Widely used in most distributed systems today
! See the Wikipedia pages
! A nice recent paper: Paxos vs Raft: Have we reached

consensus on distributed consensus? – Heidi Howard, 2020

©Silberschatz, Korth and Sudarshan19.17Database System Concepts - 6th Edition

! Book Chapters
! Chapter 22: at a fairly high level

! Key topics:
! Why Objects?

! Object-oriented

! Object-relational

Object-oriented and Object-relational

Motivation
! Relational model:

ê Clean and simple
ê Great for much enterprise data
ê But lot of applications where not sufficiently rich

Ø Multimedia, CAD, for storing set data etc
! Object-oriented models in programming languages

ê Complicated, but very useful
Ø Smalltalk, C++, now Java

ê Allow
Ø Complex data types
Ø Inheritance
Ø Encapsulation

! People wanted to manage objects in databases.

History

! In the 1980’s and 90’s, DB researchers recognized benefits of objects.
! Two research thrusts:

ê OODBMS: extend C++ with transactionally persistent objects
Ø Used to be a niche Market
Ø CAD etc.
Ø More recently, made a comeback as a JSON, Graph Databases

– But those usually have a query language and look more like ORDBMS

ê ORDBMS: extend Relational DBs with object features
Ø Much more common
Ø Efficiency + Extensibility
Ø SQL:99 support

! Postgres – First ORDBMS
ê Berkeley research project
ê Became Illustra, became Informix, bought by IBM

©Silberschatz, Korth and Sudarshan22.20Database System Concepts - 6th Edition

Object-Relational Data Models

! Extend the relational data model by including object orientation and
constructs to deal with added data types.

! Allow attributes of tuples to have complex types, including non-atomic
values such as nested relations.

! Preserve relational foundations, in particular the declarative access to
data, while extending modeling power.

! Upward compatibility with existing relational languages.

©Silberschatz, Korth and Sudarshan22.21Database System Concepts - 6th Edition

Structured Types and Inheritance in SQL
" Structured types (a.k.a. user-defined types) can be declared and used in SQL

create type Name as
(firstname varchar(20),
lastname varchar(20))
final

create type Address as
(street varchar(20),
city varchar(20),
zipcode varchar(20))
not final

" Note: final and not final indicate whether subtypes can be created
" Structured types can be used to create tables with composite attributes

create table person (
name Name,
address Address,
dateOfBirth date)

" Dot notation used to reference components: name.firstname

©Silberschatz, Korth and Sudarshan22.22Database System Concepts - 6th Edition

Structured Types (cont.)

! User-defined row types
create type PersonType as (

name Name,
address Address,
dateOfBirth date)
not final

! Can then create a table whose rows are a user-defined type
create table customer of CustomerType

! Alternative using unnamed row types.
create table person_r(

name row(firstname varchar(20),
lastname varchar(20)),

address row(street varchar(20),
city varchar(20),
zipcode varchar(20)),

dateOfBirth date)

©Silberschatz, Korth and Sudarshan22.23Database System Concepts - 6th Edition

Methods

! Can add a method declaration with a structured type.
method ageOnDate (onDate date)

returns interval year
! Method body is given separately.

create instance method ageOnDate (onDate date)
returns interval year
for CustomerType

begin
return onDate - self.dateOfBirth;

end
! We can now find the age of each customer:

select name.lastname, ageOnDate (current_date)
from customer

©Silberschatz, Korth and Sudarshan22.24Database System Concepts - 6th Edition

Type Inheritance
! Suppose that we have the following type definition for people:

create type Person
(name varchar(20),
address varchar(20))

! Using inheritance to define the student and teacher types
create type Student

under Person
(degree varchar(20),
department varchar(20))

!

create type Teacher
under Person
(salary integer,
department varchar(20))

! Subtypes can redefine methods by using overriding method in place of
method in the method declaration

©Silberschatz, Korth and Sudarshan22.25Database System Concepts - 6th Edition

Array and Multiset Types in SQL
! Example of array and multiset declaration:

create type Publisher as
(name varchar(20),
branch varchar(20));

create type Book as
(title varchar(20),
author_array varchar(20) array [10],
pub_date date,
publisher Publisher,
keyword-set varchar(20) multiset);

create table books of Book;

©Silberschatz, Korth and Sudarshan22.26Database System Concepts - 6th Edition

Creation of Collection Values
! Array construction

array [‘Silberschatz’,`Korth’,`Sudarshan’]

! Multisets
multiset [‘computer’, ‘database’, ‘SQL’]

! To create a tuple of the type defined by the books relation:
(‘Compilers’, array[`Smith’,`Jones’],

new Publisher (`McGraw-Hill’,`New York’),
multiset [`parsing’,`analysis’])

! To insert the preceding tuple into the relation books
insert into books
values

(‘Compilers’, array[`Smith’,`Jones’],
new Publisher (`McGraw-Hill’,`New York’),
multiset [`parsing’,`analysis’]);

©Silberschatz, Korth and Sudarshan22.27Database System Concepts - 6th Edition

Querying Collection-Valued Attributes
! To find all books that have the word “database” as a keyword,

select title
from books
where ‘database’ in (unnest(keyword-set))

! We can access individual elements of an array by using indices
! E.g.: If we know that a particular book has three authors, we could write:

select author_array[1], author_array[2], author_array[3]
from books
where title = `Database System Concepts’

! To get a relation containing pairs of the form “title, author_name” for each
book and each author of the book

select B.title, A.author
from books as B, unnest (B.author_array) as A (author)

! To retain ordering information we add a with ordinality clause
select B.title, A.author, A.position
from books as B, unnest (B.author_array) with ordinality as

A (author, position)

©Silberschatz, Korth and Sudarshan22.28Database System Concepts - 6th Edition

Path Expressions

! Find the names and addresses of the heads of all departments:
select head –>name, head –>address
from departments

! An expression such as “head–>name” is called a path expression
! Path expressions help avoid explicit joins

! If department head were not a reference, a join of departments
with people would be required to get at the address

! Makes expressing the query much easier for the user

An Alternative: OODBMS
! Persistent OO programming

ê Imagine declaring a Java object to be “persistent”
ê Everything reachable from that object will also be persistent
ê You then write plain old Java code, and all changes to the persistent

objects are stored in a database
ê When you run the program again, those persistent objects have the

same values they used to have!
! Solves the “impedance mismatch” between programming

languages and query languages
ê E.g. converting between Java and SQL types, handling rowsets, etc.
ê But this programming style doesn’t support declarative queries

Ø For this reason (??), OODBMSs haven’t proven popular
! OQL: A declarative language for OODBMSs

ê Was only implemented by one vendor in France (Altair)

OODBMS

! Currently a Niche Market
ê Engineering, spatial databases, physics etc…

! Main issues:
ê Navigational access

Ø Programs specify go to this object, follow this pointer
ê Not declarative

! Though advantageous when you know exactly what you want,
not a good idea in general
ê Kinda similar argument as network databases vs relational

databases

©Silberschatz, Korth and Sudarshan22.31Database System Concepts - 6th Edition

Comparison of O-O and O-R Databases

! Relational systems
! simple data types, powerful query languages, high protection.

! Persistent-programming-language-based OODBs
! complex data types, integration with programming language, high

performance.
! Object-relational systems

! complex data types, powerful query languages, high protection.
! Object-relational mapping systems

! complex data types integrated with programming language, but built
as a layer on top of a relational database system

! Note: Many real systems blur these boundaries
! E.g. persistent programming language built as a wrapper on a

relational database offers first two benefits, but may have poor
performance.

Summary, cont.

! ORDBMS offers many new features
ê but not clear how to use them!
ê schema design techniques not well understood

Ø No good logical design theory for non-1st-normal-form!
ê query processing techniques still in research phase

Ø a moving target for OR DBA’s!

! OODBMS
ê Has its advantages
ê Niche market
ê Lot of similarities to XML as well…

