Transactions: Recovery

Amol Deshpande
CMSC424

Spring 2020 - Online Instruction Plan

B Week 1: File Organization and Indexes

B Week 2: Query Processing

B Week 3: Query Optimization; Parallel Databases 1

B Week 4: Parallel Databases; Mapreduce; Transactions 1
B Week 5: Transactions 2

B Week 6: Homework Due May 8

% Transactions: Recovery

% Misc 1: Distributed Transactions, and Object-oriented/Object-
relational databases

Misc 2: OLAP and Data Cubes, and Information Retrieval

Transactions: Recovery

M Book Chapters
*16.1-16.4

M Key topics:
% Challenges in guaranteeing Atomicity and Durability
W STEAL and NO FORCE: Why those are desirable

* How to use “logging” to support Aand D
% Key properties including write-ahead logging

Context

B ACID properties:
* We have talked about Isolation and Consistency
* How do we guarantee Atomicity and Durability ?
> Atomicity: Two problems
Part of the transaction is done, but we want to cancel it
» ABORT/ROLLBACK

System crashes during the transaction. Some changes made
it to the disk, some didn't.

> Durability:

Transaction finished. User notified. But changes not sent to
disk yet (for performance reasons). System crashed.

B Essentially similar solutions

Reasons for crashes

B Transaction failures

* Logical errors: transaction cannot complete due to some internal
error condition

* System errors: the database system must terminate an active
transaction due to an error condition (e.g., deadlock)

B System crash
* Power failures, operating system bugs etc

* Fail-stop assumption: non-volatile storage contents are assumed
to not be corrupted by system crash

> Database systems have numerous integrity checks to prevent
corruption of disk data

B Disk failure
* Head crashes; for now we will assume

> STABLE STORAGE: Data never lost. Can approximate by
using RAID and maintaining geographically distant copies
of the data

Approach, Assumptions etc..

B Approach:
* Guarantee A and D:
> by controlling how the disk and memory interact,

> by storing enough information during normal processing to recover from
failures

> by developing algorithms to recover the database state
B Assumptions:
* System may crash, but the disk is durable
* The only atomicity guarantee is that a disk block write is atomic

B Once again, obvious naive solutions exist that work, but that are too
expensive.

* E.g. The shadow copy solution

> Make a copy of the database; do the changes on the copy; do an atomic
switch of the dbpointer at commit time

* Goal is to do this as efficiently as possible

Data Access

Physical blocks are those blocks residing on the disk.

Buffer blocks are the blocks residing temporarily in main
memory.

Block movements between disk and main memory are initiated
through the following two operations:

* input(B) transfers the physical block B to main memory.

* output(B) transfers the buffer block B to the disk, and replaces the
appropriate physical block there.

We assume, for simplicity, that each data item fits in, and is
stored inside, a single block.

Example of Data Access

buffer
Buffer Block A — L[x le_ input(A) _9
Buffer Block B / Yy | N o
/‘ output(B) L_—
read(X)
write(Y)
v || |x
X1
Y+
work area work area
of T, of T,
memory disk

Data Access (Cont.)

B Each transaction T; has its private work-area in which local
copies of all data items accessed and updated by it are kept.

* Tjs local copy of a data item Xis called x;.
B Transferring data items between system buffer blocks and its
private work-area done by:
* read(X) assigns the value of data item Xto the local variable x;.

* write(X) assigns the value of local variable x;to data item {X} in
the buffer block.

* Note: output(By) need not immediately follow write(X). System
can perform the output operation when it deems fit.

B Transactions

* Must perform read(X) before accessing X for the first time
(subsequent reads can be from local copy)

* write(X) can be executed at any time before the transaction
commits

STEAL vs NO STEAL, FORCE vs NO FORCE

B STEAL:

* The buffer manager can steal a (memory) page from the database

> ie., it can write an arbitrary page to the disk and use that page for
something else from the disk

> In other words, the database system doesn’t control the buffer
replacement policy

* Why a problem ?

> The page might contain dirty writes, ie., writes/updates by a
transaction that hasn’t committed

* But, we must allow steal for performance reasons.

B NO STEAL:
* Not allowed. More control, but less flexibility for the buffer manager.

STEAL vs NO STEAL, FORCE vs NO FORCE

B FORCE:

* The database system forces all the updates of a transaction to disk
before committing

* Why ?
> To make its updates permanent before committing

* Why a problem ?
> Most probably random 1/Os, so poor response time and throughput
> Interferes with the disk controlling policies

B NO FORCE:

* Don’t do the above. Desired.

* Problem:
> Guaranteeing durability becomes hard

* We might still have to force some pages to disk, but minimal.

STEAL vs NO STEAL, FORCE vs NO FORCE:
Recovery implications

No Force

Force Trivial

No Steal Steal

STEAL vs NO STEAL, FORCE vs NO FORCE:
Recovery implications

B How to implement A and D when No Steal and Force ?

* Only updates from committed transaction are written to disk (since
no steal)

* Updates from a transaction are forced to disk before commit (since
force)

> A minor problem: how do you guarantee that all updates from a
transaction make it to the disk atomically ?

Remember we are only guaranteed an atomic block write
What if some updates make it to disk, and other don’t ?
» Can use something like shadow copying/shadow paging

* No atomicity/durability problem arise.

Terminology

B Deferred Database Modification:
* Similar to NO STEAL, NO FORCE
> Not identical
* Only need redos, no undos

* We won'’t cover this today

B Immediate Database Modification:
* Similar to STEAL, NO FORCE

* Need both redos, and undos

Log-based Recovery

Most commonly used recovery method

Intuitively, a log is a record of everything the database system
does

For every operation done by the database, a log record is
generated and stored typically on a different (log) disk

<T1, START>
<72, COMMIT>
<T2, ABORT>

<T1, A, 100, 200>
* T1 modified A; old value = 100, new value = 200

Log

B Example transactions T, and T, (T, executes before T;):
T, :read (C)

To:

m Log:

read (A)
A:-A-50
write (A)
read (B)
B:- B+ 50
write (B)

C:- C-100
write (C)

<TO Start>
<T,, A, 950>
<T,, B, 2050>

(a)

<T, start>
<T,, A, 950>
<Ty, B, 2050>
<T, commit>
<T, start>
<T;, C, 600>

(b)

<T, start>
<T,, A, 950>
<T,, B, 2050>
<T, commit>
<T, start>
<T;, C, 600>
<T; commit>

()

Log-based Recovery

B Assumptions:

1. Log records are immediately pushed to the disk as soon as they are
generated

Log records are written to disk in the order generated

A log record is generated before the actual data value is updated

Strict two-phase locking

The first assumption can be relaxed

* % A WD

As a special case, a transaction is considered committed only after the
<T1, COMMIT> has been pushed to the disk

B But, this seems like exactly what we are trying to avoid ??

* Log writes are sequential

* They are also typically on a different disk
B Aside: LFS == log-structured file system

Log-based Recovery

B Assumptions:

1. Log records are immediately pushed to the disk as soon as they are
generated

Log records are written to disk in the order generated

A log record is generated before the actual data value is updated

Strict two-phase locking

The first assumption can be relaxed

* % A WD

As a special case, a transaction is considered committed only after the
<T1, COMMIT> has been pushed to the disk

B NOTE: As a result of assumptions 1 and 2, if data item A is updated,
the log record corresponding to the update is always forced to the
disk before data item A is written to the disk

* This is actually the only property we need; assumption 1 can be relaxed
to just guarantee this (called write-ahead logging)

Using the log to abort/rollback

B STEAL is allowed, so changes of a transaction may have made it
to the disk

m UNDO(T1):
* Procedure executed to rollback/undo the effects of a transaction
* E.g.
> <T1, START>
> <T1, A, 200, 300>
> <T1, B, 400, 300>
> <T1, A, 300, 200> [[note: second update of A]]
> T1 decides to abort

* Any of the changes might have made it to the disk

Using the log to abort/rollback

m UNDO(T1):
* Go backwards in the log looking for log records belonging to T1

* Restore the values to the old values
* NOTE: Going backwards is important.
> A was updated twice
* In the example, we simply:
> Restore A to 300
> Restore B to 400
> Restore A to 200
* Write a log record <T;, X, V>
> such log records are called compensation log records
> <T1, A, 300>, <T1, B, 400>, <T1, A, 200>

* Note: No other transaction better have changed A or B in the
meantime

> Strict two-phase locking

Using the log to recover

B We don’t require FORCE, so a change made by the committed
transaction may not have made it to the disk before the system crashed

* BUT, the log record did (recall our assumptions)

B REDO(T1):
* Procedure executed to recover a committed transaction
* E.g.
> <T1, START>
> <T1, A, 200, 300>
> <T1, B, 400, 300>
> <T1, A, 300, 200> [[note: second update of A]]
> <T'1, COMMIT>

* By our assumptions, all the log records made it to the disk (since the
transaction committed)

* But any or none of the changes to A or B might have made it to disk

Using the log to recover

Hm REDO(T1):
* Go forwards in the log looking for log records belonging to T1

* Set the values to the new values
* NOTE: Going forwards is important.
* In the example, we simply:

> Set A to 300

> Set B to 300

> Set A to 200

Ildempotency

B Both redo and undo are required to idempotent
* F s idempotent, if F(x) = F(F(x)) = F(F(F(F(...F(x)))))
B Multiple applications shouldn’t change the effect

* This is important because we don’t know exactly what made it to the
disk, and we can’t keep track of that

* E.g. consider a log record of the type
> <T1, A, incremented by 100>

» Old value was 200, and so new value was 300

* But the on disk value might be 200 or 300 (since we have no control
over the buffer manager)

* So we have no idea whether to apply this log record or not

* Hence, value based logging is used (also called physical), not
operation based (also called logical)

Log-based recovery

B Log is maintained

M If during the normal processing, a transaction needs to abort
* UNDO() is used for that purpose

M If the system crashes, then we need to do recovery using both
UNDO() and REDO()

* Some transactions that were going on at the time of crash may not
have completed, and must be aborted/undone

* Some transaction may have committed, but their changes didn’t
make it to disk, so they must be redone

* Called restart recovery

Recovery Algorithm (Cont.)

B Recovery from failure: Two phases

* Redo phase: replay updates of all transactions, whether they
committed, aborted, or are incomplete

* Undo phase: undo all incomplete transactions

B Redo phase:
1. Find last <checkpoint > record, and set undo-list to L.

- If no checkpoint record, start at the beginning

2. Scan forward from above <checkpoint L[> record

1.

Whenever a record <T;, X, V;, V.>is found, redo it by writing
V2 to)(j

Whenever a log record <T; start>is found, add T; to undo-list

Whenever a log record <T; commit> or <T; abort> is found,
remove T; from undo-list

Recovery Algorithm (Cont.)

B Undo phase:
1. Scan log backwards from end

1. Whenever a log record <7, X;, V;, V>>is found where T;is in
undo-list perform same actions as for transaction rollback:

perform undo by writing V; to X
write a log record <T;, X, V>

2. Whenever a log record <T; start>is found where T;is in undo-
list,

Write a log record <T7; abort>
Remove T; from undo-list
3. Stop when undo-list is empty
:.e. <T; start> has been found for every transaction in undo-
ist

® After undo phase completes, normal transaction processing can
commence

older

End of log
at crash!

Log records
added during
recovery

Example of Recovery

Start log records
found for all
transactions in

undo list

Beginning of log
<T, start>

<T,, B, 2000, 2050>
<T; start>

T, rollback
Redo Pass

<checkpoint {T,, T;}> (during normal
<T,, C, 700, 600> operation)
< T, commit> begins
< T, start>
<T,, A, 500, 400> Tgoﬁﬁg';’eat‘gkj
<T, B, 2000>
~~<T, abort> (Tz is incompleti Y
~ ——__ atcrash Undolist: T, Undo Pass
<7, A, 500> —
< T, abort> T, rolled back

Y
newer

bn undo pass

Checkpointing

B How far should we go back in the log while constructing redo and
undo lists ??

* |t is possible that a transaction made an update at the very
beginning of the system, and that update never made it to disk

> very very unlikely, but possible (because we don’t do force)

* For correctness, we have to go back all the way to the beginning of
the log

* Bad idea !!

B Checkpointing is a mechanism to reduce this

Checkpointing

B Periodically, the database system writes out everything in the
memory to disk

* Goal is to get the database in a state that we know (not necessarily
consistent state)

B Steps:
* Stop all other activity in the database system
* Write out the entire contents of the memory to the disk
> Only need to write updated pages, so not so bad
> Entire === all updates, whether committed or not
* Write out all the log records to the disk
* Write out a special log record to disk
» <CHECKPOINT LIST_OF_ACTIVE_TRANSACTIONS>

> The second component is the list of all active transactions in the
system right now

* Continue with the transactions again

Restart Recovery w/ checkpoints

B Key difference: Only need to go back till the last checkpoint

B Steps:
* undo_list:
> Go back till the checkpoint as before.

> Add all the transactions that were active at that time, and that
didn’t commit

e.g. possible that a transactions started before the
checkpoint, but didn’t finish till the crash

* redo_list:
> Similarly, go back till the checkpoint constructing the redo_list

> Add all the transactions that were active at that time, and that did
commit

#* Do UNDQOs and REDOs as before

Recap so far ...

B Log-based recovery
* Uses a log to aid during recovery

B UNDO()

* Used for normal transaction abort/rollback, as well as during restart
recovery

B REDO()
* Used during restart recovery

B Checkpoints
* Used to reduce the restart recovery time

Write-ahead logging

B We assumed that log records are written to disk as soon as
generated

Too restrictive
B Write-ahead logging:

* Before an update on a data item (say A) makes it to disk, the log
records referring to the update must be forced to disk

* How ?
> Each log record has a log sequence number (LSN)
Monotonically increasing

> For each page in the memory, we maintain the LSN of the /ast log
record that updated a record on this page

pagelL SN

> If a page P is to be written to disk, all the log records till
pageLSN(P) are forced to disk

Write-ahead logging

B Write-ahead logging (WAL) is sufficient for all our purposes
* All the algorithms discussed before work

B Note the special case:

* A transaction is not considered committed, unless the <T, commit>
record is on disk

Other issues

B The system halts during checkpointing
* Not acceptable

* Advanced recovery techniques allow the system to continue
processing while checkpointing is going on

B System may crash during recovery
* Our simple protocol is actually fine
* In general, this can be painful to handle

B B+-Tree and other indexing techniques
* Strict 2PL is typically not followed (we didn’t cover this)
* So physical logging is not sufficient; must have logical logging

Other issues

B ARIES: Considered the canonical description of log-based
recovery

* Used in most systems

* Has many other types of log records that simplify recovery
significantly

B Loss of disk:

* Can use a scheme similar to checkpoining to periodically dump the
database onto tapes or optical storage

* Techniques exist for doing this while the transactions are executing
(called fuzzy dumps)

B Shadow paging:
* Read up

Recap

B STEAL vs NO STEAL, FORCE vs NO FORCE

* We studied how to do STEAL and NO FORCE through log-based
recovery scheme

REDO REDC

acire No Force
No Force B o NO UNDO DO

N NO REDO | NO REDO
Force | Trivial Force | NO UNDO| UNDO

No Steal Steal No Steal Steal

Recap

B ACID Properties
* Atomicity and Durability :
> Logs, undo(), redo(), WAL etc

* Consistency and Isolation:
» Concurrency schemes

* Strong interactions:
> We had to assume Strict 2PL for proving correctness of recovery

