
Transactions: Recovery

Amol Deshpande
CMSC424

! Week 1: File Organization and Indexes

! Week 2: Query Processing

! Week 3: Query Optimization; Parallel Databases 1

! Week 4: Parallel Databases; Mapreduce; Transactions 1

! Week 5: Transactions 2

! Week 6: Homework Due May 8
êTransactions: Recovery

êMisc 1: Distributed Transactions, and Object-oriented/Object-
relational databases

êMisc 2: OLAP and Data Cubes, and Information Retrieval

Spring 2020 – Online Instruction Plan

! Book Chapters
ê16.1 – 16.4

! Key topics:
êChallenges in guaranteeing Atomicity and Durability

êSTEAL and NO FORCE: Why those are desirable

êHow to use “logging” to support A and D

êKey properties including write-ahead logging

Transactions: Recovery

Context

! ACID properties:
ê We have talked about Isolation and Consistency
ê How do we guarantee Atomicity and Durability ?

Ø Atomicity: Two problems
– Part of the transaction is done, but we want to cancel it

» ABORT/ROLLBACK
– System crashes during the transaction. Some changes made

it to the disk, some didn’t.
Ø Durability:

– Transaction finished. User notified. But changes not sent to
disk yet (for performance reasons). System crashed.

! Essentially similar solutions

Reasons for crashes

! Transaction failures
ê Logical errors: transaction cannot complete due to some internal

error condition
ê System errors: the database system must terminate an active

transaction due to an error condition (e.g., deadlock)
! System crash

ê Power failures, operating system bugs etc
ê Fail-stop assumption: non-volatile storage contents are assumed

to not be corrupted by system crash
Ø Database systems have numerous integrity checks to prevent

corruption of disk data
! Disk failure

ê Head crashes; for now we will assume
Ø STABLE STORAGE: Data never lost. Can approximate by

using RAID and maintaining geographically distant copies
of the data

Approach, Assumptions etc..
! Approach:

ê Guarantee A and D:
Ø by controlling how the disk and memory interact,
Ø by storing enough information during normal processing to recover from

failures
Ø by developing algorithms to recover the database state

! Assumptions:
ê System may crash, but the disk is durable
ê The only atomicity guarantee is that a disk block write is atomic

! Once again, obvious naïve solutions exist that work, but that are too
expensive.
ê E.g. The shadow copy solution

Ø Make a copy of the database; do the changes on the copy; do an atomic
switch of the dbpointer at commit time

ê Goal is to do this as efficiently as possible

Data Access
! Physical blocks are those blocks residing on the disk.
! Buffer blocks are the blocks residing temporarily in main

memory.
! Block movements between disk and main memory are initiated

through the following two operations:
ê input(B) transfers the physical block B to main memory.
ê output(B) transfers the buffer block B to the disk, and replaces the

appropriate physical block there.
! We assume, for simplicity, that each data item fits in, and is

stored inside, a single block.

Example of Data Access

X

Y
A
B

x1

y1

buffer
Buffer Block A

Buffer Block B

input(A)

output(B)
read(X)

write(Y)

disk

work area
of T1

work area
of T2

memory

x2

Data Access (Cont.)
! Each transaction Ti has its private work-area in which local

copies of all data items accessed and updated by it are kept.
ê Ti's local copy of a data item X is called xi.

! Transferring data items between system buffer blocks and its
private work-area done by:
ê read(X) assigns the value of data item X to the local variable xi.
ê write(X) assigns the value of local variable xi to data item {X} in

the buffer block.
ê Note: output(BX) need not immediately follow write(X). System

can perform the output operation when it deems fit.
! Transactions

ê Must perform read(X) before accessing X for the first time
(subsequent reads can be from local copy)

ê write(X) can be executed at any time before the transaction
commits

STEAL vs NO STEAL, FORCE vs NO FORCE

! STEAL:
ê The buffer manager can steal a (memory) page from the database

Ø ie., it can write an arbitrary page to the disk and use that page for
something else from the disk

Ø In other words, the database system doesn’t control the buffer
replacement policy

ê Why a problem ?
Ø The page might contain dirty writes, ie., writes/updates by a

transaction that hasn’t committed
ê But, we must allow steal for performance reasons.

! NO STEAL:
ê Not allowed. More control, but less flexibility for the buffer manager.

STEAL vs NO STEAL, FORCE vs NO FORCE

! FORCE:
ê The database system forces all the updates of a transaction to disk

before committing
ê Why ?

Ø To make its updates permanent before committing
ê Why a problem ?

Ø Most probably random I/Os, so poor response time and throughput
Ø Interferes with the disk controlling policies

! NO FORCE:
ê Don’t do the above. Desired.
ê Problem:

Ø Guaranteeing durability becomes hard
ê We might still have to force some pages to disk, but minimal.

STEAL vs NO STEAL, FORCE vs NO FORCE:
Recovery implications

Force

No Force

No Steal Steal

Desired

Trivial

STEAL vs NO STEAL, FORCE vs NO FORCE:
Recovery implications

! How to implement A and D when No Steal and Force ?
ê Only updates from committed transaction are written to disk (since

no steal)
ê Updates from a transaction are forced to disk before commit (since

force)
Ø A minor problem: how do you guarantee that all updates from a

transaction make it to the disk atomically ?
– Remember we are only guaranteed an atomic block write
– What if some updates make it to disk, and other don’t ?

Ø Can use something like shadow copying/shadow paging

ê No atomicity/durability problem arise.

Terminology

! Deferred Database Modification:
ê Similar to NO STEAL, NO FORCE

Ø Not identical
ê Only need redos, no undos
ê We won’t cover this today

! Immediate Database Modification:
ê Similar to STEAL, NO FORCE
ê Need both redos, and undos

Log-based Recovery

! Most commonly used recovery method
! Intuitively, a log is a record of everything the database system

does
! For every operation done by the database, a log record is

generated and stored typically on a different (log) disk
! <T1, START>
! <T2, COMMIT>
! <T2, ABORT>
! <T1, A, 100, 200>

ê T1 modified A; old value = 100, new value = 200

Log
! Example transactionsT0 and T1 (T0 executes before T1):

T0: read (A) T1 : read (C)
A: - A - 50 C:- C- 100
write (A) write (C)
read (B)
B:- B + 50
write (B)

! Log:

Log-based Recovery

! Assumptions:
1. Log records are immediately pushed to the disk as soon as they are

generated
2. Log records are written to disk in the order generated
3. A log record is generated before the actual data value is updated
4. Strict two-phase locking
ê The first assumption can be relaxed
ê As a special case, a transaction is considered committed only after the

<T1, COMMIT> has been pushed to the disk

! But, this seems like exactly what we are trying to avoid ??
ê Log writes are sequential
ê They are also typically on a different disk

! Aside: LFS == log-structured file system

Log-based Recovery

! Assumptions:
1. Log records are immediately pushed to the disk as soon as they are

generated
2. Log records are written to disk in the order generated
3. A log record is generated before the actual data value is updated
4. Strict two-phase locking
ê The first assumption can be relaxed
ê As a special case, a transaction is considered committed only after the

<T1, COMMIT> has been pushed to the disk

! NOTE: As a result of assumptions 1 and 2, if data item A is updated,
the log record corresponding to the update is always forced to the
disk before data item A is written to the disk
ê This is actually the only property we need; assumption 1 can be relaxed

to just guarantee this (called write-ahead logging)

Using the log to abort/rollback

! STEAL is allowed, so changes of a transaction may have made it
to the disk

! UNDO(T1):
ê Procedure executed to rollback/undo the effects of a transaction
ê E.g.

Ø <T1, START>
Ø <T1, A, 200, 300>
Ø <T1, B, 400, 300>
Ø <T1, A, 300, 200> [[note: second update of A]]
Ø T1 decides to abort

ê Any of the changes might have made it to the disk

Using the log to abort/rollback

! UNDO(T1):
ê Go backwards in the log looking for log records belonging to T1
ê Restore the values to the old values
ê NOTE: Going backwards is important.

Ø A was updated twice
ê In the example, we simply:

Ø Restore A to 300
Ø Restore B to 400
Ø Restore A to 200

ê Write a log record <Ti , Xj, V1>
Ø such log records are called compensation log records
Ø <T1, A, 300>, <T1, B, 400>, <T1, A, 200>

ê Note: No other transaction better have changed A or B in the
meantime
Ø Strict two-phase locking

Using the log to recover

! We don’t require FORCE, so a change made by the committed
transaction may not have made it to the disk before the system crashed
ê BUT, the log record did (recall our assumptions)

! REDO(T1):
ê Procedure executed to recover a committed transaction
ê E.g.

Ø <T1, START>
Ø <T1, A, 200, 300>
Ø <T1, B, 400, 300>
Ø <T1, A, 300, 200> [[note: second update of A]]
Ø <T1, COMMIT>

ê By our assumptions, all the log records made it to the disk (since the
transaction committed)

ê But any or none of the changes to A or B might have made it to disk

Using the log to recover

! REDO(T1):
ê Go forwards in the log looking for log records belonging to T1
ê Set the values to the new values
ê NOTE: Going forwards is important.
ê In the example, we simply:

Ø Set A to 300
Ø Set B to 300
Ø Set A to 200

Idempotency

! Both redo and undo are required to idempotent
ê F is idempotent, if F(x) = F(F(x)) = F(F(F(F(…F(x)))))

! Multiple applications shouldn’t change the effect
ê This is important because we don’t know exactly what made it to the

disk, and we can’t keep track of that
ê E.g. consider a log record of the type

Ø <T1, A, incremented by 100>
Ø Old value was 200, and so new value was 300

ê But the on disk value might be 200 or 300 (since we have no control
over the buffer manager)

ê So we have no idea whether to apply this log record or not
ê Hence, value based logging is used (also called physical), not

operation based (also called logical)

Log-based recovery

! Log is maintained

! If during the normal processing, a transaction needs to abort
ê UNDO() is used for that purpose

! If the system crashes, then we need to do recovery using both
UNDO() and REDO()
ê Some transactions that were going on at the time of crash may not

have completed, and must be aborted/undone
ê Some transaction may have committed, but their changes didn’t

make it to disk, so they must be redone
ê Called restart recovery

! Recovery from failure: Two phases
ê Redo phase: replay updates of all transactions, whether they

committed, aborted, or are incomplete
ê Undo phase: undo all incomplete transactions

! Redo phase:
1. Find last <checkpoint L> record, and set undo-list to L.

- If no checkpoint record, start at the beginning
2. Scan forward from above <checkpoint L> record

1. Whenever a record <Ti, Xj, V1, V2> is found, redo it by writing
V2 to Xj

2. Whenever a log record <Ti start> is found, add Ti to undo-list
3. Whenever a log record <Ti commit> or <Ti abort> is found,

remove Ti from undo-list

Recovery Algorithm (Cont.)

Recovery Algorithm (Cont.)
! Undo phase:

1. Scan log backwards from end
1. Whenever a log record <Ti, Xj, V1, V2> is found where Ti is in

undo-list perform same actions as for transaction rollback:
1. perform undo by writing V1 to Xj.
2. write a log record <Ti , Xj, V1>

2. Whenever a log record <Ti start> is found where Ti is in undo-
list,
1. Write a log record <Ti abort>
2. Remove Ti from undo-list

3. Stop when undo-list is empty
" i.e. <Ti start> has been found for every transaction in undo-

list
" After undo phase completes, normal transaction processing can

commence

Example of Recovery

Checkpointing

! How far should we go back in the log while constructing redo and
undo lists ??
ê It is possible that a transaction made an update at the very

beginning of the system, and that update never made it to disk
Ø very very unlikely, but possible (because we don’t do force)

ê For correctness, we have to go back all the way to the beginning of
the log

ê Bad idea !!

! Checkpointing is a mechanism to reduce this

Checkpointing

! Periodically, the database system writes out everything in the
memory to disk
ê Goal is to get the database in a state that we know (not necessarily

consistent state)
! Steps:

ê Stop all other activity in the database system
ê Write out the entire contents of the memory to the disk

Ø Only need to write updated pages, so not so bad
Ø Entire === all updates, whether committed or not

ê Write out all the log records to the disk
ê Write out a special log record to disk

Ø <CHECKPOINT LIST_OF_ACTIVE_TRANSACTIONS>
Ø The second component is the list of all active transactions in the

system right now
ê Continue with the transactions again

Restart Recovery w/ checkpoints

! Key difference: Only need to go back till the last checkpoint
! Steps:

ê undo_list:
Ø Go back till the checkpoint as before.
Ø Add all the transactions that were active at that time, and that

didn’t commit
– e.g. possible that a transactions started before the

checkpoint, but didn’t finish till the crash
ê redo_list:

Ø Similarly, go back till the checkpoint constructing the redo_list
Ø Add all the transactions that were active at that time, and that did

commit
ê Do UNDOs and REDOs as before

Recap so far …

! Log-based recovery
ê Uses a log to aid during recovery

! UNDO()
ê Used for normal transaction abort/rollback, as well as during restart

recovery

! REDO()
ê Used during restart recovery

! Checkpoints
ê Used to reduce the restart recovery time

Write-ahead logging

! We assumed that log records are written to disk as soon as
generated
ê Too restrictive

! Write-ahead logging:
ê Before an update on a data item (say A) makes it to disk, the log

records referring to the update must be forced to disk
ê How ?

Ø Each log record has a log sequence number (LSN)
– Monotonically increasing

Ø For each page in the memory, we maintain the LSN of the last log
record that updated a record on this page
– pageLSN

Ø If a page P is to be written to disk, all the log records till
pageLSN(P) are forced to disk

Write-ahead logging

! Write-ahead logging (WAL) is sufficient for all our purposes
ê All the algorithms discussed before work

! Note the special case:
ê A transaction is not considered committed, unless the <T, commit>

record is on disk

Other issues

! The system halts during checkpointing
ê Not acceptable
ê Advanced recovery techniques allow the system to continue

processing while checkpointing is going on

! System may crash during recovery
ê Our simple protocol is actually fine
ê In general, this can be painful to handle

! B+-Tree and other indexing techniques
ê Strict 2PL is typically not followed (we didn’t cover this)
ê So physical logging is not sufficient; must have logical logging

Other issues
! ARIES: Considered the canonical description of log-based

recovery
ê Used in most systems
ê Has many other types of log records that simplify recovery

significantly

! Loss of disk:
ê Can use a scheme similar to checkpoining to periodically dump the

database onto tapes or optical storage
ê Techniques exist for doing this while the transactions are executing

(called fuzzy dumps)

! Shadow paging:
ê Read up

Recap

! STEAL vs NO STEAL, FORCE vs NO FORCE
ê We studied how to do STEAL and NO FORCE through log-based

recovery scheme

Force

No Force

No Steal Steal

Desired

Trivial Force

No Force

No Steal Steal

REDO
UNDO

NO REDO
NO UNDO

NO REDO
UNDO

REDO
NO UNDO

Recap

! ACID Properties
ê Atomicity and Durability :

Ø Logs, undo(), redo(), WAL etc

ê Consistency and Isolation:
Ø Concurrency schemes

ê Strong interactions:
Ø We had to assume Strict 2PL for proving correctness of recovery

