
Transactions: Concurrency
Control

Amol Deshpande
CMSC424

! Week 1: File Organization and Indexes

! Week 2: Query Processing

! Week 3: Query Optimization; Parallel Databases 1

! Week 4: Parallel Databases; Mapreduce; Transactions 1

! Week 5: Transactions 2 (Homework Due May 1)

êTransactions: Serializability, Recoverability

êTransactions: Concurrency 1

êTransactions: Concurrency 2: Other Concurrency Schemes

êTransactions: Recovery (MOVED TO NEXT WEEK)

! Week 6: Transactions: Recovery; Distributed Transactions;
Miscellaneous Topics (Homework Due May 8)

Spring 2020 – Online Instruction Plan

! Book Chapters
ê15.4, 15.5, 15.7, 15.9

! Key topics:
êTimestamp-based concurrency schemes

êOptimistic (validation-based) concurrency control

êSnapshot isolation

êPhantom Problem

êWeak levels of consistency in SQL

Transactions: Concurrency 2

Other CC Schemes: Time-stamp Based

! Time-stamp based
ê Transactions are issued time-stamps when they enter the system
ê The time-stamps determine the serializability order
ê So if T1 entered before T2, then T1 should be before T2 in the

serializability order
ê Say timestamp(T1) < timestamp(T2)
ê If T1 wants to read data item A

Ø If any transaction with larger time-stamp wrote that data item,
then this operation is not permitted, and T1 is aborted

ê If T1 wants to write data item A
Ø If a transaction with larger time-stamp already read that data item

or written it, then the write is rejected and T1 is aborted
ê Aborted transaction are restarted with a new timestamp

Ø Possibility of starvation

Other CC Schemes: Time-stamp Based
ê Example

Other CC Schemes: Time-stamp Based

! Time-stamp based
ê As discussed here, has too many problems

Ø Starvation
Ø Non-recoverable
Ø Cascading rollbacks required

ê Most can be solved fairly easily
Ø Read up

ê Remember: We can always put more and more restrictions on what
the transactions can do to ensure these things
Ø The goal is to find the minimal set of restrictions to as to not

hinder concurrency

Other Schemes:
Optimistic Concurrency Control

! Optimistic concurrency control
ê Also called validation-based

ê Intuition
Ø Let the transactions execute as they wish
Ø At the very end when they are about to commit, check if there might

be any problems/conflicts etc
– If no, let it commit
– If yes, abort and restart

ê Optimistic: The hope is that there won’t be too many problems/aborts

! Each transaction Ti has 3 timestamps
ê Start(Ti) : the time when Ti started its execution
ê Validation(Ti): the time when Ti entered its validation phase
ê Finish(Ti) : the time when Ti finished its write phase

! Serializability order is determined by timestamp given at
validation time, to increase concurrency.
ê Thus TS(Ti) is given the value of Validation(Ti).

! This protocol is useful and gives greater degree of concurrency
if probability of conflicts is low.
ê because the serializability order is not pre-decided, and
ê relatively few transactions will have to be rolled back.

Other Schemes:
Optimistic Concurrency Control

Other Schemes:
Optimistic Concurrency Control

! If for all Ti with TS (Ti) < TS (Tj) either one of the following
condition holds:
ê finish(Ti) < start(Tj)
ê start(Tj) < finish(Ti) < validation(Tj) and the set of data items

written by Ti does not intersect with the set of data items read by
Tj.

then validation succeeds and Tj can be committed. Otherwise,
validation fails and Tj is aborted.

! Justification: Either the first condition is satisfied, and there is
no overlapped execution, or the second condition is satisfied
and
! the writes of Tj do not affect reads of Ti since they occur after Ti

has finished its reads.
! the writes of Ti do not affect reads of Tj since Tj does not read

any item written by Ti.

Other Schemes:
Optimistic Concurrency Control

! Example of schedule produced using validation

Other CC Schemes: Snapshot Isolation

! Very popular scheme, used as the primary scheme by many
systems including Oracle, PostgreSQL etc…
ê Several others support this in addition to locking-based protocol

! A type of “optimistic concurrency control”

! Key idea:
ê For each object, maintain past “versions” of the data along with

timestamps
Ø Every update to an object causes a new version to be generated

Other CC Schemes: Snapshot Isolation

! Read queries:
ê Let “t” be the “time-stamp” of the query, i.e., the time at which it entered

the system
ê When the query asks for a data item, provide a version of the data item

that was latest as of “t”
Ø Even if the data changed in between, provide an old version

ê No locks needed, no waiting for any other transactions or queries
ê The query executes on a consistent snapshot of the database

! Update queries (transactions):
ê Reads processed as above on a snapshot
ê Writes are done in private storage
ê At commit time, for each object that was written, check if some other

transaction updated the data item since this transaction started
Ø If yes, then abort and restart
Ø If no, make all the writes public simultaneously (by making new

versions)

Snapshot Isolation
! A transaction T1 executing with Snapshot

Isolation
ê takes snapshot of committed data at start
ê always reads/modifies data in its own

snapshot
ê updates of concurrent transactions are not

visible to T1
ê writes of T1 complete when it commits
ê First-committer-wins rule:

Ø Commits only if no other concurrent
transaction has already written data
that T1 intends to write.

T1 T2 T3

W(Y := 1)
Commit

Start
R(X) à 0
R(Y)à 1

W(X:=2)
W(Z:=3)
Commit

R(Z) à 0
R(Y) à 1
W(X:=3)
Commit-Req
Abort

Concurrent updates not visible
Own updates are visible
Not first-committer of X

Serialization error, T2 is rolled back

Other CC Schemes: Snapshot Isolation

! Advantages:
ê Read query don’t block at all, and run very fast
ê As long as conflicts are rare, update transactions don’t abort either
ê Overall better performance than locking-based protocols

! Major disadvantage:
ê Not serializable
ê Inconsistencies may be introduced
ê See the wikipedia article for more details and an example

Ø http://en.wikipedia.org/wiki/Snapshot_isolation

Snapshot Isolation

! Example of problem with SI
ê T1: x:=y
ê T2: y:= x
ê Initially x = 3 and y = 17

Ø Serial execution: x = ??, y = ??
Ø if both transactions start at the same time, with snapshot

isolation: x = ?? , y = ??
! Called skew write
! Skew also occurs with inserts

ê E.g:
Ø Find max order number among all orders
Ø Create a new order with order number = previous max + 1

SI In Oracle and PostgreSQL
! Warning: SI used when isolation level is set to serializable, by

Oracle, and PostgreSQL versions prior to 9.1
ê PostgreSQL’s implementation of SI (versions prior to 9.1) described in

Section 26.4.1.3
ê Oracle implements “first updater wins” rule (variant of “first committer

wins”)
Ø concurrent writer check is done at time of write, not at commit time
Ø Allows transactions to be rolled back earlier
Ø Oracle and PostgreSQL < 9.1 do not support true serializable

execution
ê PostgreSQL 9.1 introduced new protocol called “Serializable Snapshot

Isolation” (SSI)
Ø Which guarantees true serializabilty including handling predicate

reads (coming up)

The “Phantom” problem

! An interesting problem that comes up for dynamic databases
! Schema: accounts(acct_no, balance, zipcode, …)
! Transaction 1: Find the number of accounts in zipcode = 20742,

and divide $1,000,000 between them
! Transaction 2: Insert <acctX, …, 20742, …>
! Execution sequence:

ê T1 locks all tuples corresponding to “zipcode = 20742”, finds the
total number of accounts (= num_accounts)

ê T2 does the insert
ê T1 computes 1,000,000/num_accounts
ê When T1 accesses the relation again to update the balances, it finds

one new (“phantom”) tuples (the new tuple that T2 inserted)
! Not serializable
! See this for another example

http://computersight.com/programming/the-phantom-problem/

Weak Levels of Consistency
! Degree-two consistency: differs from two-phase locking in that

S-locks may be released at any time, and locks may be acquired
at any time
ê X-locks must be held till end of transaction
ê Serializability is not guaranteed, programmer must ensure that no

erroneous database state will occur]

! Cursor stability:
ê For reads, each tuple is locked, read, and lock is immediately

released
ê X-locks are held till end of transaction
ê Special case of degree-two consistency

Weak Levels of Consistency in SQL
! SQL allows non-serializable executions

ê Serializable: is the default
ê Repeatable read: allows only committed records to be read, and

repeating a read should return the same value (so read locks should
be retained)
Ø However, the phantom phenomenon need not be prevented

– T1 may see some records inserted by T2, but may not see
others inserted by T2

ê Read committed: same as degree two consistency, but most
systems implement it as cursor-stability

ê Read uncommitted: allows even uncommitted data to be read

! In many database systems, read committed is the default
consistency level
ê has to be explicitly changed to serializable when required

Ø set isolation level serializable

Summary
! Concurrency control schemes help guarantee isolation while

allowing for concurrent transactions

! Many different schemes developed over the years
ê Lock-based, Timestamp-based, Snapshot Isolation, Optimistic

! Lot of new work in the recent years because of shifting hardware
trends
ê E.g., locking performance overheads quite significant

! Many NoSQL systems still have limited concurrency

! Important to consider recovery schemes at the same time

