Transactions: Concurrency
Control

Amol Deshpande
CMSC424

Spring 2020 - Online Instruction Plan

B Week 1: File Organization and Indexes
B Week 2: Query Processing
B Week 3: Query Optimization; Parallel Databases 1
B Week 4: Parallel Databases; Mapreduce; Transactions 1
B Week 5: Transactions 2 (Homework Due May 1)
* Transactions: Serializability, Recoverability
% Transactions: Concurrency 1
% Transactions: Concurrency 2: Other Concurrency Schemes

*Fransactions-Recovery- (MOVED TO NEXT WEEK)

B Week 6: Transactions: Recovery; Distributed Transactions;
Miscellaneous Topics (Homework Due May 8)

Transactions: Concurrency 2

M Book Chapters
% 15.4,15.5,15.7, 15.9
M Key topics:
* Timestamp-based concurrency schemes
% Optimistic (validation-based) concurrency control
% Snapshot isolation
% Phantom Problem

* Weak levels of consistency in SQL

Other CC Schemes: Time-stamp Based

B Time-stamp based
* Transactions are issued time-stamps when they enter the system
* The time-stamps determine the serializability order

* So if T1 entered before T2, then T1 should be before T2 in the
serializability order

* Say timestamp(T1) < timestamp(T2)
* |f T1 wants to read data item A

> If any transaction with larger time-stamp wrote that data item,
then this operation is not permitted, and T1 is aborted

* |f T1 wants to write data item A

> If a transaction with larger time-stamp already read that data item
or written it, then the write is rejected and T1 is aborted

* Aborted transaction are restarted with a new timestamp
> Possibility of starvation

Other CC Schemes: Time-stamp Based

* Example
I % I3 I, I5
read (X)
read (Y)
read (Y)
write (Y)
write (Z)
read (Z)
read (Z)
abort
read (X)
read (W)
write (W)
abort
write (Y)

write (Z)

Other CC Schemes: Time-stamp Based

B Time-stamp based
* As discussed here, has too many problems
> Starvation
> Non-recoverable
» Cascading rollbacks required

* Most can be solved fairly easily
> Read up

* Remember: We can always put more and more restrictions on what
the transactions can do to ensure these things

> The goal is to find the minimal set of restrictions to as to not
hinder concurrency

Other Schemes:
Optimistic Concurrency Control

B Optimistic concurrency control
* Also called validation-based

* Intuition
> Let the transactions execute as they wish

> At the very end when they are about to commit, check if there might
be any problems/conflicts etc

If no, let it commit
If yes, abort and restart

* Optimistic: The hope is that there won’t be too many problems/aborts

Other Schemes:
Optimistic Concurrency Control

B Each transaction T, has 3 timestamps
* Start(T,) : the time when T, started its execution
* Validation(T;): the time when T, entered its validation phase
* Finish(T)) : the time when T, finished its write phase

B Serializability order is determined by timestamp given at
validation time, to increase concurrency.

* Thus TS(T)) is given the value of Validation(T;).

B This protocol is useful and gives greater degree of concurrency
if probability of conflicts is low.

* because the serializability order is not pre-decided, and
* relatively few transactions will have to be rolled back.

Other Schemes:
Optimistic Concurrency Control

W Ifforall T;with TS (T) < TS (7)) either one of the following
condition holds:

* finish(T) < start(7)
* start(7) < finish(7) < validation(7)) and the set of data items
written by T; does not intersect with the set of data items read by
T,
then validation succeeds and 7, can be committed. Otherwise,
validation fails and T; is aborted.

B Justification: Either the first condition is satisfied, and there is
no overlapped execution, or the second condition is satisfied
and

M the writes of T;do not affect reads of T; since they occur after T;
has finished its reads.

W the writes of T;do not affect reads of T; since T; does not read
any item written by T..

Other Schemes:
Optimistic Concurrency Control

B Example of schedule produced using validation

T25

TZ 6

read (B)

read (A)
{ validate)
display (A + B)

read (B)
B=B 50
read (A)
A:=A+50

(validate)
write (B)
write (A)

Other CC Schemes: Snapshot Isolation

B Very popular scheme, used as the primary scheme by many
systems including Oracle, PostgreSQL etc...

* Several others support this in addition to locking-based protocol

B A type of “optimistic concurrency control”

B Key idea:

* For each object, maintain past “versions” of the data along with
timestamps

> Every update to an object causes a new version to be generated

Other CC Schemes: Snapshot Isolation

B Read queries:

* Let “t” be the “time-stamp” of the query, i.e., the time at which it entered
the system

* When the query asks for a data item, provide a version of the data item
that was latest as of “t”

> Even if the data changed in between, provide an old version
* No locks needed, no waiting for any other transactions or queries
* The query executes on a consistent snapshot of the database

B Update queries (transactions):
* Reads processed as above on a shapshot
* Writes are done in private storage

* At commit time, for each object that was written, check if some other
transaction updated the data item since this transaction started

> If yes, then abort and restart

> If no, make all the writes public simultaneously (by making new
versions)

Snapshot Iso

lation

m A trarllsaction T1 executing with Snapshot T1 T2 T3
Isolation
* takes snapshot of committed data at start W(Y :=1)
* always reads/modifies data in its own Commit
snapshot Start
* upcjates of concurrent transactions are not R(X)> 0
visible to T1 R(Y)> 1
* writes of T1 complete when it commits
* First-committer-wins rule: W(X:=2)
> Commits only if no other concurrent W(Z:=3)
transaction has already written data Commit
that T1 intends to write. RiZ) >0
/ R(Y) > 1
W(X:=3
Concurrent updates not visible// (_)
Own updates are visible | Commit-Req
Not first-committer of X | Abort

1

Serialization error, T2 is rolled back

Other CC Schemes: Snapshot Isolation

B Advantages:
* Read query don’t block at all, and run very fast
* As long as conflicts are rare, update transactions don’t abort either
* Overall better performance than locking-based protocols

B Major disadvantage:
* Not serializable
* Inconsistencies may be introduced
* See the wikipedia article for more details and an example
> http://en.wikipedia.org/wiki/Snapshot_isolation

Snapshot Isolation

B Example of problem with Sl
* T1: x:=y
* T2:y:=x
* Initially x =3 andy =17
> Serial execution: x=7?,y =77

> if both transactions start at the same time, with snapshot
isolation: x =77,y =77

B Called skew write
B Skew also occurs with inserts
* E.g:
> Find max order number among all orders
> Create a new order with order number = previous max + 1

Sl In Oracle and PostgreSQL

B Warning: Sl used when isolation level is set to serializable, by
Oracle, and PostgreSQL versions prior to 9.1

* PostgreSQL’ s implementation of Sl (versions prior to 9.1) described in
Section 26.4.1.3

* Oracle implements “first updater wins” rule (variant of “first committer
wins”)
» concurrent writer check is done at time of write, not at commit time
> Allows transactions to be rolled back earlier

> Oracle and PostgreSQL < 9.1 do not support true serializable
execution

* PostgreSQL 9.1 introduced new protocol called “Serializable Snapshot
Isolation” (SSI)

> Which guarantees true serializabilty including handling predicate
reads (coming up)

The “Phantom” problem

An interesting problem that comes up for dynamic databases
Schema: accounts(acct_no, balance, zipcode, ...)

Transaction 1: Find the number of accounts in zipcode = 20742,
and divide $1,000,000 between them

Transaction 2: Insert <acctX, ..., 20742, ...>

Execution sequence:

* T1 locks all tuples corresponding to “zipcode = 20742”, finds the
total number of accounts (= num_accounts)

* T2 does the insert
* T1 computes 1,000,000/num_accounts

* When T1 accesses the relation again to update the balances, it finds
one new (“phantom”) tuples (the new tuple that T2 inserted)

Not serializable

http://computersight.com/programming/the-phantom-problem/

Weak Levels of Consistency

Degree-two consistency: differs from two-phase locking in that
S-locks may be released at any time, and locks may be acquired
at any time

* X-locks must be held till end of transaction

* Serializability is not guaranteed, programmer must ensure that no
erroneous database state will occur]

Cursor stability:

* For reads, each tuple is locked, read, and lock is immediately
released

* X-locks are held till end of transaction
* Special case of degree-two consistency

Weak Levels of Consistency in SQL

B SQL allows non-serializable executions
Serializable: is the default

* Repeatable read: allows only committed records to be read, and
repeating a read should return the same value (so read locks should
be retained)

> However, the phantom phenomenon need not be prevented

T1 may see some records inserted by T2, but may not see
others inserted by T2

* Read committed: same as degree two consistency, but most
systems implement it as cursor-stability

#* Read uncommitted: allows even uncommitted data to be read

B [n many database systems, read committed is the default
consistency level

* has to be explicitly changed to serializable when required
> set isolation level serializable

Summary

Concurrency control schemes help guarantee isolation while
allowing for concurrent transactions

Many different schemes developed over the years
* Lock-based, Timestamp-based, Snapshot Isolation, Optimistic

Lot of new work in the recent years because of shifting hardware
trends

* E.g., locking performance overheads quite significant

Many NoSQL systems still have limited concurrency

Important to consider recovery schemes at the same time

