
Transactions; Concurrency;
Recovery

Amol Deshpande
CMSC424

! Week 1: File Organization and Indexes

! Week 2: Query Processing

! Week 3: Query Optimization; Parallel Databases 1

! Week 4: Parallel Databases; Mapreduce; Transactions 1

! Week 5: Transactions 2 (Homework Due May 1)

êTransactions: Serializability, Recoverability

êTransactions: Concurrency 1

êTransactions: Concurrency 2: Other Concurrency Schemes

êTransactions: Recovery

! Week 6: Distributed Transactions; Miscellaneous Topics
(Homework Due May 8)

Spring 2020 – Online Instruction Plan

! Book Chapters
ê14.6, 14.7

! Key topics:
êConflict equivalence of schedules

êConflict serializability and checking by drawing precedence
graphs

êView serializability

êRecoverability

Transactions: Overview

Another schedule

T1
read(A)
A = A -50
write(A)

read(B)
B=B+50
write(B)

T2

read(A)
tmp = A*0.1
A = A – tmp
write(A)

read(B)
B = B+ tmp
write(B)

Is this schedule okay ?

Lets look at the final effect…

Effect: Before After
A 100 45
B 50 105

Further, the effect same as the
serial schedule 1.

Called serializable

Conflict Serializability

! Two read/write instructions “conflict” if
ê They are by different transactions
ê They operate on the same data item
ê At least one is a “write” instruction

! Why do we care ?
ê If two read/write instructions don’t conflict, they can be “swapped”

without any change in the final effect
ê However, if they conflict they CAN’T be swapped without changing

the final effect

Equivalence by Swapping
T1
read(A)
A = A -50
write(A)

read(B)
B=B+50
write(B)

T2

read(A)
tmp = A*0.1
A = A – tmp
write(A)

read(B)
B = B+ tmp
write(B)

T1
read(A)
A = A -50
write(A)

read(B)

B=B+50
write(B)

T2

read(A)
tmp = A*0.1
A = A – tmp

write(A)

read(B)
B = B+ tmp
write(B)

Effect: Before After
A 100 45
B 50 105

Effect: Before After
A 100 45
B 50 105

==

Equivalence by Swapping
T1
read(A)
A = A -50
write(A)

read(B)
B=B+50
write(B)

T2

read(A)
tmp = A*0.1
A = A – tmp
write(A)

read(B)
B = B+ tmp
write(B)

T1
read(A)
A = A -50
write(A)

read(B)
B=B+50

write(B)

T2

read(A)
tmp = A*0.1
A = A – tmp
write(A)

read(B)

B = B+ tmp
write(B)

Effect: Before After
A 100 45
B 50 105

Effect: Before After
A 100 45
B 50 55

! ==

Conflict Serializability

! Conflict-equivalent schedules:
ê If S can be transformed into S’ through a series of swaps, S and S’

are called conflict-equivalent
ê conflict-equivalent guarantees same final effect on the database

! A schedule S is conflict-serializable if it is conflict-equivalent to a
serial schedule

Equivalence by Swapping
T1
read(A)
A = A -50
write(A)

read(B)
B=B+50
write(B)

T2

read(A)
tmp = A*0.1
A = A – tmp
write(A)

read(B)
B = B+ tmp
write(B)

T1
read(A)
A = A -50
write(A)

read(B)
B=B+50

write(B)

T2

read(A)
tmp = A*0.1
A = A – tmp

write(A)

read(B)
B = B+ tmp
write(B)

Effect: Before After
A 100 45
B 50 105

Effect: Before After
A 100 45
B 50 105

==

Equivalence by Swapping
T1
read(A)
A = A -50
write(A)

read(B)
B=B+50
write(B)

T2

read(A)
tmp = A*0.1
A = A – tmp
write(A)

read(B)
B = B+ tmp
write(B)

T1
read(A)
A = A -50
write(A)

read(B)
B=B+50
write(B)

T2

read(A)
tmp = A*0.1
A = A – tmp
write(A)

read(B)
B = B+ tmp
write(B)

Effect: Before After
A 100 45
B 50 105

Effect: Before After
A 100 45
B 50 105

==

Example Schedules (Cont.)
A “bad” schedule

T1
read(A)
A = A -50

write(A)
read(B)
B=B+50
write(B)

T2

read(A)
tmp = A*0.1
A = A – tmp
write(A)
read(B)

B = B+ tmp
write(B)

X

Y Can’t move Y below X
read(B) and write(B) conflict

Other options don’t work either

So: Not Conflict Serializable

Serializability

! In essence, following set of instructions is not conflict-serializable:

View-Serializability
! Similarly, following not conflict-serializable

! BUT, it is serializable
ê Intuitively, this is because the conflicting write instructions don’t matter
ê The final write is the only one that matters

! View-serializability allows these
ê Read up

Other notions of serializability

! Not conflict-serializable or view-serializable, but serializable
! Mainly because of the +/- only operations

ê Requires analysis of the actual operations, not just read/write
operations

! Most high-performance transaction systems will allow these

Testing for conflict-serializability

! Given a schedule, determine if it is conflict-serializable

! Draw a precedence-graph over the transactions
ê A directed edge from T1 and T2, if they have conflicting instructions,

and T1’s conflicting instruction comes first

! If there is a cycle in the graph, not conflict-serializable
ê Can be checked in at most O(n+e) time, where n is the number of

vertices, and e is the number of edges
! If there is none, conflict-serializable

! Testing for view-serializability is NP-hard.

Example Schedule (Schedule A) + Precedence Graph

T1 T2 T3 T4 T5
read(X)

read(Y)
read(Z)

read(V)
read(W)
read(W)

read(Y)
write(Y)

write(Z)
read(U)

read(Y)
write(Y)
read(Z)
write(Z)

read(U)
write(U)

T3 T4

T1 T2

Recap so far…

! We discussed:
ê Serial schedules, serializability
ê Conflict-serializability, view-serializability
ê How to check for conflict-serializability

! We haven’t discussed:
ê How to guarantee serializability ?

Ø Allowing transactions to run, and then aborting them if the
schedules wasn’t serializable is clearly not the way to go

ê We instead use schemes to guarantee that the schedule will be
conflict-serializable

ê Also, recoverability ?

Recoverability

! Serializability is good for
consistency

! But what if transactions fail ?
ê T2 has already committed

Ø A user might have been notified
ê Now T1 abort creates a problem

Ø T2 has seen its effect, so just
aborting T1 is not enough. T2
must be aborted as well (and
possibly restarted)

Ø But T2 is committed

T1
read(A)
A = A -50
write(A)

read(B)
B=B+50
write(B)
ABORT

T2

read(A)
tmp = A*0.1
A = A – tmp
write(A)
COMMIT

Recoverability

! Recoverable schedule: If T1 has read something T2 has written,
T2 must commit before T1
ê Otherwise, if T1 commits, and T2 aborts, we have a problem

! Cascading rollbacks: If T10 aborts, T11 must abort, and hence
T12 must abort and so on.

Recoverability

! Dirty read: Reading a value written by a transaction that hasn’t
committed yet

! Cascadeless schedules:
ê A transaction only reads committed values.
ê So if T1 has written A, but not committed it, T2 can’t read it.

Ø No dirty reads

! Cascadeless à No cascading rollbacks
ê That’s good
ê We will try to guarantee that as well

Recap so far…

! We discussed:
ê Serial schedules, serializability
ê Conflict-serializability, view-serializability
ê How to check for conflict-serializability
ê Recoverability, cascade-less schedules

! We haven’t discussed:
ê How to guarantee serializability ?

Ø Allowing transactions to run, and then aborting them if the
schedules wasn’t serializable is clearly not the way to go

ê We instead use schemes to guarantee that the schedule will be
conflict-serializable

