
Transactions; Concurrency; 
Recovery

Amol Deshpande
CMSC424



! Week 1: File Organization and Indexes

! Week 2: Query Processing

! Week 3: Query Optimization; Parallel Databases 1

! Week 4: Parallel Databases; Mapreduce; Transactions 1
ê Map-reduce and Apache Spark

ê Parallel Databases 2: Execution and Other Issues

ê Transactions 1: ACID, SQL Transactions

ê Homework Due April 24

! Week 5: Transactions 2 (Homework Due May 1)

! Week 6: Miscellaneous Topics (Reading Homework Due May 8)

Spring 2020 – Online Instruction Plan



! Book Chapters
ê14.1, 14.2, 14.3, 14.4, 14.5

! Key topics:
êTransactions and ACID Properties

êDifferent states a transaction goes through

êNotion of a ”Schedule” 

êIntroduction to Serializability

Transactions: Overview



Transaction Concept
! A transaction is a unit of program execution that accesses 

and  possibly updates various data items.
! E.g. transaction to transfer $50 from account A to account B:

1. read(A)
2. A := A – 50
3. write(A)
4. read(B)
5. B := B + 50
6. write(B)

! Two main issues to deal with:
ê Failures of various kinds, such as hardware failures and system 

crashes
ê Concurrent execution of multiple transactions



Overview

! Transaction: A sequence of database actions enclosed within 
special tags

! Properties:
ê Atomicity: Entire transaction or nothing
ê Consistency: Transaction, executed completely, takes database 

from one consistent state to another
ê Isolation: Concurrent transactions appear to run in isolation
ê Durability: Effects of committed transactions are not lost

! Consistency: Transaction programmer needs to guarantee that
Ø DBMS can do a few things, e.g., enforce constraints on the data

! Rest: DBMS guarantees



How does..

! .. this relate to queries that we discussed ?
êQueries don’t update data, so durability and consistency not 

relevant
êWould want concurrency

Ø Consider a query computing total balance at the end of 
the day

êWould want isolation
Ø What if somebody makes a transfer while we are 

computing the balance
Ø Typically not guaranteed for such long-running queries

! TPC-C vs TPC-H



Assumptions and Goals
! Assumptions:

ê The system can crash at any time
ê Similarly, the power can go out at any point

Ø Contents of the main memory won’t survive a crash, or power outage
ê BUT… disks are durable. They might stop, but data is not lost.

Ø For now.
ê Disks only guarantee atomic sector writes, nothing more
ê Transactions are by themselves consistent

! Goals:
ê Guaranteed durability, atomicity
ê As much concurrency as possible, while not compromising isolation 

and/or consistency
Ø Two transactions updating the same account balance… NO
Ø Two transactions updating different account balances… YES



Transaction states

Initial State –
stays in this 
during execution

Any changes 
have been rolled 
back

Successful 
Completion



Next…

! Concurrency: Why?
ê Increased processor and disk utilization
ê Reduced average response times

! Concurrency control schemes
ê A CC scheme is used to guarantee that concurrency does not lead 

to problems
ê For now, we will assume durability is not a problem

Ø So no crashes
Ø Though transactions may still abort

! Schedules
! When is concurrency okay ?

ê Serial schedules
ê Serializability



A Schedule

T1
read(A)
A = A -50
write(A)
read(B)
B=B+50
write(B)

T2

read(A)
tmp = A*0.1
A = A – tmp
write(A)
read(B)
B = B+ tmp
write(B)

Transactions:
T1:   transfers $50 from A to B
T2:   transfers 10% of A to B

Database constraint: A + B is constant (checking+saving accts)

Effect:      Before After
A      100          45
B       50           105

Each transaction obeys 
the constraint.

This schedule does too.



Schedules

! A schedule is simply a (possibly interleaved) 
execution sequence of transaction instructions

! Serial Schedule: A schedule in which transaction 
appear one after the other
ê ie., No interleaving

! Serial schedules satisfy isolation and consistency
êSince each transaction by itself does not introduce 

inconsistency



Example Schedule

! Another “serial” schedule:

T1

read(A)
A = A -50
write(A)
read(B)
B=B+50
write(B)

T2
read(A)
tmp = A*0.1
A = A – tmp
write(A)
read(B)
B = B+ tmp
write(B)

Consistent ?
Constraint is satisfied.

Since each Xion is consistent, any 
serial schedule must be consistent

Effect:      Before After
A      100          40
B       50           110



Another schedule

T1
read(A)
A = A -50
write(A)

read(B)
B=B+50
write(B)

T2

read(A)
tmp = A*0.1
A = A – tmp
write(A)

read(B)
B = B + tmp
write(B)

Is this schedule okay ?

Lets look at the final effect…

Effect:      Before After
A      100          45
B       50           105

Consistent. 
So this schedule is okay too.



Another schedule

T1
read(A)
A = A -50
write(A)

read(B)
B=B+50
write(B)

T2

read(A)
tmp = A*0.1
A = A – tmp
write(A)

read(B)
B = B+ tmp
write(B)

Is this schedule okay ?

Lets look at the final effect…

Effect:      Before After
A      100          45
B       50           105

Further, the effect same as the
serial schedule 1.

Called serializable



Example Schedules (Cont.)
A “bad” schedule

Not consistent

T1
read(A)
A = A -50

write(A)
read(B)
B=B+50
write(B)

T2

read(A)
tmp = A*0.1
A = A – tmp
write(A)
read(B)

B = B+ tmp
write(B)

Effect:      Before After
A      100          50
B       50           60



Serializability
! A schedule is called serializable if its final effect is the same as that 

of a serial schedule

! Serializability à schedule is fine and doesn’t cause inconsistencies
ê Since serial schedules are fine

! Non-serializable schedules unlikely to result in consistent databases

! We will ensure serializability
ê Typically relaxed in real high-throughput environments

! Not possible to look at all n! serial schedules to check if the effect is 
the same
ê Instead we ensure serializability by allowing or not allowing certain 

schedules



Example Schedule with More Transactions

T1 T2 T3 T4 T5
read(X)

read(Y)
read(Z)

read(V)
read(W)
read(W)

read(Y)
write(Y)

write(Z)
read(U)

read(Y)
write(Y)
read(Z)
write(Z)

read(U)
write(U)



Summary
! Transactions is how we update data in databases

! ACID properties: foundations on which high-performance transaction 
processing systems are built
ê From the beginning, consistency has been a key requirement
ê Although “relaxed” consistency is acceptable in many cases (originally 

laid out in 1975)

! NoSQL systems originally eschewed ACID properties
ê MongoDB was famously bad at guaranteeing any of the properties
ê Lot of focus on what’s called “eventual consistency”

! Recognition today that strict ACID is more important than that
ê Hard to build any business logic if you have no idea if your transactions 

are consistent


