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Spring 2020 - Online Instruction Plan

B Week 1: File Organization and Indexes
B Week 2: Query Processing
B Week 3: Query Optimization; Parallel Databases 1

B Week 4: Parallel Databases; Mapreduce; Transactions 1

% Map-reduce and Apache Spark (Posted early for Project 5)
* Parallel Databases 2: Execution and Other Issues
* Transactions 1

* Homework Due April 24
B Week 5: Transactions 2 (Homework Due May 1)
B Week 6: Miscellaneous Topics (Homework Due May 8)



”Big Data”

B Very large volumes of data being collected

* Driven by growth of web, social media, and more recently
internet-of-things

* Web logs were an early source of data

> Analytics on web logs has great value for
advertisements, web site structuring, what posts to
show to a user, etc

B Big Data: differentiated from data handled by earlier
generation databases

* Volume: much larger amounts of data stored
* Velocity: much higher rates of insertions
* Variety: many types of data, beyond relational data
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Why (Parallel) Databases Don’t Work

B The data is often not relational in nature
* E.g., images, text, graphs
B The analysis/queries are not relational in nature

* E.g., Image Analysis, Text Analytics, Natural Language Processing, Web Analytics, Social
Network Analysis, Machine Learning, etc.

* Databases don’t really have constructs to support this

> User-defined functions can help to some extent
* Need to interleave relational-like operations with non-relational (e.g., data cleaning, etc.)

* Domain users are more used to procedural languages

B The operations are often one-time

* Only need to analyse images once in a while to create a “deep learning” model

* Databases are really better suited for repeated analysis of the data

B Much of the analysis not time-sensitive

B Parallel databases too expensive given the data volumes
* Were designed for large enterprises, with typically big budgets
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Distributed File Systems

M A distributed file system stores data across a large collection of
machines, but provides single file-system view

B Highly scalable distributed file system for large data-intensive
applications.

* E.g., 10K nodes, 100 million files, 10 PB

M Provides redundant storage of massive amounts of data on
cheap and unreliable computers

* Files are replicated to handle hardware failure
* Detect failures and recovers from them

B Examples:
* Google File System (GFS)
* Hadoop File System (HDFS)



Hadoop File System Architecture

NameNode

Metadata (name, replicas, ..)

Single Namespace for entire cluster

Files are broken up into blocks

Metadata Ops

BackupNode

Metadata (name, replicas, ..)

Typically 64 MB block size

Each block replicated on multiple
DataNodes

Client

DataNodes

Finds location of blocks from
NameNode

ulnln OO0 O

Accesses data directly from

Blocks ///"D

DataNode

Block Wy Ha //ﬂ =
> \D/ Replication| | | | [ ]

Maps a filename to list of Block IDs

« Maps each Block ID to DataNodes

Maps a Block ID to a physical location

b Rack 1 Rack 2



Key-Value Storage Systems

B Unlike HDFS, focus here on storing large numbers (billions or even
more) of small (KB-MB) sized records
* uninterpreted bytes, with an associated key
> E.g., Amazon S3, Amazon Dynamo

* Wide-table (can have arbitrarily many attribute names) with associated key

Google BigTable, Apache Cassandra, Apache Hbase, Amazon DynamoDB
Allows some operations (e.qg., filtering) to execute on storage node

* JSON
> MongoDB, CouchDB (document model)

B Records partitioned across multiple machines
* Queries are routed by the system to appropriate machine
B Records replicated across multiple machines for fault tolerance as
well as efficient querying
* Need to guarantee “consistency” when data is updated
* “Distributed Transactions”



Key-Value Storage Systems

Key-value stores support
* put(key, value): used to store values with an associated key,

* get(key): which retrieves the stored value associated with the
specified key

* delete(key) -- Remove the key and its associated value
Some support range queries on key values
Document stores support richer queries (e.g., MongoDB)
* Slowly evolving towards the richness of SQL
Not full database systems (increasingly changing)
* Have no/limited support for transactional updates

* Applications must manage query processing on their own

Not supporting above features makes it easier to build scalable
data storage systems

* Also called NoSQL systems



Replication and Consistency

Availability (system can run even if parts have failed)
* Typically via replication
Consistency

* All live replicas have same value, and each read sees latest version

* Often implemented using majority protocols
> E.g., have 3 replicas, reads/writes must access 2 replicas

Network partitions (network can break into two or more parts,
each with active systems that can’t talk to other parts)

Distributed systems will "partition” at some point — must choose
consistency or availability

* Brewer’s CAP “Theorem”
* Traditional database choose consistency
* Most Web applications choose availability



The MapReduce Paradigm

M Platform for reliable, scalable parallel computing

B Abstracts issues of distributed and parallel environment from
programmer

* Programmer provides core logic (via map() and reduce() functions)
* System takes care of parallelization of computation, coordination, etc.

B Paradigm dates back many decades

* But very large scale implementations running on clusters with 103 to
1074 machines are more recent

* Google Map Reduce, Hadoop, ..

B Data storage/access typically done using distributed file systems
or key-value stores



MapReduce Framework

Provides a fairly restricted, but still powerful abstraction for programming

Programmers write a pipeline of functions, called map or reduce
* map programs

> inputs: a list of “records” (record defined arbitrarily — could be images,
genomes eftc...)

> output: for each record, produce a set of “(key, value)” pairs

* reduce programs
> input: a list of “(key, {values})” grouped together from the mapper
> output: whatever

* Both can do arbitrary computations on the input data as long as the basic
structure is followed



MapReduce Framework

input files mappers intermediate reducers output
files files



Word Count Example

map (String key, String value) :
// key: document name
// value: document contents
for each word w in value:
EmitIntermediate (w, "1");

reduce (String key, Iterator values):
// key: a word
// values: a list of counts
int result = 0;
for each v in values:
result += Parselnt (v);
Emit (AsString (result));

’



MapReduce Framework: Word Count

input files mappers ?Zj 3 intermediate reducers output
(@ 1) files files
@1 @ 1)
(d, 1) a,
abacdb (b 1) (a 1)
(c, 1)
(a, 1)
, 8
(a, 1) Ei 5;
bcdaaa @ 1)
b, 1
ababab %1) (b, 6)
( ’ ) (d’ 2)
(b, 1)
(b, 1)
(d, 1)
ccccc (b, 1)



input files

abacdb

bcdaaa

ababab

cccccC

More Efficient Word Count

mappers ?Zj 2 intermediate reducers output
(c, 1) files files
(d 1)
(a, 2)
(a, 3)
(c, 1) (a, 8)
(c, 3) (c, 5)
(b, 6)
(d, 2)

Called “mapper-side” combiner



Hadoop MapReduce

Google pioneered original map-reduce implementation
* For building web indexes, text analysis, PageRank, etc.

Hadoop -- widely used open source implementation in Java

Huge ecosystem built around Hadoop now, including HDFS,
consistency mechanisms, connectors to different systems (e.g.,
key-value stores, databases), etc.

Apache Spark a newer implementation of Map-Reduce
* More user-friendly syntax
* Significantly faster because of in-memory processing
* SQL-like in many ways (“DataFrames”)



Spark

Resilient Distributed Dataset (RDD) abstraction
* Collection of records that can be stored across multiple machines

RDDs can be created by applying algebraic operations on
other RDDs

* Or from loading data from HDFS, key-value stores, etc.
RDDs can be lazily computed when needed

“DataFrames” is an abstraction built on top of RDDs
* Not unlike “relations”
* Supports relational operations like Joins, Aggregates, etc.

Incorporates “Query Optimization” today as well



Spark

B Walk through Spark Programming Guides and the Jupyter
Notebook



Summary

Traditional databases don’t provide the right abstractions for many newer
data processing/analytics tasks

Led to development of NoSQL systems and Map-Reduce (or similar)
frameworks

* Easier to get started
* Easier to handle ad hoc and arbitrary tasks
* Not as efficient

Over the last 10 years, seen increasing convergence
* NoSQL stores increasingly support SQL constructs like joins and aggregations
* Map-reduce frameworks also evolved to support joins and SQL more explicitly

* Databases evolved to support more data types, richer functionality for ad hoc
processing

Think of Map-Reduce systems as another option
* Appropriate in some cases, not a good fit in other cases



