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! Week 1: File Organization and Indexes

! Week 2: Query Processing

! Week 3: Query Optimization; Architectures/Parallel 1

! Week 4: Parallel Databases + MapReduce; 
Transactions 1

! Week 5: Transactions 2

Spring 2020 – Online Instruction Plan

Modified to swap the last two projects



! Week 1: File Organization and Indexes

! Week 2: Query Processing

! Week 3 (Homework Due April 17, Noon)
êQuery Optimization 1: Overview, Statistics

êQuery Optimization 2: Equivalences, Search Algorithms

êArchitectures/Parallel Databases Introduction

! Week 4: Parallel Databases; Mapreduce; Transactions 1
êMap-reduce and Apache Spark (will post early for Project 5)

! Week 5: Transactions 2

Spring 2020 – Online Instruction Plan



! Book Chapters
ê17.1, 17.3, 18.1, 18.2

! Key topics:
êBrief overview of different types of architectures

êWhy parallel databases are critical today for performance 

êSpeedup vs Scaleup

êHow to distribute data across a collection of parallel disks

Architectures; Parallel Databases
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Client-Server Systems

! Database functionality can be divided into:
! Back-end: manages access structures, query evaluation and 

optimization, concurrency control and recovery.
! Front-end: consists of tools such as forms, report-writers, and 

graphical user interface facilities.
! The interface between the front-end and the back-end is through SQL or 

through an application program interface.
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Parallel Databases

! Why ?
ê More transactions per second, or less time per query
ê Throughput vs. Response Time
ê Speedup vs. Scaleup

! Database operations are embarrassingly parallel
ê E.g. Consider a join between R and S on R.b = S.b 

! But, perfect speedup doesn’t happen
ê Start-up costs
ê Interference
ê Skew
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Parallel Databases

! Parallel machines increasingly very common and affordable
! Databases growing increasingly large (“BIG” data)
! Large-scale parallel database systems increasingly used for:

! storing large volumes of data
! processing time-consuming decision-support queries
! providing high throughput for transaction processing 

! Key Questions for Database People:
! How to partition data across a collection of storage devices (disks)
! How to execute an “operation” across a group of computers

4 In different configurations (shared-memory vs shared-disk vs 
shared-nothing vs NUMA)

4 Trade-offs and bottlenecks can be vastly different
! How to deal with “failures”
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Parallel Systems

! Parallel database systems consist of multiple processors and multiple 
disks connected by a fast interconnection network.

! A coarse-grain parallel machine consists of a small number of 
powerful processors

! A massively parallel or fine grain parallel machine utilizes 
thousands of smaller processors.

! Two main performance measures:
! throughput --- the number of tasks that can be completed in a 

given time interval
! response time --- the amount of time it takes to complete a single 

task from the time it is submitted
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Speed-Up and Scale-Up

! Speedup: a fixed-sized problem executing on a small system is given 
to a system which is N-times larger.
! Measured by:

speedup = small system elapsed time
large system elapsed time

! Speedup is linear if equation equals N.
! Scaleup: increase the size of both the problem and the system

! N-times larger system used to perform N-times larger job
! Measured by:

scaleup = small system small problem elapsed time
big system big problem elapsed time 

! Scale up is linear if equation equals 1.



©Silberschatz, Korth and Sudarshan17.10Database System Concepts - 6th EditionDatabase System Concepts - 6th Edition

Speedup

linear speedup

sublinear speedup

resources

sp
ee

d



©Silberschatz, Korth and Sudarshan17.11Database System Concepts - 6th EditionDatabase System Concepts - 6th Edition

Scaleup
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Factors Limiting Speedup and Scaleup

Speedup and scaleup are often sublinear due to:
! Startup costs: Cost of starting up multiple processes may dominate 

computation time, if the degree of parallelism is high.

! Interference:  Processes accessing shared resources (e.g., system 
bus, disks, or locks) compete with each other, thus spending time 
waiting on other processes, rather than performing useful work.

! Skew: Increasing the degree of parallelism increases the variance in 
service times of parallely executing tasks.  Overall execution time 
determined by slowest of parallely executing tasks.



Parallel Databases

! Shared-nothing vs. shared-memory vs. shared-disk



Parallel Databases
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Aside: Distributed Databases
! Over a wide area network
! Typically not done for performance reasons

ê For that, use a parallel system

! Done because of necessity
ê Imagine a large corporation with offices all over the world
ê Also, for redundancy and for disaster recovery reasons

! Lot of headaches
ê Especially if trying to execute transactions that involve data from multiple sites

Ø Keeping the databases in sync
– 2-phase commit for transactions uniformly hated

Ø Autonomy issues
– Even within an organization, people tend to be protective of their 

unit/department
Ø Locks/Deadlock management

ê Works better for query processing
Ø Since we are only reading the data
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Parallel Databases

! Parallel machines increasingly very common and affordable
! Databases growing increasingly large (“BIG” data)
! Large-scale parallel database systems increasingly used for:

! storing large volumes of data
! processing time-consuming decision-support queries
! providing high throughput for transaction processing 

! Key Questions for Database People:
! How to partition data across a collection of storage devices (disks)
! How to execute an “operation” across a group of computers

4 In different configurations (shared-memory vs shared-disk vs 
shared-nothing vs NUMA)

4 Trade-offs and bottlenecks can be vastly different
! How to deal with “failures”
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I/O (Storage) Parallelism

! Horizontal partitioning – tuples of a relation are divided among many 
disks such that each tuple resides on one disk.

! Also called “sharding” in distributed setting
! Partitioning techniques (number of disks = n):

Round-robin: 
Send the I th tuple inserted in the relation to disk i mod n.  

Hash partitioning:  
! Choose one or more attributes as the partitioning attributes.   
! Choose hash function h with range 0…n - 1
! Let i denote result of hash function h applied tothe partitioning 

attribute value of a tuple. Send tuple to disk i.
Range partitioning: 
! Simiarly to “hashing”, but do it based on ranges (e.g., tuples with 

value of ”A” from 0-100 go to disk1, 101-200 go to disk2, etc).
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Comparison of Partitioning Techniques

! How well partitioning techniques support different types of data access ?
1.  Scanning the entire relation.
2.  Locating a tuple associatively – point queries. (E.g., r.A = 25.)
3.  Locating all tuples such that the value of a given attribute lies within  a 
specified range – range queries (E.g., 10 £ r.A < 25.)

Scanning Point Queries Range Queries

Round-robin Very good – balanced 
work

Very bad – need to 
scan all

Very bad – need to 
scan all

Hashing Very good – balanced Very good for 
queries in 
partitioning attribute

Bad – some queries 
can be handled

Range 
partitioning

Good – harder to 
guarantee balanced work

Good for queries on 
partitioning attribute

Very good for 
queries on 
partitioning attribute
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Handling of Skew

! The distribution of tuples to disks may be skewed — that is, some 
disks have many tuples, while others may have fewer tuples.

! Types of skew:
! Attribute-value skew.

4 Some values appear in the partitioning attributes of many 
tuples; all the tuples with the same value for the partitioning 
attribute end up in the same partition.

4 Can occur with range-partitioning and hash-partitioning.
! Partition skew.

4 With range-partitioning, badly chosen partition vector may 
assign too many tuples to some partitions and too few to 
others.

4 Less likely with hash-partitioning if a good hash-function is 
chosen.
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Dealing with Skew

! Analyze the relation (or a random sample) to create better partitions
! E.g., instead of dividing in equal ranges, try to identify ranges that 

are more balanced
! A random sample usually sufficient for this purpose
! Can also construct a “histogram” for this purpose

! Another option: 
! Create a large number of partitions (e.g., use 1000 partitions for 

10 machines)
! Map the partitions to machines more carefully
! Can move partitions around to address skew later in the process

! Attribute-value skew harder to deal with
! If you want to partition on “zipcode”, and there is a zipcode with 

half the tuples, not much you can do
4 Zipcode is just not a good partitioning attributes
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Summary

! Parallel databases increasingly common because of hardware trends 
and faster networks

! Databases are “infinitely parallelizable”
! Data can be partitioned across any number of disks
! Relational operators are easily parallelizable (as we will see later)

4 But we do need to watch out of skew and interference

! Next Videos:
! Query execution across a parallel database system


