Architectures; Parallel
Databases

Amol Deshpande
CMSC424

Spring 2020 - Online Instruction Plan

Modified to swap the last two projects

B Week 1: File Organization and Indexes
B Week 2: Query Processing
B Week 3: Query Optimization; Architectures/Parallel 1

M Week 4: Parallel Databases + MapReduce;
Transactions 1

B Week 5: Transactions 2

Spring 2020 - Online Instruction Plan

B Wee
B Wee
B Wee

K 1: File Organization and Indexes

K 2: Query Processing

< 3 (Homework Due April 17, Noon)

* Query Optimization 1: Overview, Statistics

* Query Optimization 2: Equivalences, Search Algorithms

W Architectures/Parallel Databases Introduction

B Week 4: Parallel Databases; Mapreduce; Transactions 1

* Map-reduce and Apache Spark (will post early for Project 5)
B Week 5: Transactions 2

Architectures; Parallel Databases

M Book Chapters
w17.1,17.3,18.1, 18.2
M Key topics:
% Brief overview of different types of architectures
* Why parallel databases are critical today for performance

w Speedup vs Scaleup

* How to distribute data across a collection of parallel disks

Client-Server Systems

B Database functionality can be divided into:

through an application program interface.

Back-end: manages access structures, query evaluation and
optimization, concurrency control and recovery.

Front-end: consists of tools such as forms, report-writers, and
graphical user interface facilities.

B The interface between the front-end and the back-end is through SQL or

client

client

client

client

Database System Concepts - 6! Edition

server

network

SOL user forms repor't data mining
. . generation and analysis
interface interface
tools tools
SQL engine
17.5

front end

interface
(SQL API)

back end

©Silberschatz, Korth and Sudarshan

Parallel Databases

H Why?
* More transactions per second, or less time per query
* Throughput vs. Response Time
* Speedup vs. Scaleup
B Database operations are embarrassingly parallel
* E.g. Consider a join between Rand Son R.b=S.b
B But, perfect speedup doesn’ t happen
* Start-up costs

* Interference
#* Skew

Parallel Databases

Parallel machines increasingly very common and affordable
Databases growing increasingly large (“BIG” data)

Large-scale parallel database systems increasingly used for:
storing large volumes of data

processing time-consuming decision-support queries
providing high throughput for transaction processing

B Key Questions for Database People:

How to partition data across a collection of storage devices (disks)
How to execute an “operation” across a group of computers

» In different configurations (shared-memory vs shared-disk vs
shared-nothing vs NUMA)

» Trade-offs and bottlenecks can be vastly different
How to deal with “failures”

Database System Concepts - 6! Edition 17.7 ©Silberschatz, Korth and Sudarshan

Parallel Systems

Parallel database systems consist of multiple processors and multiple
disks connected by a fast interconnection network.

B A coarse-grain parallel machine consists of a small number of
powerful processors

B A massively parallel or fine grain parallel machine utilizes
thousands of smaller processors.

B Two main performance measures:

throughput --- the number of tasks that can be completed in a
given time interval

response time --- the amount of time it takes to complete a single
task from the time it is submitted

Database System Concepts - 6! Edition 17.8 ©Silberschatz, Korth and Sudarshan

Speed-Up and Scale-Up

B Speedup: a fixed-sized problem executing on a small system is given
to a system which is N-times larger.

Measured by:

speedup = small system elapsed time

large system elapsed time
Speedup is linear if equation equals N.

B Scaleup: increase the size of both the problem and the system
N-times larger system used to perform N-times larger job
Measured by:
scaleup = small system small problem elapsed time

big system big problem elapsed time
Scale up is linear if equation equals 1.

Database System Concepts - 6! Edition 17.9 ©Silberschatz, Korth and Sudarshan

Speedup

linear speedup

sublinear speedup

speed ——

resources ———

Database System Concepts - 6! Edition 17.10 ©Silberschatz, Korth and Sudarshan

Scaleup

linear scaleup

s

sublinear scaleup

problem size ——

Database System Concepts - 6! Edition 17.11 ©Silberschatz, Korth and Sudarshan

:’é Factors Limiting Speedup and Scaleup

Speedup and scaleup are often sublinear due to:

B Startup costs: Cost of starting up multiple processes may dominate
computation time, if the degree of parallelism is high.

B Interference: Processes accessing shared resources (e.g., system
bus, disks, or locks) compete with each other, thus spending time
waiting on other processes, rather than performing useful work.

B Skew: Increasing the degree of parallelism increases the variance in
service times of parallely executing tasks. Overall execution time
determined by slowest of parallely executing tasks.

Database System Concepts - 6! Edition 17.12 ©Silberschatz, Korth and Sudarshan

Parallel Databases

B Shared-nothing vs. shared-memory vs. shared-disk

- T

P MH P

= I e

P _8 MH P _8

P — M P -
(a) shared memory (b) shared disk
P

8 P HM [T M| == v | I M
P S [T— [T

S 8 o1 s Ele mle
,
é B 186 mt6 -8
(c) shared nothing (d) hierarchical

Parallel Databases

Shared Memory

Shared Disk

Shared Nothing

Communication

Extremely fast

Disk interconnect

Over a LAN, so

between is very fast slowest
processors
Scalability ? Not beyond 32 or | Not very scalable | Very very
64 or so (memory | (disk interconnect | scalable
bus is the is the bottleneck)
bottleneck)
Notes Cache-coherency | Transactions Distributed
an issue complicated,; transactions are
natural fault- complicated
tolerance. (deadlock
detection etc);
Main use Low degrees of Not used very Everywhere

parallelism

often

Aside: Distributed Databases

Over a wide area network

Typically not done for performance reasons
* For that, use a parallel system
Done because of necessity
* Imagine a large corporation with offices all over the world
* Also, for redundancy and for disaster recovery reasons
Lot of headaches
* Especially if trying to execute transactions that involve data from multiple sites
> Keeping the databases in sync
2-phase commit for transactions uniformly hated

> Autonomy issues

Even within an organization, people tend to be protective of their
unit/department

> Locks/Deadlock management
* Works better for query processing
> Since we are only reading the data

Parallel Databases

Parallel machines increasingly very common and affordable
Databases growing increasingly large (“BIG” data)

Large-scale parallel database systems increasingly used for:
storing large volumes of data

processing time-consuming decision-support queries
providing high throughput for transaction processing

B Key Questions for Database People:

How to partition data across a collection of storage devices (disks)
How to execute an “operation” across a group of computers

» In different configurations (shared-memory vs shared-disk vs
shared-nothing vs NUMA)

» Trade-offs and bottlenecks can be vastly different
How to deal with “failures”

Database System Concepts - 6! Edition 17.16 ©Silberschatz, Korth and Sudarshan

s I/0O (Storage) Parallelism

g B

B Horizontal partitioning — tuples of a relation are divided among many
disks such that each tuple resides on one disk.

B Also called “sharding” in distributed setting
B Partitioning techniques (number of disks = n):
Round-robin:
Send the /" tuple inserted in the relation to disk i mod n.
Hash partitioning:
Choose one or more attributes as the partitioning attributes.
Choose hash function A with range 0...n - 1

Let / denote result of hash function h applied tothe partitioning
attribute value of a tuple. Send tuple to disk 1.

Range partitioning:
Simiarly to “hashing”, but do it based on ranges (e.g., tuples with
value of ”A” from 0-100 go to disk1, 101-200 go to disk2, etc).

Database System Concepts - 6! Edition 18.17 ©Silberschatz, Korth and Sudarshan

,.-’é Comparison of Partitioning Techniques

—_—

B How well partitioning techniques support different types of data access ?
1. Scanning the entire relation.
2. Locating a tuple associatively — point queries. (E.g., rA=25.)

3. Locating all tuples such that the value of a given attribute lies within a
specified range — range queries (E.g., 10<r.A<25))

Scanning Point Queries Range Queries
Round-robin Very good — balanced Very bad —needto Very bad — need to
work scan all scan all
Hashing Very good — balanced Very good for Bad — some queries
queries in can be handled
partitioning attribute
Range Good — harder to Good for queries on Very good for
partitioning guarantee balanced work partitioning attribute queries on

partitioning attribute

Database System Concepts - 6! Edition 18.18 ©Silberschatz, Korth and Sudarshan

g Handling of Skew

e

B The distribution of tuples to disks may be skewed — that is, some
disks have many tuples, while others may have fewer tuples.

B Types of skew:
Attribute-value skew.

» Some values appear in the partitioning attributes of many
tuples; all the tuples with the same value for the partitioning
attribute end up in the same partition.

» Can occur with range-partitioning and hash-partitioning.
Partition skew.

» With range-partitioning, badly chosen partition vector may
assign too many tuples to some partitions and too few to
others.

» Less likely with hash-partitioning if a good hash-function is
chosen.

Database System Concepts - 6! Edition 18.19 ©Silberschatz, Korth and Sudarshan

:g Dealing with Skew
B Analyze the relation (or a random sample) to create better partitions

E.g., instead of dividing in equal ranges, try to identify ranges that
are more balanced

A random sample usually sufficient for this purpose
Can also construct a “histogram” for this purpose
B Another option:

Create a large number of partitions (e.g., use 1000 partitions for
10 machines)

Map the partitions to machines more carefully
Can move partitions around to address skew later in the process

B Attribute-value skew harder to deal with

If you want to partition on “zipcode”, and there is a zipcode with
half the tuples, not much you can do

Zipcode is just not a good partitioning attributes

Database System Concepts - 6! Edition 18.20 ©Silberschatz, Korth and Sudarshan

g Summary

B Parallel databases increasingly common because of hardware trends
and faster networks

B Databases are “infinitely parallelizable”
Data can be partitioned across any number of disks
Relational operators are easily parallelizable (as we will see later)
» But we do need to watch out of skew and interference

B Next Videos:
Query execution across a parallel database system

Database System Concepts - 6! Edition 18.21 ©Silberschatz, Korth and Sudarshan

