
Architectures; Parallel
Databases

Amol Deshpande
CMSC424

! Week 1: File Organization and Indexes

! Week 2: Query Processing

! Week 3: Query Optimization; Architectures/Parallel 1

! Week 4: Parallel Databases + MapReduce;
Transactions 1

! Week 5: Transactions 2

Spring 2020 – Online Instruction Plan

Modified to swap the last two projects

! Week 1: File Organization and Indexes

! Week 2: Query Processing

! Week 3 (Homework Due April 17, Noon)
êQuery Optimization 1: Overview, Statistics

êQuery Optimization 2: Equivalences, Search Algorithms

êArchitectures/Parallel Databases Introduction

! Week 4: Parallel Databases; Mapreduce; Transactions 1
êMap-reduce and Apache Spark (will post early for Project 5)

! Week 5: Transactions 2

Spring 2020 – Online Instruction Plan

! Book Chapters
ê17.1, 17.3, 18.1, 18.2

! Key topics:
êBrief overview of different types of architectures

êWhy parallel databases are critical today for performance

êSpeedup vs Scaleup

êHow to distribute data across a collection of parallel disks

Architectures; Parallel Databases

©Silberschatz, Korth and Sudarshan17.5Database System Concepts - 6th EditionDatabase System Concepts - 6th Edition

Client-Server Systems

! Database functionality can be divided into:
! Back-end: manages access structures, query evaluation and

optimization, concurrency control and recovery.
! Front-end: consists of tools such as forms, report-writers, and

graphical user interface facilities.
! The interface between the front-end and the back-end is through SQL or

through an application program interface.

SQL user
interface

forms
interface

report
generation

tools

data mining
and analysis

tools

SQL engine

front end

interface
(SQL API)

back end

client client client client

server

network

Parallel Databases

! Why ?
ê More transactions per second, or less time per query
ê Throughput vs. Response Time
ê Speedup vs. Scaleup

! Database operations are embarrassingly parallel
ê E.g. Consider a join between R and S on R.b = S.b

! But, perfect speedup doesn’t happen
ê Start-up costs
ê Interference
ê Skew

©Silberschatz, Korth and Sudarshan17.7Database System Concepts - 6th EditionDatabase System Concepts - 6th Edition

Parallel Databases

! Parallel machines increasingly very common and affordable
! Databases growing increasingly large (“BIG” data)
! Large-scale parallel database systems increasingly used for:

! storing large volumes of data
! processing time-consuming decision-support queries
! providing high throughput for transaction processing

! Key Questions for Database People:
! How to partition data across a collection of storage devices (disks)
! How to execute an “operation” across a group of computers

4 In different configurations (shared-memory vs shared-disk vs
shared-nothing vs NUMA)

4 Trade-offs and bottlenecks can be vastly different
! How to deal with “failures”

©Silberschatz, Korth and Sudarshan17.8Database System Concepts - 6th EditionDatabase System Concepts - 6th Edition

Parallel Systems

! Parallel database systems consist of multiple processors and multiple
disks connected by a fast interconnection network.

! A coarse-grain parallel machine consists of a small number of
powerful processors

! A massively parallel or fine grain parallel machine utilizes
thousands of smaller processors.

! Two main performance measures:
! throughput --- the number of tasks that can be completed in a

given time interval
! response time --- the amount of time it takes to complete a single

task from the time it is submitted

©Silberschatz, Korth and Sudarshan17.9Database System Concepts - 6th EditionDatabase System Concepts - 6th Edition

Speed-Up and Scale-Up

! Speedup: a fixed-sized problem executing on a small system is given
to a system which is N-times larger.
! Measured by:

speedup = small system elapsed time
large system elapsed time

! Speedup is linear if equation equals N.
! Scaleup: increase the size of both the problem and the system

! N-times larger system used to perform N-times larger job
! Measured by:

scaleup = small system small problem elapsed time
big system big problem elapsed time

! Scale up is linear if equation equals 1.

©Silberschatz, Korth and Sudarshan17.10Database System Concepts - 6th EditionDatabase System Concepts - 6th Edition

Speedup

linear speedup

sublinear speedup

resources

sp
ee

d

©Silberschatz, Korth and Sudarshan17.11Database System Concepts - 6th EditionDatabase System Concepts - 6th Edition

Scaleup

linear scaleup

sublinear scaleup

problem size

TS
TL

©Silberschatz, Korth and Sudarshan17.12Database System Concepts - 6th EditionDatabase System Concepts - 6th Edition

Factors Limiting Speedup and Scaleup

Speedup and scaleup are often sublinear due to:
! Startup costs: Cost of starting up multiple processes may dominate

computation time, if the degree of parallelism is high.

! Interference: Processes accessing shared resources (e.g., system
bus, disks, or locks) compete with each other, thus spending time
waiting on other processes, rather than performing useful work.

! Skew: Increasing the degree of parallelism increases the variance in
service times of parallely executing tasks. Overall execution time
determined by slowest of parallely executing tasks.

Parallel Databases

! Shared-nothing vs. shared-memory vs. shared-disk

Parallel Databases

Distributed
transactions are
complicated
(deadlock
detection etc);

Transactions
complicated;
natural fault-
tolerance.

Cache-coherency
an issue

Notes

Main use

Scalability ?

Communication
between
processors

EverywhereNot used very
often

Low degrees of
parallelism

Very very
scalable

Not very scalable
(disk interconnect
is the bottleneck)

Not beyond 32 or
64 or so (memory
bus is the
bottleneck)

Over a LAN, so
slowest

Disk interconnect
is very fast

Extremely fast

Shared NothingShared DiskShared Memory

Aside: Distributed Databases
! Over a wide area network
! Typically not done for performance reasons

ê For that, use a parallel system

! Done because of necessity
ê Imagine a large corporation with offices all over the world
ê Also, for redundancy and for disaster recovery reasons

! Lot of headaches
ê Especially if trying to execute transactions that involve data from multiple sites

Ø Keeping the databases in sync
– 2-phase commit for transactions uniformly hated

Ø Autonomy issues
– Even within an organization, people tend to be protective of their

unit/department
Ø Locks/Deadlock management

ê Works better for query processing
Ø Since we are only reading the data

©Silberschatz, Korth and Sudarshan17.16Database System Concepts - 6th EditionDatabase System Concepts - 6th Edition

Parallel Databases

! Parallel machines increasingly very common and affordable
! Databases growing increasingly large (“BIG” data)
! Large-scale parallel database systems increasingly used for:

! storing large volumes of data
! processing time-consuming decision-support queries
! providing high throughput for transaction processing

! Key Questions for Database People:
! How to partition data across a collection of storage devices (disks)
! How to execute an “operation” across a group of computers

4 In different configurations (shared-memory vs shared-disk vs
shared-nothing vs NUMA)

4 Trade-offs and bottlenecks can be vastly different
! How to deal with “failures”

©Silberschatz, Korth and Sudarshan18.17Database System Concepts - 6th Edition

I/O (Storage) Parallelism

! Horizontal partitioning – tuples of a relation are divided among many
disks such that each tuple resides on one disk.

! Also called “sharding” in distributed setting
! Partitioning techniques (number of disks = n):

Round-robin:
Send the I th tuple inserted in the relation to disk i mod n.

Hash partitioning:
! Choose one or more attributes as the partitioning attributes.
! Choose hash function h with range 0…n - 1
! Let i denote result of hash function h applied tothe partitioning

attribute value of a tuple. Send tuple to disk i.
Range partitioning:
! Simiarly to “hashing”, but do it based on ranges (e.g., tuples with

value of ”A” from 0-100 go to disk1, 101-200 go to disk2, etc).

©Silberschatz, Korth and Sudarshan18.18Database System Concepts - 6th Edition

Comparison of Partitioning Techniques

! How well partitioning techniques support different types of data access ?
1. Scanning the entire relation.
2. Locating a tuple associatively – point queries. (E.g., r.A = 25.)
3. Locating all tuples such that the value of a given attribute lies within a
specified range – range queries (E.g., 10 £ r.A < 25.)

Scanning Point Queries Range Queries

Round-robin Very good – balanced
work

Very bad – need to
scan all

Very bad – need to
scan all

Hashing Very good – balanced Very good for
queries in
partitioning attribute

Bad – some queries
can be handled

Range
partitioning

Good – harder to
guarantee balanced work

Good for queries on
partitioning attribute

Very good for
queries on
partitioning attribute

©Silberschatz, Korth and Sudarshan18.19Database System Concepts - 6th Edition

Handling of Skew

! The distribution of tuples to disks may be skewed — that is, some
disks have many tuples, while others may have fewer tuples.

! Types of skew:
! Attribute-value skew.

4 Some values appear in the partitioning attributes of many
tuples; all the tuples with the same value for the partitioning
attribute end up in the same partition.

4 Can occur with range-partitioning and hash-partitioning.
! Partition skew.

4 With range-partitioning, badly chosen partition vector may
assign too many tuples to some partitions and too few to
others.

4 Less likely with hash-partitioning if a good hash-function is
chosen.

©Silberschatz, Korth and Sudarshan18.20Database System Concepts - 6th Edition

Dealing with Skew

! Analyze the relation (or a random sample) to create better partitions
! E.g., instead of dividing in equal ranges, try to identify ranges that

are more balanced
! A random sample usually sufficient for this purpose
! Can also construct a “histogram” for this purpose

! Another option:
! Create a large number of partitions (e.g., use 1000 partitions for

10 machines)
! Map the partitions to machines more carefully
! Can move partitions around to address skew later in the process

! Attribute-value skew harder to deal with
! If you want to partition on “zipcode”, and there is a zipcode with

half the tuples, not much you can do
4 Zipcode is just not a good partitioning attributes

©Silberschatz, Korth and Sudarshan18.21Database System Concepts - 6th Edition

Summary

! Parallel databases increasingly common because of hardware trends
and faster networks

! Databases are “infinitely parallelizable”
! Data can be partitioned across any number of disks
! Relational operators are easily parallelizable (as we will see later)

4 But we do need to watch out of skew and interference

! Next Videos:
! Query execution across a parallel database system

