CMSC424: Database
Design

Instructor: Amol Deshpande

http://cs.umd.edu

Spring 2020 - Online Instruction Plan

Modified to swap the last two projects

e Week 1: File Organization and Indexes
e Week 2: Query Processing
e Week 3: Query Optimization; Architectures/Parallel 1

e Week 4: Parallel Databases + MapReduce;
Transactions 1

e Week 5: Transactions 2

Spring 2020 - Online Instruction Plan

e Week 1: File Organization and Indexes

e Week 2: Query Processing

e Week 3 (Homework Due April 17, Noon)
e Query Optimization 1: Overview, Statistics
e Query Optimization 2: Equivalences, Search Algorithms
e Architectures/Parallel Databases Introduction

e Week 4: Parallel Databases; Mapreduce; Transactions 1
e Map-reduce and Apache Spark (will post early for Project 5)

e Week 5: Transactions 2

Getting Deeper into Query Processing 0soo

o0
User S

select * Resolve the references,
fromR, S
Syntax errors etc.
where ...
Converts the query to an
internal format

Query Parser relational algebra like

|
Query Optimizer
l

Query Processor

Results

Find the best way to evaluate
the query
Which index to use ?
What join method to use ?

N

.. Read the data from the f||es
Do the query processing
Joins, selections, aggregates

R, B+Tree on R.a
S, Hash Index on S.a

Getting Deeper into Query Processing

query

query
output

parser and
translator

evaluation engine

data

relational-algebra
expression

<S>

execution plan

L

statistics

about data

Query Optimization eeco

e Book Chapters
e 13.1,13.2,13.3,134
e Key topics:
e Why query optimization is so important?

e How to enumerate different query plans for a single
SQL query
e How to estimate the sizes of “intermediate results”

e How to “search” the space of all query plans efficiently

Query Optimization

e Overview

e Statistics Estimation

e Transformation of Relational Expressions
e Optimization Algorithms

Equivalence of Expressions

e Two relational expressions equivalent iff:
Their result is identical on all legal databases

e Equivalence rules:
Allow replacing one expression with another

e Examples:
1. 6,0 (E)=0, (0, (E))
2. Selections are commutative

0y (0, (E)) =0, (0, (E))

Equivalence Rules

e Examples:
3. I, (A1, (..d1,(E))...)) =11, (E)

7(a). If 8, only involves attributes from E,
coo(E1 Mg Ep) = (Geo(E1))M o E2

e And so on...
Many rules of this type

Pictorial Depiction

X Rule 5 R4

N TN
El E2 E2

X - Rule 6a _ M
/" N\ /" N\

o Rule 7a
‘ 6 - >

X attributes from E1 Og

If © only has / \

Example

e Find the names of all customers with an account at a Brooklyn branch
whose account balance is over $1000.

chstomer_name(Gbranch_city = “Brooklyn”™ A balance > 1000

(branchX (account || depositor)))

e Apply the rules one by one

chstomer_name((Gbranch_city = ‘Brooklyn™ A balance > 1000

(branchX account)) X| depositor)

chstomer_name(((Gbranch_city = “Brooklyn” (bl’ an Ch)) N(G balance > 1000
(account)))X| depositor)

Example 1T

IT customer_name
I customer_name ‘

X
Y branch_city=Brooklyn / \

A balance < 1000 N i T
epositor
/ \M o branch_city=Brooklyn Opatance < 1000

account depositor branch account

branch

(a) Initial expression tree (b) Tree after multiple transformations

Equivalence of Expressions

e The rules give us a way to enumerate all equivalent
expressions

Note that the expressions don’t contain physical access methods,
join methods etc...

e Simple Algorithm:
Start with the original expression

Apply all possible applicable rules to get a new set of
expressions

Repeat with this new set of expressions
Till no new expressions are generated

Equivalence of Expressions

e Works, but is not feasible

e Consider a simple case:
R1 X (R2 X (R3 X (... XIRn))....)

e Just join commutativity and associativity will give us:
At least:
nA2 *2"n
At worst:
n! * 2°n
e Typically the process of enumeration is combined with the
search process

Evaluation Plans

e We still need to choose the join methods etc..

Option 1: Choose for each operation separately

Usually okay, but sometimes the operators interact

Consider joining three relations on the same attribute:
R1 X, (R2 X, R3)

Best option for R2 join R3 might be hash-join
But if R7 is sorted on a, then sort-merge join is preferable
Because it produces the result in sorted order by a

e Also, we need to decide whether to use pipelining or
materialization

e Such issues are typically taken into account when doing the
optimization

Query Optimization

e Introduction

e Statistics Estimation

e Transformation of Relational Expressions
e Optimization Algorithms

Optimization Algorithms

e Two types:
Exhaustive: That attempt to find the best plan

Heuristical: That are simpler, but are not guaranteed to find
the optimal plan

e Consider a simple case
Join of the relations R17, ..., Rn
No selections, no projections

e JSltill very large plan space

Searching for the best plan :
e Option 1:
Enumerate all equivalent expressions for the original query
expression

Using the rules outlined earlier
Estimate cost for each and choose the lowest

e [00 expensive !

Consider finding the best join-order for ry o - - . 1,

There are (2(n — 1))!Y/(n — 1)! different join orders for above
expression. With n =7, the number is 665280, with n =10,
the number is greater than 176 billion!

Searching for the best plan

e Option 2:
Dynamic programming
There is too much commonality between the plans

Also, costs are additive
= Caveat: Sort orders (also called “interesting orders”)

Reduces the cost down to O(n3*n) or O(n2*n) in most
cases
Interesting orders increase this a little bit
Considered acceptable
Typically n < 10.
Switch to heuristic if not acceptable

Heuristic Optimization

e Dynamic programming is expensive
e Use heuristics to reduce the number of choices

e Typically rule-based:
Perform selection early (reduces the number of tuples)
Perform projection early (reduces the number of attributes)

Perform most restrictive selection and join operations before other
similar operations.

e Some systems use only heuristics, others combine heuristics
with partial cost-based optimization.

Query Optimization

e Introduction

e Transformation of Relational Expressions
e Optimization Algorithms

e Statistics Estimation

e Summary

Query Optimization

e Integral component of query processing
Why ?
e One of the most complex pieces of code in a
database system

e Active area of research
E.g. XML Query Optimization ?
What if you don’t know anything about the statistics

Better statistics
Etc ...

