CMSC424: Database
Design

Instructor: Amol Deshpande

http://cs.umd.edu

Spring

e Week 1: File Organization and Indexes

2020 - Online Instruction Plan

e Week 2 (Reading Homework Due April 6):

Overview, Measures of Cost, Selections

Join Operation

Sorting, and Other Operators

e Wee
e Wee
e Wee

K 3: Query Optimization; Transactions 1
K 4: Transactions 2

< 5: Parallel Database and MapReduce

Join Operation

e Book Chapters
12.5

e Key topics:
Simplest way to do a join as a nested for loop

How to make it more efficient by accounting for
“blocked” nature of data

How to use “indexes” for more efficient joins (and
when they are more efficient)

Sorting and hashing based approaches

And their limitations

Join

select *from R, S where R.a = S.a

e Called an “equi-join”

select * from R, S where |R.a— S.a| <0.5
e Not an “equi-join”

Option 1: Nested-loops

for each tuple r in R
for each tuple sin S
check if r.a = s.a (or whether |r.a — s.a| < 0.5)
Can be used for any join condition
e As opposed to some algorithms we will see later
R called outer relation
S called inner relation

Nested-loops Join

e Cost ? Depends on the actual values of parameters, especially memory
e b, by 2 Number of blocks of R and S
e n, ng 2 Number of tuples of R and S

e Case 1: Minimum memory required = 3 blocks

One to hold the current R block, one for current S block, one for the result
being produced
Blocks transferred:
Must scan R tuples once: b,
For each R tuple, must scan S: n, * b
Seeks ?

n, + b,

Nested-loops Join

e Case 1: Minimum memory required = 3 blocks

Blocks transferred: n, # b, + b,
Seeks: n, + b,
e Example:
Number of records -- R: n, = 10,000, S: n, = 5000
Number of blocks -- R: b, =400, S:bs=100

e Then:
blocks transferred: 10000 * 100 + 400 = 1,000,400
seeks: 10400

e \What if we were to switch Rand S ?
2,000,100 block transfers, 5100 seeks

e Matters

Nested-loops Join

e (Case 2: S fits in memory

Blocks transferred: b, + b,

Seeks: 2
e Example:

Number of records -- R: n, = 10,000, S: n, = 5000

Number of blocks -- R: b, =400, S:b,=100
e Then:

blocks transferred: 400 + 100 = 500

seeks: 2

e This is orders of magnitude difference

Block Nested-loops Join

e Simple modification to “nested-loops join”
o Block atatime
for each block B, in R

for each block Bs in S
for each tuple r in Br
for each tuple s in Bs
check if r.a = s.a (or whether |r.a — s.a| < 0.5)

e (Case 1: Minimum memory required = 3 blocks

e Blocks transferred: b, * b + b,
e Seeks:2*b,

e Forthe example:
e blocks: 40400, seeks: 800

Block Nested-loops Join

e Case 1: Minimum memory required = 3 blocks

Blocks transferred: b, * b, + b,
Seeks: 2 * b,

e Case 2: S fits in memory

Blocks transferred: b, + b,
Seeks: 2
e \What about in between ?
Say there are 50 blocks, but S is 100 blocks

Why not use all the memory that we can...

Block Nested-loops Join

e Case 3: 50 blocks (S =100 blocks) ?
for each group of 48 blocks in R

for each block Bg in S
for each tuple r in the group of 48 blocks

for each tuple s in Bs
check if r.a = s.a (or whether |r.a— s.a| < 0.5)

e Why is this good ?
e We only have to read S a total of b,/48 times (instead of b, times)
e Blocks transferred: b, * bg /48 + b,
o Seeks:2*b,/48

Index Nested-loops Join

e select *from R, S where R.a = S.a
o Called an “equi-join”

e Nested-loops

for each tuple rin R

for each tuple s in S
check if r.a = s.a (or whether |r.a — s.a| < 0.5)

e Suppose there is an index on S.a
e Why not use the index instead of the inner loop ?

for each tuple rin R

use the index to find S tuples with S.a =r.a

Index Nested-loops Join

e select *fromR, S where R.a = S.a
o Called an “equi-join”
e Why not use the index instead of the inner loop ?
for each tuple rin R
use the index to find S tuples with S.a =r.a
e Cost of the join:
o b (tr+ts)+n.*c
e C ==the cost of index access

Computed using the formulas discussed earlier

Index Nested-loops Join

e Restricted applicability
An appropriate index must exist
What about |[R.a— S.a| <567

e Great for queries with joins and selections

select *
from accounts, customers
where accounts.customer-SSN = customers.customer-SSN and

accounts.acct-number = “A-101"

e Only need to access one SSN from the other relation

So far...

e Block Nested-loops join
Can always be applied irrespective of the join condition
If the smaller relation fits in memory, then cost:
b, + by
This is the best we can hope if we have to read the relations once each
CPU cost of the inner loop is high
Typically used when the smaller relation is really small (few tuples) and
index nested-loops can’t be used
e Index Nested-loops join
Only applies if an appropriate index exists
Very useful when we have selections that return small number of tuples

select balance from customer, accounts where customer.name = “j. s.” and
customer.SSN = accounts.SSN

Hash Join

e Case 1: Smaller relation (S) fits in memory

e Nested-loops join:
for each tuple rin R
for each tuple sin S
check ifr.a =s.a
e Cost: b, + b, transfers, 2 seeks
e The inner loop is not exactly cheap (high CPU cost)

e Hash join:
read S in memory and build a hash index on it
for each tuple rin R
use the hash index on S to find tuples such that S.a =r.a

Hash Join

e Case 1: Smaller relation (S) fits in memory

e Hash join:
read S in memory and build a hash index on it
for each tuple rin R
use the hash index on S to find tuples such that S.a =r.a
e Cost: b, + b, transfers, 2 seeks (unchanged)

e \Why good ?
CPU cost is much better (even though we don’t care about it too much)

Performs much better than nested-loops join when S doesn’t fit in memory
(next)

Hash Join

e Case 2: Smaller relation (S) doesn’t fit in memory

e Two “phases”

e Phase 1:
Read the relation R block by block and partition it using a hash function,
h1(a)
Create one partition for each possible value of h1(a)
Write the partitions to disk
R gets partitioned into R1, R2, ..., Rk
Similarly, read and partition S, and write partitions S1, S2, ..., Sk to disk
Only requirement:
Each S partition fits in memory

000
: 3t
Hash Join :
e Case 2: Smaller relation (S) doesn’t fit in memory
e Two “phases”
e Phase 2:
Read S1 into memory, and bulid a hash index on it (S1 fits in
memory)

Using a different hash function, h,(a)
Read R1 block by block, and use the hash index to find matches.
Repeat for S2, R2, and so on.

Hash Join

e Case 2: Smaller relation (S) doesn’t fit in memory

e Two “phases”

e Phase 1:

Partition the relations using one hash function, h4(a)
e Phase 2:

Read S; into memory, and bulid a hash index on it (S; fits in memory)
Read R;block by block, and use the hash index to find matches.

e Cost?

3(b, + b) +4 * n,, block transfers + 2([b,/ b, |+ bs/ b,) seeks
Where b, is the size of each output buffer
Much better than Nested-loops join under the same conditions

Hash Join
A N I
NN
: 2 [|2
3] «<—> |3
. 4 71 |4

partitions partitions
of r of s

Hash Join: Issues

e How to guarantee that the partitions of S all fit in memory ?
Say S = 10000 blocks, Memory = M = 100 blocks
Use a hash function that hashes to 100 different values ?
Eg. h1(a) =a % 100 ?
Problem: Impossible to guarantee uniform split
Some partitions will be larger than 100 blocks, some will be smaller
Use a hash function that hashes to 7007f different values
fis called fudge factor, typically around 1.2
So we may consider h1(a) = a % 120.
This is okay IF a is uniformly distributed

Hash Join: Issues

e Memory required ?
Say S = 10000 blocks, Memory = M = 100 blocks
So 120 different partitions
During phase 1:
Need 1 block for storing R
Need 120 blocks for storing each partition of R
So must have at least 121 blocks of memory

We only have 100 blocks
e Typically need SQRT(|S| *f) blocks of memory

e Soif Sis 10000 blocks, and f = 1.2, need 110 blocks of memory

e If memory = 10000 blocks = 10000 * 4 KB = 40MB (not unreasonable)
Then, S can be as large as 10000*10000/1.2 blocks = 333 GB

Hash Join: Issues

e What if we don’t have enough memory ?

Recursive Partitioning

Rarely used, but can be done

e \What if the hash function turns out to be bad ?
We used h1(a) =a % 100
Turns out all values of a are multiple of 100
So h1(a) is always = 0

e Called hash-table overflow

e Overflow avoidance: Use a good hash function

e Overflow resolution: Repartition using a different hash function

Hybrid Hash Join

e Motivation:
e R =10000 blocks, S =101 blocks, M = 100 blocks
e So S doesn’tfitin memory

e Phase 1:

e Use two partitions
Read 10000 blocks of R, write partitions R1 and R2 to disk
Read 101 blocks of S, write partitions S1 and S2 to disk

e Only need 3 blocks for this (so remaining 97 blocks are being wasted)
e Phase 2:

e Read S1, build hash index, read R1 and probe

e Read S2, build hash index, read R2 and probe

e Alternative:
e Don’t write partition S7 to disk, just keep it memory — there is enough free memory for that

Hybrid Hash Join

e Motivation:
R = 10000 blocks, S = 101 blocks, M = 100 blocks

So S doesn't fit in memory
e Alternative:

Don’t write partition S7 to disk, just keep it memory — there is enough free memory

e Steps:
Use a hash function such that S1 = 90 blocks, and S2 = 10 blocks
Read S1, and partition it
Write S2 to disk
Keep S1 in memory, and build a hash table on it
Read R1, and partition it
Write R2 to disk
Probe using R1 directly into the hash table

Saves huge amounts of I/O

So far...

e Block Nested-loops join

Can always be applied irrespective of the join condition
e Index Nested-loops join

Only applies if an appropriate index exists

Very useful when we have selections that return small number of tuples

select balance from customer, accounts where customer.name = “j. s.” and
customer.SSN = accounts.SSN

e Hash joins
Join algorithm of choice when the relations are large
Only applies to equi-joins (since it is hash-based)

e Hybrid hash join

An optimization on hash join that is always implemented

Merge-Join (Sort-merge join)

e Pre-condition:
The relations must be sorted by the join attribute

If not sorted, can sort first, and then use this algorithms

e Called “sort-merge join” sometimes

select *
fromr, s
where r.al =s.at

Step:
1. Compare the tuples at pr and ps
2. Move pointers down the list
- Depending on the join condition
3. Repeat

Merge-Join (Sort-merge join)

o Cost:
If the relations sorted, then just
b, + bg block transfers, some seeks depending on memory size
What if not sorted ?

Then sort the relations first
In many cases, still very good performance
Typically comparable to hash join

e Observation:
The final join result will also be sorted on a1

This might make further operations easier to do

E.g. duplicate elimination

Joins: Summary

e Block Nested-loops join
Can always be applied irrespective of the join condition
e Index Nested-loops join
Only applies if an appropriate index exists
e Hash joins — only for equi-joins
Join algorithm of choice when the relations are large
e Hybrid hash join
An optimization on hash join that is always implemented
e Sort-merge join
Very commonly used — especially since relations are typically sorted
Sorted results commonly desired at the output

To answer group by queries, for duplicate elimination, because of ASC/DSC

