
CMSC424: Database
Design

Instructor: Amol Deshpande
amol@cs.umd.edu

http://cs.umd.edu

l Week 1: File Organization and Indexes
l Week 2 (Reading Homework Due April 6):

l Overview, Measures of Cost, Selections
l Join Operation
l Sorting, and Other Operators

l Week 3: Query Optimization; Transactions 1
l Week 4: Transactions 2
l Week 5: Parallel Database and MapReduce

Spring 2020 – Online Instruction Plan

l Book Chapters
l 12.5

l Key topics:
l Simplest way to do a join as a nested for loop
l How to make it more efficient by accounting for

“blocked” nature of data
l How to use “indexes” for more efficient joins (and

when they are more efficient)
l Sorting and hashing based approaches

l And their limitations

Join Operation

Join

l select * from R, S where R.a = S.a
l Called an “equi-join”

l select * from R, S where |R.a – S.a | < 0.5
l Not an “equi-join”

l Option 1: Nested-loops
for each tuple r in R

for each tuple s in S
check if r.a = s.a (or whether |r.a – s.a| < 0.5)

l Can be used for any join condition
l As opposed to some algorithms we will see later

l R called outer relation
l S called inner relation

Nested-loops Join

l Cost ? Depends on the actual values of parameters, especially memory

l br, bs à Number of blocks of R and S

l nr, ns à Number of tuples of R and S

l Case 1: Minimum memory required = 3 blocks

l One to hold the current R block, one for current S block, one for the result
being produced

l Blocks transferred:

l Must scan R tuples once: br

l For each R tuple, must scan S: nr * bs

l Seeks ?

l nr + br

Nested-loops Join

l Case 1: Minimum memory required = 3 blocks
l Blocks transferred: nr * bs + br
l Seeks: nr + br

l Example:
l Number of records -- R: nr = 10,000, S: ns = 5000
l Number of blocks -- R: br = 400 , S: bs = 100

l Then:
l blocks transferred: 10000 * 100 + 400 = 1,000,400
l seeks: 10400

l What if we were to switch R and S ?
l 2,000,100 block transfers, 5100 seeks

l Matters

Nested-loops Join

l Case 2: S fits in memory
l Blocks transferred: bs + br

l Seeks: 2

l Example:
l Number of records -- R: nr = 10,000, S: ns = 5000

l Number of blocks -- R: br = 400 , S: bs = 100

l Then:
l blocks transferred: 400 + 100 = 500
l seeks: 2

l This is orders of magnitude difference

Block Nested-loops Join

l Simple modification to “nested-loops join”
l Block at a time
for each block Br in R

for each block Bs in S
for each tuple r in Br

for each tuple s in Bs
check if r.a = s.a (or whether |r.a – s.a| < 0.5)

l Case 1: Minimum memory required = 3 blocks
l Blocks transferred: br * bs + br
l Seeks: 2 * br

l For the example:
l blocks: 40400, seeks: 800

Block Nested-loops Join

l Case 1: Minimum memory required = 3 blocks
l Blocks transferred: br * bs + br

l Seeks: 2 * br

l Case 2: S fits in memory
l Blocks transferred: bs + br

l Seeks: 2

l What about in between ?
l Say there are 50 blocks, but S is 100 blocks
l Why not use all the memory that we can…

Block Nested-loops Join

l Case 3: 50 blocks (S = 100 blocks) ?
for each group of 48 blocks in R

for each block Bs in S
for each tuple r in the group of 48 blocks

for each tuple s in Bs
check if r.a = s.a (or whether |r.a – s.a| < 0.5)

l Why is this good ?
l We only have to read S a total of br/48 times (instead of br times)
l Blocks transferred: br * bs / 48 + br

l Seeks: 2 * br / 48

Index Nested-loops Join

l select * from R, S where R.a = S.a
l Called an “equi-join”

l Nested-loops
for each tuple r in R

for each tuple s in S

check if r.a = s.a (or whether |r.a – s.a| < 0.5)

l Suppose there is an index on S.a

l Why not use the index instead of the inner loop ?

for each tuple r in R

use the index to find S tuples with S.a = r.a

Index Nested-loops Join

l select * from R, S where R.a = S.a

l Called an “equi-join”

l Why not use the index instead of the inner loop ?

for each tuple r in R

use the index to find S tuples with S.a = r.a

l Cost of the join:

l br (tT + tS) + nr * c

l c == the cost of index access

l Computed using the formulas discussed earlier

Index Nested-loops Join

l Restricted applicability
l An appropriate index must exist
l What about |R.a – S.a| < 5 ?

l Great for queries with joins and selections
select *
from accounts, customers

where accounts.customer-SSN = customers.customer-SSN and
accounts.acct-number = “A-101”

l Only need to access one SSN from the other relation

So far…

l Block Nested-loops join
l Can always be applied irrespective of the join condition
l If the smaller relation fits in memory, then cost:

l br + bs

l This is the best we can hope if we have to read the relations once each

l CPU cost of the inner loop is high
l Typically used when the smaller relation is really small (few tuples) and

index nested-loops can’t be used

l Index Nested-loops join
l Only applies if an appropriate index exists
l Very useful when we have selections that return small number of tuples

l select balance from customer, accounts where customer.name = “j. s.” and
customer.SSN = accounts.SSN

Hash Join

l Case 1: Smaller relation (S) fits in memory
l Nested-loops join:

for each tuple r in R
for each tuple s in S

check if r.a = s.a
l Cost: br + bs transfers, 2 seeks
l The inner loop is not exactly cheap (high CPU cost)

l Hash join:
read S in memory and build a hash index on it
for each tuple r in R

use the hash index on S to find tuples such that S.a = r.a

Hash Join

l Case 1: Smaller relation (S) fits in memory
l Hash join:

read S in memory and build a hash index on it
for each tuple r in R

use the hash index on S to find tuples such that S.a = r.a
l Cost: br + bs transfers, 2 seeks (unchanged)
l Why good ?

l CPU cost is much better (even though we don’t care about it too much)
l Performs much better than nested-loops join when S doesn’t fit in memory

(next)

Hash Join

l Case 2: Smaller relation (S) doesn’t fit in memory
l Two “phases”
l Phase 1:

l Read the relation R block by block and partition it using a hash function,
h1(a)
l Create one partition for each possible value of h1(a)

l Write the partitions to disk
l R gets partitioned into R1, R2, …, Rk

l Similarly, read and partition S, and write partitions S1, S2, …, Sk to disk

l Only requirement:
l Each S partition fits in memory

Hash Join

l Case 2: Smaller relation (S) doesn’t fit in memory
l Two “phases”

l Phase 2:
l Read S1 into memory, and bulid a hash index on it (S1 fits in

memory)

l Using a different hash function, h2(a)
l Read R1 block by block, and use the hash index to find matches.
l Repeat for S2, R2, and so on.

Hash Join

l Case 2: Smaller relation (S) doesn’t fit in memory
l Two “phases”:
l Phase 1:

l Partition the relations using one hash function, h1(a)

l Phase 2:
l Read Si into memory, and bulid a hash index on it (Si fits in memory)
l Read Ri block by block, and use the hash index to find matches.

l Cost ?
l 3(br + bs) +4 * nh block transfers + 2(ébr / bbù + ébs / bbù) seeks

l Where bb is the size of each output buffer
l Much better than Nested-loops join under the same conditions

Hash Join

Hash Join: Issues

l How to guarantee that the partitions of S all fit in memory ?
l Say S = 10000 blocks, Memory = M = 100 blocks
l Use a hash function that hashes to 100 different values ?

l Eg. h1(a) = a % 100 ?

l Problem: Impossible to guarantee uniform split
l Some partitions will be larger than 100 blocks, some will be smaller

l Use a hash function that hashes to 100*f different values
l f is called fudge factor, typically around 1.2

l So we may consider h1(a) = a % 120.
l This is okay IF a is uniformly distributed

Hash Join: Issues

l Memory required ?
l Say S = 10000 blocks, Memory = M = 100 blocks
l So 120 different partitions
l During phase 1:

l Need 1 block for storing R

l Need 120 blocks for storing each partition of R

l So must have at least 121 blocks of memory
l We only have 100 blocks

l Typically need SQRT(|S| * f) blocks of memory

l So if S is 10000 blocks, and f = 1.2, need 110 blocks of memory
l If memory = 10000 blocks = 10000 * 4 KB = 40MB (not unreasonable)

l Then, S can be as large as 10000*10000/1.2 blocks = 333 GB

Hash Join: Issues

l What if we don’t have enough memory ?
l Recursive Partitioning

l Rarely used, but can be done

l What if the hash function turns out to be bad ?
l We used h1(a) = a % 100

l Turns out all values of a are multiple of 100
l So h1(a) is always = 0

l Called hash-table overflow

l Overflow avoidance: Use a good hash function

l Overflow resolution: Repartition using a different hash function

Hybrid Hash Join

l Motivation:
l R = 10000 blocks, S = 101 blocks, M = 100 blocks
l So S doesn’t fit in memory

l Phase 1:
l Use two partitions

l Read 10000 blocks of R, write partitions R1 and R2 to disk
l Read 101 blocks of S, write partitions S1 and S2 to disk

l Only need 3 blocks for this (so remaining 97 blocks are being wasted)

l Phase 2:
l Read S1, build hash index, read R1 and probe
l Read S2, build hash index, read R2 and probe

l Alternative:
l Don’t write partition S1 to disk, just keep it memory – there is enough free memory for that

Hybrid Hash Join

l Motivation:
l R = 10000 blocks, S = 101 blocks, M = 100 blocks
l So S doesn’t fit in memory

l Alternative:
l Don’t write partition S1 to disk, just keep it memory – there is enough free memory

l Steps:
l Use a hash function such that S1 = 90 blocks, and S2 = 10 blocks

l Read S1, and partition it
l Write S2 to disk
l Keep S1 in memory, and build a hash table on it

l Read R1, and partition it
l Write R2 to disk
l Probe using R1 directly into the hash table

l Saves huge amounts of I/O

So far…

l Block Nested-loops join
l Can always be applied irrespective of the join condition

l Index Nested-loops join
l Only applies if an appropriate index exists

l Very useful when we have selections that return small number of tuples
l select balance from customer, accounts where customer.name = “j. s.” and

customer.SSN = accounts.SSN

l Hash joins
l Join algorithm of choice when the relations are large

l Only applies to equi-joins (since it is hash-based)

l Hybrid hash join
l An optimization on hash join that is always implemented

Merge-Join (Sort-merge join)

l Pre-condition:
l The relations must be sorted by the join attribute
l If not sorted, can sort first, and then use this algorithms

l Called “sort-merge join” sometimes

select *
from r, s
where r.a1 = s.a1

Step:
1. Compare the tuples at pr and ps
2. Move pointers down the list

- Depending on the join condition
3. Repeat

Merge-Join (Sort-merge join)

l Cost:

l If the relations sorted, then just
l br + bs block transfers, some seeks depending on memory size

l What if not sorted ?
l Then sort the relations first
l In many cases, still very good performance
l Typically comparable to hash join

l Observation:
l The final join result will also be sorted on a1

l This might make further operations easier to do
l E.g. duplicate elimination

Joins: Summary

l Block Nested-loops join
l Can always be applied irrespective of the join condition

l Index Nested-loops join
l Only applies if an appropriate index exists

l Hash joins – only for equi-joins
l Join algorithm of choice when the relations are large

l Hybrid hash join
l An optimization on hash join that is always implemented

l Sort-merge join
l Very commonly used – especially since relations are typically sorted
l Sorted results commonly desired at the output

l To answer group by queries, for duplicate elimination, because of ASC/DSC

