
CMSC424: Database
Design

Instructor: Amol Deshpande
amol@cs.umd.edu

http://cs.umd.edu

l Week 1: File Organization and Indexes
l Week 2 (Homework due Monday April 6):

l Overview, Measures of Cost, Selections
l Join Operation
l Sorting, and Other Operators

l Week 3: Query Optimization; Transactions 1
l Week 4: Transactions 2
l Week 5: Parallel Database and MapReduce

Spring 2020 – Online Instruction Plan

Review: Query Processing/Storage

Space Management on
Persistent Storage (e.g., Disks)

Buffer Management

Query Processing Engine

• Storage hierarchy
• How are relations mapped to files?
• How are tuples mapped to disk blocks?

• Bringing pages from disk to memory
• Managing the limited memory

• Given a input user query, decide
how to “execute” it

• Specify sequence of pages to be
brought in memory

• Operate upon the tuples to produce
results

user query

page
requests

block
requests

results

pointers
to pages

data

Getting Deeper into Query Processing
User

select *
from R, S
where …

R, B+Tree on R.a
S, Hash Index on S.a

…

Results

Query Parser

Resolve the references,
Syntax errors etc.
Converts the query to an
internal format

relational algebra like

Query Optimizer Find the best way to evaluate
the query

Which index to use ?
What join method to use ?
…

Query Processor

Read the data from the files
Do the query processing

joins, selections, aggregates
…

Getting Deeper into Query Processing

query
output

query parser and
translator

evaluation engine

relational-algebra
expression

execution plan

optimizer

data statistics
about data

l Book Chapters
l 12.1, 12.2, 12.3

l Key topics:
l How to measure the ”cost” of an operation so we can

compare alternatives?
l Different ways to do a ”selection” operation (“where”

clause) based on the properties of the predicates and
the availability of indexes

Cost Measures and Selections

“Cost”

l Complicated to compute, but very important to decide early on
l Need to know what you are “optimizing” for

l Many competing factors in today’s computing environment
l CPU Instructions

l Disk I/Os
l Network Usage – either peak or average (for distributed settings)
l Memory Usage
l Cache Misses

l … and so on

l Want to pick the one (or combination) that’s actually a bottleneck
l No sense in optimizing for “memory usage” if you have a TB of memory and a single

disk
l Can do combinations by doing a weighted sum: e.g., 10 * Memory + 50 * Disk I/Os

“Cost”

l We will focus on disk for simplicity:
l Number of I/Os ?

l Not sufficient
l Number of seeks matters a lot… why ?

l tT – time to transfer one block
l tS – time for one seek
l Cost for b block transfers plus S seeks

b * tT + S * tS
l Measured in seconds

l Real systems do take CPU cost into account

Selection Operation

l select * from person where SSN = “123”
l Option 1: Sequential Scan

l Read the relation start to end and look for “123”
l Can always be used (not true for the other options)

l Cost ?
l Let br = Number of relation blocks
l Then:

§ 1 seek and br block transfers
l So:

§ tS + br * tT sec

l Improvements:
§ If SSN is a key, then can stop when found

§ So on average, br/2 blocks accessed

Selection Operation

l select * from person where SSN = “123”

l Option 2 : Binary Search:
l Pre-condition:

l The relation is sorted on SSN

l Selection condition is an equality
§ E.g. can’t apply to “Name like ‘%424%’”

l Do binary search

l Cost of finding the first tuple that matches
§ élog2(br)ù * (tT + tS)

§ All I/Os are random, so need a seek for all

§ The last few are closeby, but we ignore such small effects

l Not quite: What if 10000 tuples match the condition ?

l Incurs additional cost

Selection Operation

l select * from person where SSN = “123”

l Option 3 : Use Index
l Pre-condition:

l An appropriate index must exist

l Use the index

l Find the first leaf page that contains the search key

l Retrieve all the tuples that match by following the pointers
§ If primary index, the relation is sorted by the search key

§ Go to the relation and read blocks sequentially

§ If secondary index, must follow all pointers using the index

Selection w/ B+-Tree Indexes

n * (tT + tS)
n = number of records
that match
This can be bad

hi * (tT + tS)secondary index, not a
key, equality

1 * (tT + tS)hi * (tT + tS)secondary index,
candidate key, equality

1 * (tT + tS) + (b – 1) * tT
Note: primary == sorted
b = number of pages that
contain the matches

hi * (tT + tS)primary index, not a key,
equality

1 * (tT + tS)hi * (tT + tS)primary index, candidate
key, equality

cost of retrieving
the tuples

cost of finding the
first leaf

hi = height of the index

Selection Operation

l Selections involving ranges
l select * from accounts where balance > 100000

l select * from matches where matchdate between ’10/20/06’ and
’10/30/06’

l Option 1: Sequential scan

l Option 2: Using an appropriate index
l Can’t use hash indexes for this purpose

l Cost formulas:
§ Range queries == “equality” on “non-key” attributes

§ So rows 3 and 5 in the preceding page

Selection Operation

l Complex selections

l Conjunctive: select * from accounts where balance > 100000 and SSN = “123”

l Disjunctive: select * from accounts where balance > 100000 or SSN = “123”

l Option 1: Sequential scan

l Option 2 (Conjunctive only): Using an appropriate index on one of the conditions

l E.g. Use SSN index to evaluate SSN = “123”. Apply the second condtion to the tuples

that match

l Or do the other way around (if index on balance exists)

l Which is better ?

l Option 3 (Conjunctive only) : Choose a multi-key index

l Not commonly available

Selection Operation

l Complex selections

l Conjunctive: select * from accounts where balance > 100000 and SSN = “123”

l Disjunctive: select * from accounts where balance > 100000 or SSN = “123”

l Option 4: Conjunction or disjunction of record identifiers

l Use indexes to find all RIDs that match each of the conditions

l Do an intersection (for conjunction) or a union (for disjunction)

l Sort the records and fetch them in one shot

l Called “Index-ANDing” or “Index-ORing”

l Heavily used in commercial systems

12.3 Selection Operation 543

Algorithm Cost Reason
A1 Linear Search tS + br ∗ tT One initial seek plus br block transfers,

where br denotes the number of blocks
in the file.

A1 Linear Search,
Equality on
Key

Average
case tS +
(br/2) ∗ tT

Since at most one record satisfies con-
dition, scan can be terminated as soon
as the required record is found. In the
worst case, br blocks transfers are still
required.

A2 Primary
B+-tree Index,
Equality on
Key

(hi + 1) ∗
(tT + tS)

(Where hi denotes the height of the in-
dex.) Index lookup traverses the height
of the tree plus one I/O to fetch the
record; each of these I/O operations re-
quires a seek and a block transfer.

A3 Primary
B+-tree Index,
Equality on
Nonkey

hi ∗ (tT +
tS) + b ∗ tT

One seek for each level of the tree, one
seek for the first block. Here b is the
number of blocks containing records
with the specified search key, all of
which are read. These blocks are leaf
blocks assumed to be stored sequen-
tially (since it is a primary index) and
don’t require additional seeks.

A4 Secondary
B+-tree Index,
Equality on
Key

(hi + 1) ∗
(tT + tS)

This case is similar to primary index.

A4 Secondary
B+-tree Index,
Equality on
Nonkey

(hi + n) ∗
(tT + tS)

(Where n is the number of records
fetched.) Here, cost of index traversal
is the same as for A3, but each record
may be on a different block, requiring a
seek per record. Cost is potentially very
high if n is large.

A5 Primary
B+-tree Index,
Comparison

hi ∗ (tT +
tS) + b ∗ tT

Identical to the case of A3, equality on
nonkey.

A6 Secondary
B+-tree Index,
Comparison

(hi + n) ∗
(tT + tS)

Identical to the case of A4, equality on
nonkey.

Figure 12.3 Cost estimates for selection algorithms.

(hi + n) ∗ (tS + tT), where n is the number of records fetched, if each record
is in a different disk block, and the block fetches are randomly ordered. The
worst-case cost could become even worse than that of linear search if a large
number of records are retrieved.

From the Book

Summary

l Important to choose a measure of “cost” that is easy to
compute and relates to the “real cost” in some way

l For simplicity, we use a measure of disk I/Os
l But account of random vs sequential

l Even for the “selection” operation, many different ways
to do it
l Depending on whether there are indexes available, how the

relation is sorted, how many results to expect etc.

