
CMSC424: Database
Design

Instructor: Amol Deshpande
amol@cs.umd.edu

http://cs.umd.edu

l Week 1 (March 30 – April 2):
l File Organization and Overview of Indexes
l B+-Trees
l Hashing
l Miscellaneous topics in Indexes

l Week 2: Query Processing
l Week 3: Transactions 1
l Week 4: Transactions 2
l Week 5: Parallel Database and MapReduce

Spring 2020 – Online Instruction Plan

Hash-based File Organization

Store record with search key k
in block number h(k)

e.g. for a person file,
h(SSN) = SSN % 4

Blocks called “buckets”

What if the block becomes full ?
Overflow pages

Uniformity property:
Don’t want all tuples to map to

the same bucket
h(SSN) = SSN % 2 would be bad

Hash functions should also be random
Should handle different real datasets

(1000, “A”,…)
(200, “B”,…)
(4044, “C”, …)

(401, “Ax”,…)
(21, “Bx”,…)

(1002, “Ay”,…)
(10, “By”,…)

(1003, “Az”,…)
(35, “Bz”,…)

Block 0

Block 1

Block 2

Block 3

Buckets

Overflow Pages

• Overflow chaining – the overflow buckets of a
given bucket are chained together in a linked list.

• Above scheme is called closed hashing.
• An alternative, called open hashing, which

does not use overflow buckets, is not
suitable for database applications.

Hashed on “branch-name”

Hash function:
a = 1, b = 2, .., z = 26
h(abz)

= (1 + 2 + 26) % 10
= 9

Hash-based File Organization

Hash Indexes

Extends the basic idea

Search:
Find the block with

search key
Follow the pointer

Range search ?
a < X < b ?

hash index on instructor, on attribute ID

Hash Indexes

l Very fast search on equality

l Can’t search for “ranges” at all
l Must scan the file

l Inserts/Deletes
l Overflow pages can degrade the performance

l Can do periodic reorganization (by modifying hash functions)

l A better approach is to use “dynamic hashing”
l Allow use of a hash function that can be modified

l We discuss one such technique: Extendable Hashing

Extendable Hashing

l Use a hash function that outputs a large number of
bits, e.g., 32 bits or 64 bits

l However, only use a “prefix” of that hash function
based on the size of the database

l Different parts of the database may use different
length prefix

l When “inserting”, if the bucket becomes too big, split
it and use an extra bit

General Extendable Hash Structure

Example

Using only first bit so far

Example

Using first two bits now, but both 00
and 01 point to first bucket

Example

Using first three bits now, but 0xx
point to the first bucket

Extendable Hashing vs. Other
Schemes

l Benefits of extendable hashing:
l Hash performance does not degrade with growth of file
l Minimal space overhead

l Disadvantages of extendable hashing
l Extra level of indirection to find desired record
l Bucket address table may itself become very big (larger than

memory)
l Changing size of bucket address table is an expensive operation

l Linear hashing is an alternative mechanism
l Allows incremental growth of its directory (equivalent to bucket

address table)
l At the cost of more bucket overflows

Comparison of Ordered Indexing and
Hashing

l Cost of periodic re-organization
l Relative frequency of insertions and deletions
l Is it desirable to optimize average access time at the expense of

worst-case access time?
l Expected type of queries:

l Hashing is generally better at retrieving records having a
specified value of the key.

l If range queries are common, ordered indices are to be
preferred

l Hashing very common in distributed settings (e.g., in
key-value stores)

l Week 1 (March 30 – April 2):
l File Organization and Overview of Indexes
l B+-Trees
l Hashing
l Miscellaneous topics in Indexes

l Week 2: Query Processing
l Week 3: Transactions 1
l Week 4: Transactions 2
l Week 5: Parallel Database and MapReduce

Spring 2020 – Online Instruction Plan

B-Tree Index Example

B-tree (above) and B+-tree (below) on same data – B-
Trees have ”record pointers” at interior nodes

B-Tree Index Files (Cont.)

l Advantages of B-Tree indices:
l May use less tree nodes than a corresponding B+-Tree.
l Sometimes possible to find search-key value before reaching

leaf node.
l Disadvantages of B-Tree indices:

l Only small fraction of all search-key values are found early
l Non-leaf nodes are larger, so fan-out is reduced. Thus, B-Trees

typically have greater depth than corresponding B+-Tree
l Insertion and deletion more complicated than in B+-Trees
l Implementation is harder than B+-Trees.

l Typically, advantages of B-Trees do not outweigh
disadvantages.

B+-Tree File Organization

l Store the records at the leaves
l Sorted order etc..

Multiple-Key Access

select ID
from instructor
where dept_name = “Finance” and salary = 80000

l Possible strategies for processing query using indices on single
attributes:
l Use index on dept_name to find instructors with department

name Finance; test salary = 80000
l Use index on salary to find instructors with a salary of $80000;

test dept_name = “Finance”.
l Use dept_name index to find pointers to all records pertaining to

the “Finance” department. Similarly use index on salary. Take
intersection of both sets of pointers obtained.
l Called “INDEX-ANDING”

Indices on Multiple Keys

l Composite search keys are search keys containing more than one
attribute
l E.g. (dept_name, salary)

l Lexicographic ordering: (a1, a2) < (b1, b2) if either
l a1 < b1, or
l a1=b1 and a2 < b2

l Ideal for something like:
where dept_name = “Finance” and salary = 80000

l Can also efficiently handle
where dept_name = “Finance” and salary < 80000

l But cannot efficiently handle
where dept_name < “Finance” and balance = 80000

Grid Files
Multidimensional index structure
Can handle: X = x1 and Y = y1

a < X < b and c < Y < d

Stores pointers to tuples with :
branch-name between Mianus

and Perryridge
and balance < 1k

R-Trees

For spatial data (e.g. maps, rectangles, GPS data etc)

Conclusions

l Indexing Goal: “Quickly find the tuples that match certain
conditions”

l Equality and range queries most common

l Hence B+-Trees the predominant structure for on-disk
representation

l Hashing is used more commonly for in-memory operations

l Many many more types of indexing structures exist

l For different types of data

l For different types of queries
l E.g. “nearest-neighbor” queries

