CMSC424: Database
Design

Instructor: Amol Deshpande

http://cs.umd.edu

Spring 2020 - Online Instruction Plan

e Week 1 (March 30 — April 2):

File Organization and Overview of Indexes
B+-Trees

Hashing

Miscellaneous topics in Indexes

e \Week 2: Query Processing
e Week 3: Transactions 1
e Week 4: Transactions 2

e Week 5: Parallel Database and MapReduce

B+-Trees

e Book Chapters
11.3

e Key topics:
B+-Trees as a multi-level index, and basic properties
How to search in a B+-Tree?

How to update B+-Tree when a new tuple in inserted
in the relation?

Key challenge: keeping the index “balanced” and all the
pages “sufficiently full”

How to handle a delete from the underlying relation?

Same key challenge

Example B+-Tree Index

Index Disk Blocks

‘b ||| Mozart ||| | | | |< .. Root node
|I|Einstein| | Gold |.| —l-l ISrinivasanlll | | | | ‘- Internal nodes
\ \ Leaf nodes--
Yo~ N T e
|Ca1iﬁeri| |Crick|-|->| |Einstein| |EI Saidl | H->| | Gold | | Katz | | KimH-»LlMozartlll Singh | | |-|->ﬂ§nivasan|||Wu | | | |
»| 10101 | Srinivasan | Comp. Sci. | 65000
> 12121 [Wu Finance 90000
> 15151 | Mozart Music 40000
»{ 22222 | Einstein Physics 95000
> 32343 | El Said History 80000
> 33456 | Gold Physics 87000
>| 45565 | Katz Comp. Sci. | 75000
> 58583 | Califieri History 60000
»| 76543 | Singh Finance 80000
> 76766 | Crick Biology 72000
> 83821 | Brandt Comp. Sci. | 92000
> 98345 | Kim Elec. Eng. 80000

B*-Tree Node Structure

e Typical node

K are the search-key values

P, are pointers to children (for non-leaf nodes) or pointers to
records or buckets of records (for leaf nodes).

e The search-keys in a node are ordered
Ki<Ko<Ki<...<K,_;

Properties of B+-Trees

e |tis balanced

Every path from the root to a leaf is same length

e Leaf nodes (at the bottom)

P1 contains the pointers to tuple(s) with key K1

Pn is a pointer to the next leaf node

Must contain at least n/2 entries

Properties

e Interior nodes

All tuples in the subtree pointed to by P71, have search key < K1
To find a tuple with key K71’ < K1, follow P1

Finally, search keys in the tuples contained in the subtree pointed

to by Pn, are all larger than Kn-1

Must contain at least n/2 entries (unless root)

B+-Trees - Searching

e How to search ?
Follow the pointers

e Logarithmic

logs»(N), where B = Number of entries per block
B is also called the order of the B+-Tree Index
Typically 100 or so

e If a relation contains1,000,000,000 entries, takes only 4

random accesses

e The top levels are typically in memory

So only requires 1 or 2 random accesses per request

0000
Example B+-Tree Index
o000
o0
o
|.| Mozartl.l | | | |< .. Root nodé
|I|Einstein| | Gold |.| —l-l mS_rinivasanlll | | | | Internal nodes
Leaf nodes--§
Yo N T e
Brandtl |Ca1iﬁeri| |CrickH->| |Einstein| |EI Saidl | |-|->|_|_Gold | | Katz | | KimH-»LlMozartlll Singh | | H-»ﬂgnivasanlll Wu | | | | ------

N

YY

Y YYYYYVYYVYYY

10101 | Srinivasan | Comp. Sci. | 65000
12121 [Wu Finance 90000
15151 | Mozart Music 40000
22222 | Einstein Physics 95000
32343 | El Said History 80000
33456 | Gold Physics 87000
45565 | Katz Comp. Sci. | 75000
58583 | Califieri History 60000
76543 | Singh Finance 80000
76766 | Crick Biology 72000
83821 | Brandt Comp. Sci. | 92000
98345 | Kim Elec. Eng. 80000

0000
Example B+-Tree Index
o000
o0
o
|.| Mozartl.l | | | |< .. Root nodé
|I|Einstein| | Gold |.| —l-l mS_rinivasanlll | | | | Internal nodes
Leaf nodes--§
Yo N T e
Brandtl |Ca1iﬁeri| |CrickH->| |Einstein| |EI Saidl | |-|->|_|_Gold | | Katz | | KimH-»LlMozartlll Singh | | H-»ﬂ%nivasanlll Wu | | | | ------

N

YY

Y YYYYYVYYVYYY

10101 | Srinivasan | Comp. Sci. | 65000
12121 | Wu Finance 90000
15151 | Mozart Music 40000
22222 | Einstein Physics 95000
32343 | El Said History 80000
33456 | Gold Physics 87000
45565 | Katz Comp. Sci. | 75000
58583 | Califieri History 60000
76543 | Singh Finance 80000
76766 | Crick Biology 72000
83821 | Brandt Comp. Sci. | 92000
98345 | Kim Elec. Eng. 80000

If this were a “primary” index, then not all "keys” are present in the index

Tuple Insertion

e Find the leaf node where the search key should go
e If already present

Insert record in the file. Update the bucket if necessary
This would be needed for secondary indexes

e If not present
Insert the record in the file
Adjust the index
Add a new (Ki, Pi) pair to the leaf node

Recall the keys in the nodes are sorted
What if there is no space ?

Tuple Insertion

e Splitting a node
Node has too many key-pointer pairs
Needs to store n, only has space for n-1
Split the node into two nodes
Put about half in each

Recursively go up the tree
May result in splitting all the way to the root
In fact, may end up adding a /evel to the tree

Pseudocode in the book !!

B*-Trees: Insertion

[[Mozart]] ||

|I|Einstein| | Gold |.| —l-l

<
Y

| I|Srinivasan| || | |

| |

|Caliﬁeri| |Crick|l-|->II|Eigstein|I|El Saidl | H-»ITI_Gold ||| Katz ||| KimH—»”Mozartlll Singh | |

| I< .. Root nocle .

Internal nodes

Leaf nodes--,

H-»ﬂgnivasanlIqu | | | |

L[Mozard] | [] 1]

4

H_Caliﬁeril , |Einstein| , | Goldl .|

—
I|Srinivasan| .| | | | |

[[Catifieri] | Crick] |

H-> |Einstein| |El Saidl |

[+

Adams | |Brandt | |

[[Gold] [Katz] [Kim] 3~

[Mozart] [Singh] |

g

|Srinivasan| |Wu| |

Figure 11.13 Insertion of “Adams” into the B*-tree of Figure 11.9.

B*-Trees:

Insertion

| |Mozart| |

T

[[caifi

er1| |E1nste1n| |G01d|

/

, |Srinivasan| I| | | | |

Adamsl |Brandt| | H->| |Caliﬁeri| |Crick| |

| -|->| |E1nste1n

ElSaid| [|

|Mozart| |Singh| |

g

|Srinivasan| |Wu| | | |

N—

|.| Gold |I|Mozart

, Califieri |.| Einstein |.|

Y,

=

A

I Jsunivasen] [] [}

S
N\

~

Adams | |Brandt | | | H) Caliﬁeril |Crickl |

|H |Einstein| |El Salil

Figure 11.14

|Gold| |Katz| |

H»l |Kim| |Lamp0rt| |

g

)Mozart | | Singh | |

N
|Srinivasan| |Wu| | | |

Insertion of “Lamport” into the B*-tree of Figure 11.13.

Updates on B*-Trees: Deletion

Find the record, delete it.

Remove the corresponding (search-key, pointer) pair from a leaf
node

Note that there might be another tuple with the same search-key

In that case, this is not needed

Issue:
The leaf node now may contain too few entries
Why do we care ?
Solution:
See if you can borrow some entries from a sibling
If all the siblings are also just barely full, then merge (opposite of split)

May end up merging all the way to the root
In fact, may reduce the height of the tree by one

E I fB*-1 Deleti 1
xampies o -iree veieton cooo
0000
o000
o0
o
|I|Mozart|i<‘
HzlaliﬁerilIlEinsteinlllGoldlll |I|Srinivasan||| | | | |
Adamsl |Brandt| | H->| |Caliﬁeri| |Crick| | H->| |Einstein| |El Saidl | H->| |Gold| |Katz| |Kim| \lMozartl |Singh| | H-> |Srinivasan| |Wu| | | |
| Gold |
|Einstein|, j Mozart |
Adams| [Brandt 9 Califieri| | Crick q Einstein| |El Said 9 Gold | | Katz | |Kim |1 Mozart| | Singh| [Wu

Figure 11.16 Deletion of “Srinivasan” from the B*-tree of Figure 11.13.

Another B+Tree Insertion Example §§§:

INITIAL TREE

1000 0 0

100 200 300

L
10 || 20 || 30 100 || 130 | | 150 200 || 230 | | 240 300 || 330 || 350

Next slides show the insertion of (125) into this tree
According to the Algorithm in Figure 12.13, Page 495

Another Example: INSERT (125) secs

Step 1: Split L to create L

1000 0 0

100 200 300

10 |1 20 || 30 200 (| 230 | [240 300 || 330 | | 350

L L'

”100||125|| “/ *|130H150|| H

Insert the lowest value in L’ (130) upward into the parent P

Another Example: INSERT (125) secs

Step 2: Insert (130) into P by creating a temp node T

1000 0 0

Temp Node T
100 130 200 300

10 |20 || 30 200 || 230 | | 240 300 || 330 || 350

L L

||100||125H || ||130||150|| H

Another Example: INSERT (125)

Step 3: Create P’; distribute from T into P and P’

1000 0 0

New P has only 1 key, but two pointers so it is OKAY.
This follows the last 4 lines of Figure 12.13 (note that “n” =
K” = 130. Insert upward into the root

4)

Another Example: INSERT (125) eecs
Step 4: Insert (130) into the parent (R); create R’ o
R R

10 (| 20 || 30

||100||125H H’ *|130||150H H

Once agqain following the insert _in_parent() procedure, K” = 1000

Another Example: INSERT (125) secs

Step 5: Create a new root

1000

130 0

100

10 || 20

100 125 130 || 150

B+ Trees in Practice

e Typical order: 100. Typical fill-factor: 67%.
average fanout = 133

e Typical capacities:
Height 3: 1333 = 2,352,637 entries
Height 4: 1334 = 312,900,700 entries

e Can often hold top levels in buffer pool:
Level 1 = 1 page = 8 Kbytes
Level 2= 133 pages= 1 Mbyte
Level 3 = 17,689 pages = 133 MBytes

B+ Trees: Summary

e Searching:

log4(n) — Where d is the order, and n is the number of entries
e Insertion:

Find the leaf to insert into

If full, split the node, and adjust index accordingly

Similar cost as searching
e Deletion

Find the leaf node

Delete
May not remain half-full; must adjust the index accordingly

