
CMSC424: Database
Design

Instructor: Amol Deshpande
amol@cs.umd.edu

http://cs.umd.edu

Quick Announcements

l Posted notes on grading breakdown
l Videos and reading homework for next week

will be posted today
l Will experiment with Zoom and/or Panopto

quizzes to increase participation and
interaction

l Feel free to send questions through Chat or
Raise Hand

l Week 1 (March 30 – April 2):
l File Organization and Overview of Indexes
l B+-Trees
l Hashing
l Miscellaneous topics in Indexes

l Week 2: Query Processing
l Week 3: Transactions 1
l Week 4: Transactions 2
l Week 5: Parallel Database and MapReduce

Spring 2020 – Online Instruction Plan

l Reading homeworks based on the videos and book chapters
l Virtual Zoom/Webex Sessions during class time

l Except March 30

l Tentative schedule below
l Still trying to figure out the “Final” and overall grading breakdown

Spring 2020 – Online Instruction Plan

Reading Homeworks Due Final Projects Due

Monday Tuesday Wednesday Thursday Friday Saturday Sunday
March 30 31 1 2 3 4 5
April 6 7 8 9 10 11 12

13 14 15 16 17 18 19
20 21 22 23 24 25 26

27 28 29 30 1 2 3
May 4 5 6 7 8 9 10

11 12 13 14 15 16 17
18

Review: Query Processing/Storage

Space Management on
Persistent Storage (e.g., Disks)

Buffer Management

Query Processing Engine

• Storage hierarchy
• How are relations mapped to files?
• How are tuples mapped to disk blocks?

• Bringing pages from disk to memory
• Managing the limited memory

• Given a input user query, decide
how to “execute” it

• Specify sequence of pages to be
brought in memory

• Operate upon the tuples to produce
results

user query

page
requests

block
requests

results

pointers
to pages

data

Storage Hierarchy

source: http://cse1.net/recaps/4-memory.html

Review: Storage Hierarchy

Review: Disks

We focus on “disks” for the rest of the semester, but everything
applies to SSDs as well.

l Book Chapters
l 10.5, 10.6, 11.1, 11.2

l Key topics:
l What are different ways the tuples mapped to disk

blocks?
l What are the pros and cons of the different

approaches to map tuples to blocks?
l How an “index” helps efficiently find tuples that satisfy

a condition?
l What are key characteristics of indexes?

File Organization & Indexes Overview

Mapping Tuples to Disk Blocks
1.6 Database Design 19

ID name salary dept name building budget

22222 Einstein 95000 Physics Watson 70000
12121 Wu 90000 Finance Painter 120000
32343 El Said 60000 History Painter 50000
45565 Katz 75000 Comp. Sci. Taylor 100000
98345 Kim 80000 Elec. Eng. Taylor 85000
76766 Crick 72000 Biology Watson 90000
10101 Srinivasan 65000 Comp. Sci. Taylor 100000
58583 Califieri 62000 History Painter 50000
83821 Brandt 92000 Comp. Sci. Taylor 100000
15151 Mozart 40000 Music Packard 80000
33456 Gold 87000 Physics Watson 70000
76543 Singh 80000 Finance Painter 120000

Figure 1.4 The facultytable.

We shall discuss these problems with the help of a modified database design for
our university example.

Suppose that instead of having the two separate tables instructor and depart-
ment, we have a single table, faculty, that combines the information from the two
tables (as shown in Figure 1.4). Notice that there are two rows in faculty that
contain repeated information about the History department, specifically, that
department’s building and budget. The repetition of information in our alterna-
tive design is undesirable. Repeating information wastes space. Furthermore, it
complicates updating the database. Suppose that we wish to change the budget
amount of the History department from $50,000 to $46,800. This change must
be reflected in the two rows; contrast this with the original design, where this
requires an update to only a single row. Thus, updates are more costly under the
alternative design than under the original design. When we perform the update
in the alternative database, we must ensure that everytuple pertaining to the His-
tory department is updated, or else our database will show two different budget
values for the History department.

Now, let us shift our attention to the issue of “inability to represent certain
information.” Suppose we are creating a new department in the university. In the
alternative design above, we cannot represent directly the information concerning
a department (dept name, building, budget) unless that department has at least one
instructor at the university. This is because rows in the faculty table require
values for ID, name, and salary. This means that we cannot record information
about the newly created department until the first instructor is hired for the new
department.

One solution to this problem is to introduce null values. The null value
indicates that the value does not exist (or is not known). An unknown value
may be either missing (the value does exist, but we do not have that information)
or not known (we do not know whether or not the value actually exists). As we

1.5 Relational Databases 13

ID name dept name salary

22222 Einstein Physics 95000
12121 Wu Finance 90000
32343 El Said History 60000
45565 Katz Comp. Sci. 75000
98345 Kim Elec. Eng. 80000
76766 Crick Biology 72000
10101 Srinivasan Comp. Sci. 65000
58583 Califieri History 62000
83821 Brandt Comp. Sci. 92000
15151 Mozart Music 40000
33456 Gold Physics 87000
76543 Singh Finance 80000

(a) The instructor table

dept name building budget

Comp. Sci. Taylor 100000
Biology Watson 90000
Elec. Eng. Taylor 85000
Music Packard 80000
Finance Painter 120000
History Painter 50000
Physics Watson 70000

(b) The department table

Figure 1.2 A sample relational database.

associated with the Physics department. In Chapter 8, we shall study how to
distinguish good schema designs from bad schema designs.

1.5.2 Data-Manipulation Language

The SQL query language is nonprocedural. A query takes as input several tables
(possibly only one) and always returns a single table. Here is an example of an
SQL query that finds the names of all instructors in the History department:

select instructor.name
from instructor
where instructor.dept name = ’History’;

The query specifies that those rows from the table instructor where the dept name is
History must be retrieved, and the name attribute of these rows must be displayed.
More specifically, the result of executing this query is a table with a single column

1.5 Relational Databases 13

ID name dept name salary

22222 Einstein Physics 95000
12121 Wu Finance 90000
32343 El Said History 60000
45565 Katz Comp. Sci. 75000
98345 Kim Elec. Eng. 80000
76766 Crick Biology 72000
10101 Srinivasan Comp. Sci. 65000
58583 Califieri History 62000
83821 Brandt Comp. Sci. 92000
15151 Mozart Music 40000
33456 Gold Physics 87000
76543 Singh Finance 80000

(a) The instructor table

dept name building budget

Comp. Sci. Taylor 100000
Biology Watson 90000
Elec. Eng. Taylor 85000
Music Packard 80000
Finance Painter 120000
History Painter 50000
Physics Watson 70000

(b) The department table

Figure 1.2 A sample relational database.

associated with the Physics department. In Chapter 8, we shall study how to
distinguish good schema designs from bad schema designs.

1.5.2 Data-Manipulation Language

The SQL query language is nonprocedural. A query takes as input several tables
(possibly only one) and always returns a single table. Here is an example of an
SQL query that finds the names of all instructors in the History department:

select instructor.name
from instructor
where instructor.dept name = ’History’;

The query specifies that those rows from the table instructor where the dept name is
History must be retrieved, and the name attribute of these rows must be displayed.
More specifically, the result of executing this query is a table with a single column

• Very important implications on
performance

• Quite a few different ways to do
this

?

File Organization

l Requirements and Performance Goals:
l Allow insertion/deletions of tuples/records in relations
l Fetch a particular record (specified by record id)
l Find all tuples that match a condition (say SSN = 123) ?
l Fetch all tuples from a specific relation (scans)

l Faster if they are all sequential/in contiguous blocks

l Allow building of “indexes”
l Auxiliary data structures maintained on disks and in memory for faster

retrieval

l And so on…

File System or Not

l Option 1: Use OS File System
l File systems are a standard abstraction provided by Operating

Systems (OS) for managing data
l Major Con: Databases don’t have as much control over the

physical placement any more --- OS controls that
l E.g., Say DBMS maps a relation to a “file”
l No guarantee that the file will be “continguous” on the disk
l OS may spread it across the disk, and won’t even tell the DBMS

l Option 2: DBMS directly works with the disk or uses a
lightweight/custom OS
l Increasingly uncommon – most DBMSs today run on top of OSes

(e.g., PostgreSQL on your laptop, or on linux VMs in the cloud, or
on a distributed HDFS)

Through a File System

l Option 1: Allocate a single “file” on the disk, and
treat it as a contiguous sequence of blocks
l This is what PostgreSQL does
l The blocks may not actually be contiguous on disk

l Option 2: A different file per relation
l Some of the simpler DBMS use this approach

l Either way: we have a set of relations mapped to a set of
blocks on disk

Assumptions for Now

l Each relation stored separately on a separate set of blocks
l Assumed to be contiguous

l Each “index” maintained in a separate set of blocks
l Assumed to be contiguous

instructor student B+-tree index for instructor

Disk
block

Some extra space for new tuples

Within block: Fixed Length Records

l n = number of bytes per record
l Store record i at position:

l n * (i – 1)
l Records may cross blocks

l Not desirable
l Stagger so that that doesn’t happen

l Inserting a tuple ?
l Depends on the policy used
l One option: Simply append at the end

of the record

l Deletions ?
l Option 1: Rearrange
l Option 2: Keep a free list and use for

next insert

Within block: Fixed Length Records

l Deleting: using “free lists”

Within block: Variable-length Records

l Indirection:
l The records may move inside the page, but the outside world is oblivious to it
l Why ?

l The headers are used as a indirection mechanism
l Record ID 1000 is the 5th entry in the page number X

Slotted page/block structure

Across Blocks of a Relation

l Which block should a record go to ?
l Anywhere ?

l How to search for “SSN = 123” ?
l Called “heap” organization

l Sorted by SSN ?
l Called “sequential” organization
l Keeping it sorted would be painful
l How would you search ?

l Based on a “hash” key
l Called “hashing” organization
l Store the record with SSN = x in the block number x%1000
l Why ?

Sequential File Organization

l Keep sorted by some search key
l Insertion

l Find the block in which the tuple should be
l If there is free space, insert it
l Otherwise, must create overflow pages

l Deletions
l Delete and keep the free space
l Databases tend to be insert heavy, so free space gets used

fast

l Can become fragmented
l Must reorganize once in a while

Sequential File Organization

l What if I want to find a particular record by value ?

l Account info for SSN = 123

l Binary search

l Takes log(n) number of disk accesses
l Random accesses

l Too much
l n = 1,000,000,000 -- log(n) = 30

l Recall each random access approx 10 ms

l 300 ms to find just one account information

l < 4 requests satisfied per second

Index

l A data structure for efficient search through large databaess
l Two key ideas:

l The records are mapped to the disk blocks in specific ways
l Sorted, or hash-based

l Auxiliary data structures are maintained that allow quick search
l Think library index/catalogue
l Search key:

l Attribute or set of attributes used to look up records
l E.g. SSN for a persons table

l Two types of indexes
l Ordered indexes
l Hash-based indexes

Ordered Indexes
l Primary index

l The relation is sorted on the search key of the index
l Secondary index

l It is not
l Can have only one primary index on a relation

Relation

Index

11.2 Ordered Indices 479

Consider a (printed) dictionary. The header of each page lists the first word
alphabetically on that page. The words at the top of each page of the book index
together form a sparse index on the contents of the dictionary pages.

As another example, suppose that the search-key value is not not a primary
key. Figure 11.4 shows a dense clustering index for the instructor file with the
search key being dept name. Observe that in this case the instructor file is sorted
on the search key dept name, instead of ID, otherwise the index on dept name
would be a nonclustering index. Suppose that we are looking up records for
the History department. Using the dense index of Figure 11.4, we follow the
pointer directly to the first History record. We process this record, and follow the
pointer in that record to locate the next record in search-key (dept name) order. We
continue processing records until we encounter a record for a department other
than History.

As we have seen, it is generally faster to locate a record if we have a dense
index rather than a sparse index. However, sparse indices have advantages over
dense indices in that they require less space and they impose less maintenance
overhead for insertions and deletions.

There is a trade-off that the system designer must make between access time
and space overhead. Although the decision regarding this trade-off depends on
the specific application, a good compromise is to have a sparse index with one
index entry per block. The reason this design is a good trade-off is that the
dominant cost in processing a database request is the time that it takes to bring
a block from disk into main memory. Once we have brought in the block, the
time to scan the entire block is negligible. Using this sparse index, we locate the
block containing the record that we are seeking. Thus, unless the record is on an
overflow block (see Section 10.6.1), we minimize block accesses while keeping
the size of the index (and thus our space overhead) as small as possible.

10101
32343
76766

10101 Srinivasan

45565 Katz
58583 Califieri
76543 Singh
76766 Crick
83821 Brandt
98345 Kim

12121 Wu
15151 Mozart
22222 Einstein
32343 El Said
33456 Gold

Comp. Sci.

Comp. Sci.

Comp. Sci.
History
Finance
Biology

Elec. Eng.

Finance
Music
Physics
History
Physics

65000

75000
62000
80000
72000
92000
80000

90000
40000
95000
60000
87000

Figure 11.3 Sparse index.

Primary Sparse Index
l Every key doesn’t have to appear in the index
l Allows for very small indexes

l Better chance of fitting in memory
l Tradeoff: Must access the relation file even if the record is not

present

11.2 Ordered Indices 479

Consider a (printed) dictionary. The header of each page lists the first word
alphabetically on that page. The words at the top of each page of the book index
together form a sparse index on the contents of the dictionary pages.

As another example, suppose that the search-key value is not not a primary
key. Figure 11.4 shows a dense clustering index for the instructor file with the
search key being dept name. Observe that in this case the instructor file is sorted
on the search key dept name, instead of ID, otherwise the index on dept name
would be a nonclustering index. Suppose that we are looking up records for
the History department. Using the dense index of Figure 11.4, we follow the
pointer directly to the first History record. We process this record, and follow the
pointer in that record to locate the next record in search-key (dept name) order. We
continue processing records until we encounter a record for a department other
than History.

As we have seen, it is generally faster to locate a record if we have a dense
index rather than a sparse index. However, sparse indices have advantages over
dense indices in that they require less space and they impose less maintenance
overhead for insertions and deletions.

There is a trade-off that the system designer must make between access time
and space overhead. Although the decision regarding this trade-off depends on
the specific application, a good compromise is to have a sparse index with one
index entry per block. The reason this design is a good trade-off is that the
dominant cost in processing a database request is the time that it takes to bring
a block from disk into main memory. Once we have brought in the block, the
time to scan the entire block is negligible. Using this sparse index, we locate the
block containing the record that we are seeking. Thus, unless the record is on an
overflow block (see Section 10.6.1), we minimize block accesses while keeping
the size of the index (and thus our space overhead) as small as possible.

10101
32343
76766

10101 Srinivasan

45565 Katz
58583 Califieri
76543 Singh
76766 Crick
83821 Brandt
98345 Kim

12121 Wu
15151 Mozart
22222 Einstein
32343 El Said
33456 Gold

Comp. Sci.

Comp. Sci.

Comp. Sci.
History
Finance
Biology

Elec. Eng.

Finance
Music
Physics
History
Physics

65000

75000
62000
80000
72000
92000
80000

90000
40000
95000
60000
87000

Figure 11.3 Sparse index.

Primary dense Index
l Every key must appear in the index
l Index becomes pretty large, but can often avoid having to go

to the relation
l E.g., select * from instructor where ID = 10000

l Not found in the index, so can return immediately478 Chapter 11 Indexing and Hashing

10101
12121
15151
22222
32343
33456
45565
58583
76543
76766
83821
98345

10101 Srinivasan

45565 Katz
58583 Califieri
76543 Singh
76766 Crick
83821 Brandt
98345 Kim

12121 Wu
15151 Mozart
22222 Einstein
32343 El Said
33456 Gold

Comp. Sci.

Comp. Sci.

Comp. Sci.
History
Finance
Biology

Elec. Eng.

Finance
Music
Physics
History
Physics

65000

75000
62000
80000
72000
92000
80000

90000
40000
95000
60000
87000

Figure 11.2 Dense index.

• Dense index: In a dense index, an index entry appears for every search-key
value in the file. In a dense clustering index, the index record contains the
search-key value and a pointer to the first data record with that search-key
value. The rest of the records with the same search-key value would be stored
sequentially after the first record, since, because the index is a clustering one,
records are sorted on the same search key.

In a dense nonclustering index, the index must store a list of pointers to
all records with the same search-key value.

• Sparse index: In a sparse index, an index entry appears for only some of the
search-key values. Sparse indices can be used only if the relation is stored in
sorted order of the search key, that is, if the index is a clustering index. As
is true in dense indices, each index entry contains a search-key value and a
pointer to the first data record with that search-key value. To locate a record,
we find the index entry with the largest search-key value that is less than or
equal to the search-key value for which we are looking. We start at the record
pointed to by that index entry, and follow the pointers in the file until we find
the desired record.

Figures 11.2 and 11.3 show dense and sparse indices, respectively, for the
instructor file. Suppose that we are looking up the record of instructor with ID
“22222”. Using the dense index of Figure 11.2, we follow the pointer directly to
the desired record. Since ID is a primary key, there exists only one such record
and the search is complete. If we are using the sparse index (Figure 11.3), we
do not find an index entry for “22222”. Since the last entry (in numerical order)
before “22222” is “10101”, we follow that pointer. We then read the instructor file
in sequential order until we find the desired record.

Secondary Index
l Relation sorted on ID
l But we want an index on salary
l Must be dense

l Every search key must appear in the index

484 Chapter 11 Indexing and Hashing

only some of the search-key values, since it is always possible to find records
with intermediate search-key values by a sequential access to a part of the file, as
described earlier. If a secondary index stores only some of the search-key values,
records with intermediate search-key values may be anywhere in the file and, in
general, we cannot find them without searching the entire file.

A secondary index on a candidate key looks just like a dense clustering
index, except that the records pointed to by successive values in the index are not
stored sequentially. In general, however, secondary indices may have a different
structure from clustering indices. If the search key of a clustering index is not a
candidate key, it suffices if the index points to the first record with a particular
value for the search key, since the other records can be fetched by a sequential
scan of the file.

In contrast, if the search key of a secondary index is not a candidate key, it
is not enough to point to just the first record with each search-key value. The
remaining records with the same search-key value could be anywhere in the file,
since the records are ordered by the search key of the clustering index, rather
than by the search key of the secondary index. Therefore, a secondary index must
contain pointers to all the records.

We can use an extra level of indirection to implement secondary indices on
search keys that are not candidate keys. The pointers in such a secondary index
do not point directly to the file. Instead, each points to a bucket that contains
pointers to the file. Figure 11.6 shows the structure of a secondary index that uses
an extra level of indirection on the instructor file, on the search key salary.

A sequential scan in clustering index order is efficient because records in
the file are stored physically in the same order as the index order. However,
we cannot (except in rare special cases) store a file physically ordered by both
the search key of the clustering index and the search key of a secondary index.

40000
60000
62000
65000
72000
75000
80000
87000
90000
92000
95000

10101 Srinivasan Comp. Sci. 65000
12121 Wu Finance 90000
15151 Mozart Music 40000
22222 Einstein Physics 95000
32343 El Said History 60000
33456 Gold Physics 87000
45565 Katz Comp. Sci. 75000
58583 Califieri History 62000
76543 Singh Finance 80000
76766 Crick Biology 72000
83821 Brandt Comp. Sci. 92000
98345 Kim Elec. Eng. 80000

Figure 11.6 Secondary index on instructor file, on noncandidate key salary.

Multi-level Indexes

l What if the index itself is too big for
memory ?

l Relation size = n = 1,000,000,000
l Block size = 100 tuples per block
l So, number of pages = 10,000,000
l Keeping one entry per page takes too

much space
l Solution

l Build an index on the index itself

Multi-level Indexes

l How do you search through a multi-level index ?

l What about keeping the index up-to-date ?
l Tuple insertions and deletions

l This is a static structure
l Need overflow pages to deal with insertions

l Works well if no inserts/deletes
l Not so good when inserts and deletes are common

Next

l Different ways to build more efficient indexes
l B+-Tree indexes
l Hashing-based indexes

Advanced Topics

l Row vs columnar representation:
l We are largely focused on row

representation
l Column-based organization much

more efficient for queries
l But are not as efficient to update

l Used by most modern warehouses

Advanced Topics

l Data Storage Formats used in ”big data” world
l Parquet, Avro, and many others

l Sophisticated on-disk and in-memory representations for
maintaining very large volumes of data as ”files”
l That can be emailed, shared, interpreted by many different programs

l Typically tend to be ”column-oriented”
l Are not designed to be easy to update (by and large)

l Lot of work in recent years on this

