CMSC424: Database
Design

Instructor: Amol Deshpande

http://cs.umd.edu

Quick Announcements

e Posted notes on grading breakdown

e Videos and reading homework for next week
will be posted today

e Will experiment with Zoom and/or Panopto
quizzes to increase participation and
interaction

e Feel free to send questions through Chat or
Raise Hand

Spring

e Week 1 (March 30 — April 2):

2020 - Online Instruction Plan

e File Organization and Overview of Indexes

o B+-Trees

e Hashing

e Miscellaneous topics in Indexes

e Wee
e Wee
e Wee

e Wee

K 2: Query Processing
K 3: Transactions 1
K 4: Transactions 2

< 5: Parallel Database and MapReduce

Spring 2020 - Online Instruction Plan

e Reading homeworks based on the videos and book chapterns

e Virtual Zoom/Webex Sessions during class time
e Except March 30

e Tentative schedule below

e Still trying to figure out the “Final” and overall grading breakdown

Reading Homeworks Due _ Projects Due
Monday Tuesday Wednesday Thursday Friday

March 30 31 1 2 3

April 6 7 8 9 10
13 14 15 16 17
20 21 22 23 24
27 28 29 30

May 4 5 6 7 8

11

Review: Query Processing/Storage see:

Given a input user query, decide

user query l -
T how to “execute” it

[Query Processing Engine]) S&i‘;&; ?ﬁcrlrl:::]g?yOf pages to be

» Operate upon the tuples to produce

results
page
<2 | [

« Bringing pages from disk to memory
[Buffer Management] « Managing the limited memory

block
requests l - T

[Space Management on]

Storage hierarchy
How are relations mapped to files?
 How are tuples mapped to disk blocks?

Persistent Storage (e.g., Disks)

Review: Storage Hier

chy

Direct —
Access to CPU

Indirect Access to CPU

Operating System
Assisted Memory |
Management

Keyboard

Temporary
— Storage

Main Memory RAM Areas

Physical RAM Virtual Memory

Secondary Starage Device Type

% Permanent
Networ

— Storage
Removable Internet Areas

Drives Storage

Input Sources

Scanners/
Removable ll Camera/ Remote
Media Mic/ Source
Video

source: http://cse1.net/recaps/4-memory.html

Review: Disks -4

track t et Splndle

.b. o
I
1

sector s

cylinder c—HI ead-write

head

rotation

We focus on “disks” for the rest of the semester, but everything
applies to SSDs as well.

File Organization & Indexes Overview

e Book Chapters
10.5, 10.6, 11.1, 11.2
e Key topics:

What are different ways the tuples mapped to disk
blocks?

What are the pros and cons of the different
approaches to map tuples to blocks?

How an “index” helps efficiently find tuples that satisfy
a condition?

What are key characteristics of indexes?

Mapping Tuples to Disk Blocks

ID name salary | dept_name building budget
22222 | Einstein 95000 | Physics Watson 70000
12121 | Wu 90000 | Finance Painter 120000
32343 | ElSaid 60000 | History Painter 50000
45565 | Katz 75000 | Comp. Sci. | Taylor 100000
98345 | Kim 80000 | Elec. Eng. Taylor 85000
76766 | Crick 72000 | Biology Watson 90000
10101 | Srinivasan | 65000 | Comp. Sci. | Taylor 100000
58583 Califieri 62000 History Painter 50000
83& ID ‘ name dept_name ‘ salary raylor 100000
1515554, Mozart . 400 yfusic Packard 80000
3345 %g Jimstein| oy VBB vsids o200 Watson | 70000
7654 inghy <. 8(0 .ncnﬁnancegoooo Painter 120000
234 &R Said istory 6000
J
45565 | Katz Comp. Sci. | 75000
98345 | Kim Elec. Eng. | 80000
76766 | Crick Biology 72000
10101 | Srinivasan | Comp. Sci. | 65000
58583 | Califieri History 62000
83821 | Brandt Comp. Sci. | 92000
rt Miicic A4000N
égigé g[é)lza“ dept_name ‘ building | budget ‘
76543 | Singh| ConjpF8tan¢eTaylpr800P0L(0000
Biology Watson 90000
Elec. Eng. | Taylor 85000
Music Packard | 80000
Finance Painter | 120000
History Painter 50000
Physics Watson 70000

* Very important implications on
performance

* Quite a few different ways to do
this

spindle

track ¢,

rotation

File Organization

e Requirements and Performance Goals:
Allow insertion/deletions of tuples/records in relations
Fetch a particular record (specified by record id)
Find all tuples that match a condition (say SSN = 123) ?
Fetch all tuples from a specific relation (scans)
Faster if they are all sequential/in contiguous blocks

Allow building of “indexes”

Auxiliary data structures maintained on disks and in memory for faster
retrieval

And so on...

File System or Not

e Option 1: Use OS File System

o File systems are a standard abstraction provided by Operating
Systems (OS) for managing data

e Major Con: Databases don’t have as much control over the
physical placement any more --- OS controls that
E.g., Say DBMS maps a relation to a “file”
No guarantee that the file will be “continguous” on the disk
OS may spread it across the disk, and won’t even tell the DBMS

e Option 2: DBMS directly works with the disk or uses a
lightweight/custom OS

e Increasingly uncommon — most DBMSs today run on top of OSes
(e.g., PostgreSQL on your laptop, or on linux VMs in the cloud, or
on a distributed HDFS)

Through a File System

e Option 1: Allocate a single “file” on the disk, and

treat it as a contiguous sequence of blocks
This is what PostgreSQL does
The blocks may not actually be contiguous on disk

e Option 2: A different file per relation
Some of the simpler DBMS use this approach

e Either way: we have a set of relations mapped to a set of
blocks on disk

Assumptions for Now

e Each relation stored separately on a separate set of blocks

e Assumed to be contiguous

e Each “index” maintained in a separate set of blocks

e Assumed to be contiguous

Disk
block

instructor student

Some extra space for new tuples

B+-tree index for instructor

Within block: Fixed Length Records

n = number of bytes per record
Store record i at position:
n*(i-1)

record 0 | A-102 | Perryridge | 400

Records may cross blocks record 1 A-305 | Round Hill | 350

Not desirable

’ record 2 A-215 | Mianus 700

Stagger so that that doesn’t happen ocord 3 A-101 | Downtown | 500
Insemng a tuDle ? record 4 A-222 | Redwood 700
Depends on the policy used record 5 | A-201 | Perryridge | 900
One option: Simply append at the end record 6 | A-217 | Brighton 750

of the record record7 | A-110 | Downtown | 600

record 8 A-218 | Perryridge | 700

Deletions ?
Option 1: Rearrange

Option 2: Keep a free list and use for
next insert

Within block: Fixed Length Records | ¢:°

e Deleting: using “free lists”

header
record 0
record 1
record 2
record 3
record 4
record 5
record 6
record 7
record 8
record 9
record 10
record 11

D

10101 | Srinivasan | Comp. Sci. | 65000

p
15151 | Mozart Music 40000
22222 | Einstein Physics 95000
33456 | Gold Physics 87000

4
58583 | Califieri History 62000
76543 | Singh Finance 80000
76766 | Crick Biology 72000
83821 | Brandt Comp. Sci. | 92000
98345 | Kim Elec. Eng. 80000

Within block: Variable-length Records

Slotted page/block structure

Block Header Records

Size # Entries

End of Free Space

e [Indirection:
e The records may move inside the page, but the outside world is oblivious to it
o Why?
The headers are used as a indirection mechanism
Record ID 1000 is the 5th entry in the page number X

Across Blocks of a Relation

e Which block should a record go to ?

Anywhere ?
How to search for “SSN = 123" ?
Called “heap” organization
Sorted by SSN ?
Called “sequential” organization
Keeping it sorted would be painful
How would you search ?
Based on a “hash” key
Called “hashing” organization
Store the record with SSN = x in the block number x%1000
Why ?

Sequential File Organization

e Keep sorted by some search key
e Insertion
Find the block in which the tuple should be
If there is free space, insert it
Otherwise, must create overflow pages
e Deletions
Delete and keep the free space

Databases tend to be insert heavy, so free space gets used
fast

e Can become fragmented

Must reorganize once in a while

Sequential File Organization

e What if | want to find a particular record by value ?
Account info for SSN = 123
e Binary search
Takes log(n) number of disk accesses
Random accesses
Too much
n = 1,000,000,000 -- log(n) = 30
Recall each random access approx 10 ms

300 ms to find just one account information

< 4 requests satisfied per second

Index

e A data structure for efficient search through large databaess

e Two key ideas:
The records are mapped to the disk blocks in specific ways
Sorted, or hash-based
Auxiliary data structures are maintained that allow quick search

e Think library index/catalogue
e Search key:
Attribute or set of attributes used to look up records
E.g. SSN for a persons table
e Two types of indexes
Ordered indexes
Hash-based indexes

ECTELTIC LD adnagi 1 i 1108

L LIPS

\
N
L LI LR _l_!_-,-,',',ﬂ‘_'_.

——

- - “\“P’
12 A \
|

= i
— |
§j i ,

el

jis.

Ordered Indexes

e Primary index

e The relation is sorted on the search key of the index

e Secondary index
e Itis not
e Can have only one primary index on a relation

e

Index

10101

32343

10101

Srinivasan

Comp. Sci.

65000

76766

W\

12121 |Wu Finance 90000
15151 |Mozart Music 40000
22222 |Einstein | Physics 95000
32343 | El Said History 60000
33456 |Gold Physics 87000
45565 |Katz Comp. Sci.| 75000
58583 |Califieri | History 62000
76543 |Singh Finance 80000
76766 |Crick Biology 72000
83821 |Brandt Comp. Sci.| 92000 -|
98345 |Kim Elec. Eng. | 80000 |

Relation

J AVAVAVAVAVAVAVAVAVAVAY

Primary Sparse Index

e Every key doesn’t have to appear in the index

e Allows for very small indexes
e Better chance of fitting in memory

e Tradeoff: Must access the relation file even if the record is not
present

10101

Y

32343

76766

10101 |Srinivasan| Comp. Sci.| 65000
12121 |Wu Finance 90000
15151 |Mozart Music 40000
22222 |Einstein | Physics 95000
32343 |El Said History 60000
33456 |Gold Physics 87000
45565 |Katz Comp. Sci.| 75000
58583 |Califieri | History 62000
76543 |Singh Finance 80000
76766 |Crick Biology 72000
83821 |Brandt Comp. Sci.| 92000 .
98345 |Kim Elec. Eng. | 80000 |

J AVAVAVAVAVAVAVAVAVAVAV

Primary dense Index

e Every key must appear in the index

e Index becomes pretty large, but can often avoid having to go
to the relation

e E.g., select * from instructor where ID = 10000
Not found in the index, so can return immediately

10101

Y

12121

Y

15151

Y

22222

Y

32343

Y

33456

Y

45565

Y

58583

Y

76543

Y

76766

Y

83821

Y

98345

Y

10101 |Srinivasan | Comp. Sci. | 65000
12121 |Wu Finance 90000
15151 |Mozart Music 40000
22222 | Einstein Physics 95000
32343 |El Said History 60000
33456 |Gold Physics 87000
45565 |Katz Comp. Sci. | 75000
58583 |Califieri History 62000
76543 |Singh Finance 80000
76766 |Crick Biology 72000
83821 |Brandt Comp. Sci. | 92000
98345 |Kim Elec. Eng. 80000

J AVAVAVAVAVAVAVAVAVAVAV

Secondary Index

e Relation sorted on ID
e But we want an index on salary

e Must be dense
o Every search key must appear in the index

40000

60000

62000

65000

72000

75000

80000

LIV DA TN NN

87000

90000

92000

95000

/1 /17 1/

L
L
o
L
®
®
10101 | Srinivasan | Comp. Sci. | 65000 _P
12121 | Wu Finance 90000 —>
15151 | Mozart Music 40000 —
22222 | Einstein | Physics 95000 _>
32343 | El Said History 60000 _>
33456 | Gold Physics 87000 __>
45565 |Katz Comp. Sci. | 75000 __>
58583 | Califieri | History 62000 __>
76543 | Singh Finance 80000 _>
76766 | Crick Biology 72000 .
83821 |Brandt Comp. Sci. | 92000 >
98345 | Kim Elec. Eng. 80000 ZJ_

Multi-level Indexes

What if the index itself is too big for
memory ?

Relation size = n =1,000,000,000
Block size = 100 tuples per block
So, number of pages = 10,000,000
Keeping one entry per page takes too L ndex.
much space | ¢
Solution

Build an index on the index itself

inner index

Multi-level Indexes

e How do you search through a multi-level index “?

e \What about keeping the index up-to-date ?

Tuple insertions and deletions
This is a static structure
Need overflow pages to deal with insertions

Works well if no inserts/deletes
Not so good when inserts and deletes are common

Next

e Different ways to build more efficient indexes

B+-Tree indexes
Hashing-based indexes

Advanced Topics

e Row vs columnar representation:

We are largely focused on row
representation

Column-based organization much
more efficient for queries
But are not as efficient to update

Used by most modern warehouses

000
0000
X XX
XX
| X
[]
/"’—————— o - —__“_'“\
Block1 | 7369 | SMITH | CLERK | 7902 | 171212000 |
Block2 [7499 | ALLEN | saLEsMAN | 7698 | 20/02/2001 |
Bock3 | 7521 | WARD | sALEsMAN | 7698 | 22022001 |
. T —
Row Database stores row values together
EmpNo EName Job Mar HireDate
7369 SMITH CLERK 7902 17/12/1980
7499 ALLEN SALESMAN 7698 20/02/1981
7521 WARD SALESMAN 7698 22/02/1981
7566 JONES MANAGER 7839 2/04/1981
7654 MARTIN SALESMAN 7698 28/09/1981
7698 BLAKE MANAGER 7839 1/05/1981
7782 CLARK MANAGER 7839 9/06/1981
— T T —
Block1 | 7369 [7499 | 7521 [7566 | 7654 |
Block2 | SMTH [AUEN | warD [JONES | MARTN |
Block3 | CLERK [SALESMAN | SALESMAN | MANAGER | SALESMAN |

Column Database stores column values together

1noken [ea1shyd 21015-MoY

Bwayog [ealbo

e nofe|easfydaojguwno) e e

Advanced Topics

e Data Storage Formats used in "big data” world
Parquet, Avro, and many others

e Sophisticated on-disk and in-memory representations for
maintaining very large volumes of data as "files”

That can be emailed, shared, interpreted by many different programs

e Typically tend to be "column-oriented”
Are not designed to be easy to update (by and large)

e Lot of work in recent years on this

