
Instructor: Amol Deshpande
amol@cs.umd.edu

} COVID-19 Stuff
◦ Postponed Project 3 due date to March 23
◦ No Midterm on April 8 as of now – will look into replacing with

timed ELMS quizzes or something analogous
◦ Grading of assignments/midterm is also impacted

} Will keep communicating as we get more information
and figure out a plan for virtual instruction
◦ Keep an eye on CampusWire and ELMS announcements

} Will record and upload this week’s lectures

} Review:
◦ Storage Hierarchy
◦ Disks

} Solid State Drives

} RAID: Redundant Array of Independent Disks
◦ Although it says “disks”, the ideas are more general

} Buffer Manager

} File Organization on Storage

Storage Hierarchy

source: http://cse1.net/recaps/4-memory.html

“Typical” Values

Diameter: 1 inch ® 15 inches
Cylinders: 100 ® 2000
Surfaces: 1 or 2
(Tracks/cyl) 2 (floppies) ® 30
Sector Size: 512B ® 50K
Capacity à 360 KB to 2TB (as of Feb 2010)
Rotations per minute (rpm) à 5400 to 15000

Accessing Data

l Accessing a sector
l Time to seek to the track (seek time)

l average 4 to 10ms
l + Waiting for the sector to get under the head (rotational latency)

l average 4 to 11ms
l + Time to transfer the data (transfer time)

l very low
l About 10ms per access

l So if randomly accessed blocks, can only do 100 block transfers
l 100 x 512bytes = 50 KB/s

l Data transfer rates
l Rate at which data can be transferred (w/o any seeks)
l 30-50MB/s to up to 200MB/s (Compare to above)

l Seeks are bad !

Disk Controller

l Interface between the disk and the CPU
l Accepts the commands
l checksums to verify correctness
l Remaps bad sectors

Optimizing block accesses

l Typically sectors too small
l Block: A contiguous sequence of sectors

l 512 bytes to several Kbytes
l All data transfers done in units of blocks

l Scheduling of block access requests ?
l Considerations: performance and fairness

l Elevator algorithm

Solid State Drives

l Essentially flash that emulates hard disk interfaces
l No seeks à Much better random reads

performance
l Writes are slower, the number of writes at the same

location limited
l Must write an entire block at a time

l About a factor of 10 more expensive right now

l Has led to perhaps the most radical hardware
configuration change in a while

Flash Storage
l NOR flash vs NAND flash
l NAND flash

l used widely for storage, cheaper than NOR flash
l requires page-at-a-time read (page: 512 bytes to 4 KB)

l 20 to 100 microseconds for a page read
l Not much difference between sequential and random read

l Page can only be written once
l Must be erased to allow rewrite

l Solid state disks
l Use standard block-oriented disk interfaces, but store data

on multiple flash storage devices internally
l Transfer rate of up to 500 MB/sec using SATA, and

up to 3 GB/sec using NVMe PCIe

Flash Storage (Cont.)
l Erase happens in units of erase block

l Takes 2 to 5 millisecs
l Erase block typically 256 KB to 1 MB (128 to 256 pages)

l Remapping of logical page addresses to physical page addresses
avoids waiting for erase

l Flash translation table tracks mapping
l also stored in a label field of flash page
l remapping carried out by flash translation layer

l After 100,000 to 1,000,000 erases, erase block becomes unreliable
and cannot be used
l wear leveling

SSD Performance Metrics

l Random reads/writes per second
l Typical 4 KB reads: 10,000 reads per second (10,000 IOPS)
l Typical 4KB writes: 40,000 IOPS
l SSDs support parallel reads

l Typical 4KB reads:
§ 100,000 IOPS with 32 requests in parallel (QD-32) on SATA
§ 350,000 IOPS with QD-32 on NVMe PCIe

l Typical 4KB writes:
§ 100,000 IOPS with QD-32, even higher on some models

l Data transfer rate for sequential reads/writes
l 400 MB/sec for SATA3, 2 to 3 GB/sec using NVMe PCIe

Break…

l Why do we care about these things?
l Specific hardware architecture being used

has a significant impact on performance

l Need to reason about the details in order to
“tune” the system
l Has gotten a little too complex
l Often hard to abstract

} Review:
◦ Storage Hierarchy
◦ Disks

} Solid State Drives

} RAID: Redundant Array of Independent Disks
◦ Although it says “disks”, the ideas are more general

} Buffer Manager

} File Organization on Storage

RAID

l Redundant array of independent disks
l Goal:

l Disks are very cheap
l Failures are very costly
l Use “extra” disks to ensure reliability

l If one disk goes down, the data still survives
l Also allows faster access to data

l Many raid “levels”
l Different reliability and performance properties

RAID Levels

(b) Make a copy of the disks.
If one disk goes down, we have a copy.
Reads: Can go to either disk, so higher data rate possible.
Writes: Need to write to both disks.

(a) No redundancy.

RAID Levels

(c) Memory-style Error Correcting
Keep extra bits around so we can reconstruct.

Superceeded by below.

(d) One disk contains “parity” for the main data disks.
Can handle a single disk failure.
Little overhead (only 25% in the above case).

RAID Level 5

l Distributed parity “blocks” instead of bits
l Subsumes Level 4
l Normal operation:

l “Read” directly from the disk. Uses all 5 disks
l “Write”: Need to read and update the parity block

l To update 9 to 9’
§ read 9 and P2
§ compute P2’ = P2 xor 9 xor 9’
§ write 9’ and P2’

RAID Level 5

l Failure operation (disk 3 has failed)
l “Read block 0”: Read it directly from disk 2
l “Read block 1” (which is on disk 3)

l Read P0, 0, 2, 3 and compute 1 = P0 xor 0 xor 2 xor 3
l “Write”:

l To update 9 to 9’
§ read 9 and P2

§ Oh… P2 is on disk 3
§ So no need to update it

§ Write 9’

Choosing a RAID level

l Main choice between RAID 1 and RAID 5
l Level 1 better write performance than level 5

l Level 5: 2 block reads and 2 block writes to write a single block
l Level 1: only requires 2 block writes
l Level 1 preferred for high update environments such as log disks

l Level 5 lower storage cost
l Level 1 60% more disks
l Level 5 is preferred for applications with low update rate,

and large amounts of data

} Review:
◦ Storage Hierarchy
◦ Disks

} Solid State Drives

} RAID: Redundant Array of Independent Disks
◦ Although it says “disks”, the ideas are more general

} Buffer Manager

} File Organization on Storage

Query Processing/Storage

Space Management on
Persistent Storage (e.g., Disks)

Buffer Management

Query Processing Engine

• Storage hierarchy
• How are relations mapped to files?
• How are tuples mapped to disk blocks?

• Bringing pages from disk to memory
• Managing the limited memory

• Given a input user query, decide
how to “execute” it

• Specify sequence of pages to be
brought in memory

• Operate upon the tuples to produce
results

user query

page
requests

block
requests

results

pointers
to pages

data

Buffer Manager

l When the QP wants a block, it asks the “buffer manager”
l The block must be in memory to operate upon

l Buffer manager:
l If block already in memory: return a pointer to it
l If not:

l Evict a current page

§ Either write it to temporary storage,
§ or write it back to its original location,

§ or just throw it away (if it was read from disk, and not modified)
l and make a request to the storage subsystem to fetch it

Buffer Manager

DB

MAIN MEMORY

DISK

disk page

free frame

Page Requests from Higher Levels

BUFFER POOL

choice of frame dictated
by replacement policy

Buffer Manager

l Similar to virtual memory manager

l Buffer replacement policies
l What page to evict ?

l LRU: Least Recently Used
l Throw out the page that was not used in a long time

l MRU: Most Recently Used
l The opposite
l Why ?

l Clock ?
l An efficient implementation of LRU

Buffer Manager

l Pinning a block
l Not allowed to write back to the disk

l Force-output (force-write)
l Force the contents of a block to be written to disk

l Order the writes
l This block must be written to disk before this block

l Critical for fault tolerant guarantees
l Otherwise the database has no control over whats on disk

and whats not on disk

} Review:
◦ Storage Hierarchy
◦ Disks

} Solid State Drives

} RAID: Redundant Array of Independent Disks
◦ Although it says “disks”, the ideas are more general

} Buffer Manager

} File Organization on Storage

