CMSCA424: Database Design
E/R; Normalization

February 24, 2020

Instructor: Amol Deshpande

amol@cs.umd.edu

Today’s Plan

» Entity-Relationship Model Review

» Converting from E/R Model to Relational Schema

» Normalization

department
course_dept | dept name
building
budget
stud_dept
instructor student
ID < advisor ID
name name
salary tot_cred
——————— grade
section
course sec_id. time_slot
course_id semester sec_time_slot time slot id
title year { day
credits start_time
end_time
prereq ')
course_id prereq_id
classroom
building

room_number
capacity

Thoughts...

» Nothing about actual data

o How is it stored ?

» No talk about the query languages
> How do we access the data ?
» Semantic vs Syntactic Data Models
> Remember: E/R Model is used for conceptual modeling
° Many conceptual models have the same properties
» They are much more about representing the knowledge
than about database storage/querying

Design Issues

» Entity sets vs attributes
> Depends on the semantics of the application
o Consider telephone

» Entity sets vs Relationsihp sets
o Consider takes

» N-ary vs binary relationships

> Possible to avoid n-ary relationships, but there are some cases
where it is advantageous to use them

» It is not an exact science !!

Design Issues

» Entity sets vs attributes
> Depends on the semantics of the application
> Consider telephone

instructor
instructor phone
ID D | phone number
hame — location
salary name

phone_number salary

(a) (b)

Design Issues

» Entity sets vs Relationsihp sets

o Consider takes

section_reg

section

semester
year.

registration

student_reg

student

ID
name
tot_cred

Figure 7.18 Replacement of takes by registration and two relationship sets

Thoughts...

» Basic design principles

° Faithful
* Must make sense
Satisfies the application requirements
Models the requisite domain knowledge
* If not modeled, lost afterwards
> Avoid redundancy

o

o

* Potential for inconsistencies
Go for simplicity

» Typically an iterative process that goes back and forth

o

Today’s Plan

» Entity-Relationship Model Review
» Converting from E/R Model to Relational Schema

» Normalization

&

E/R Diagrams = Relations

» Convert entity sets into a relational schema with the
same set of attributes

ANN

student

ID I:> Student (ID, name, tot cred)
name

tot_cred
/

y/4

instructor
ID 2 I:> Instructor(ID, name, salary)

name

salary
\

E/R Diagrams = Relations

» Convert relationship sets also into a relational schema

» Remember: A relationship is completely described by primary
keys of associate entities and its own attributes

date

instructor student
ID ID
namie nare
salary

tot_cred

Advisor (student ID, instructor ID, date)

We can do better for many-to-
one or one-to-one

E/R Diagrams =2 Relations

date

|

instructor student
ID ID
name name
salary tot_cred
Fold into Student: /

Student(ID, name, tot credits, advisor ID)

Foreign key into Instructor relation

date
I
instructor I student
ID ID
name @ name
salary tot_cred

Fold into Instructor:
Instructor(ID, name, salary, advisee ID)

E/R Diagrams =2 Relations

date

[

|

I

mstructor student

ID ID
nare name
salary tot_cred

Fold into Student:
Student(ID, name, tot credits, advisor ID)

OR

Fold into Instructor:
Instructor(ID, name, salary, advisee ID)

&

Weak Entity Sets

course section
cgurse id sec_id
title semester
credits year

Figure 7.14 E-R diagram with a weak entity set.

Need to copy the primary key from the strong entity set:

Section(course 1d, sec id, semester, year)

N

Primary key for section = Primary key for course +
Discriminator Attributes

Multi-valued Attributes

instructor . . .
- instructor (ID, first name, middle_name, last_ name,

name street_number, street_name, apt_number,
first_name city, state, zip_code, date_of _birth)

middle_initial
last_name
address
street
street_number
street_name
apt_number
city BUT
state
zip
{ phone_number } Phone number needs to be split out into a separate table
date_of _birth
age ()

Instructor Phone(Instructor ID, phone number)

Specialization and Generalization

A few different ways to handle it

person))
D 1. Common table for common information
S s and separate tables for additional
/ \ information
employee student person (ID, name, street, city)
salary tot_credits employee (D, Salary)
[f student (ID, tot_cred)
instructor secretary
rank hours_per_tweck 2. Separate tables altogether — good idea if an

2
Figure 7.21 Specialization and generalization. employee can't be a student alSO o
querying becomes harder (have to do
unions for queries across all “persons”)

employee (ID, name, street, city, salary)
student (ID, name, street, city, tot_cred)

Today’s Plan

» Entity-Relationship Model Review

» Converting from E/R Model to Relational Schema

» Normalization

Relational Database Design

» Where did we come up with the schema that we used ?
° E.g. why not store the actor names with movies ?

» If from an E-R diagram, then:
> Did we make the right decisions with the E-R diagram ?

» Goals:
o Formal definition of what it means to be a “good” schema.

> How to achieve it.

Movies Database Schema

Movie(title, year, length, inColor, studioName, producerC#)

Starsin(movieTitle, movieYear, starName)

MovieStar(name, address, gender, birthdate)
MovieExec(name, address, cert#, netWorth)

Studio(name, address, presC#)

Changed to:

Movie(title, year, length, inColor, studioName, producerC#, starName)

<Starsin merged into above>
MovieStar(name, address, gender, birthdate)

MovieExec(name, address, cert#, netWorth)

Studio(name, address, presC#)

Is this a good schema ?7?

Movie(title, year, length, inColor, studioName, producerC#, starName)

Title Year Length inColor | StudioName | prodC# StarName
Starwars | 1977 121 Yes Fox 128 Hamill
Starwars | 1977 121 Yes Fox 128 Fisher
Starwars | 1977 121 Yes Fox 128 H. Ford
King Kong | 2005 187 Yes Universal 150 Watts
King Kong | 1933 100 no RKO 20 Fay
|ssues:

1. Redundancy = higher storage, inconsistencies (“anomalies”)
update anomalies, insertion anamolies
2. Need nulls

Unable to represent some information without using nulls

ow to store movies w/o actors (pre-productions etc) ?

A

Movie(title, year, length, inColor, studioName, producerC#, starNames)

Title Year Length inColor | StudioName | prodC# StarNames

Star wars | 1977 121 Yes Fox 128 {Hamill,
Fisher, H.
ford}

King Kong | 2005 187 Yes Universal 150 Watts

King Kong | 1933 100 no RKO 20 Fay

|ssues:

3. Avoid sets

- Hard to represent

- Hard to query

Smaller schemas always good 777?

Split Studio(name, address, presC#) into:

Studio1 (name, presC#) Studio2(name, address)???
Name presC# Name Address
Fox 101 Fox Address1
Studio2 101 Studio2 Address1
Universial | 102 Universial | Address?2

This process is also called “decomposition”
Issues:

4. Requires more joins (w/o any obvious benefits)
5. Hard to check for some dependencies
What if the “address” is actually the presC#’s address ?

No easy way to ensure that constraint (w/o a join).

Smaller schemas always good 777?
Decompose Starsin(movieTitle, movieYear, starName) into:

Starsin1(movieTitle, movieYear) StarsIn2(movieTitle, starName) 7?7

movieTitle movieYear movieTitle | starName

Star wars 1977 Star Wars Hamill

King Kong 1933 King Kong | Watts

King Kong 2005 King Kong Faye
Issues:

6. “joining” them back results in more tuples than what we started with
(King Kong, 1933, Watts) & (King Kong, 2005, Faye)
This is a “lossy” decomposition
We lost some constraints/information

The previous example was a “lossless” decomposition.

Desiderata

» No sets

» Correct and faithful to the original design
> Avoid lossy decompositions

» As little redundancy as possible
° To avoid potential anomalies

» No “inability to represent information”
> Nulls shouldn’t be required to store information

» Dependency preservation
> Should be possible to check for constraints

Not always possible.
We sometimes relax these for:
simpler schemas, and fewer joins during queries.

Some of Your Questions

» Atomicity
° |t depends primarily on how you use it

o A String is not really atomic (can be split into letters), but do you
want to query the letters directly? Or would your queries operate

on the strings?

» Which NF to use?

> Your choice — Normalization theory is a tool to help you understand
the tradeoffs

» Normal forms higher than 3NF?
> Actually we always use 4NF — we will discuss later

» Trivial FDs
o Just means that: RHS is contained in LHS — that’s all

Approach

1. We will encode and list all our knowledge about the schema
> Functional dependencies (FDs)
SSN = name (means: SSN “implies” length)
° If two tuples have the same “SSN”, they must have the same “name”
movietitle =2 length ???? Not true.
> But, (movietitle, movieYear) = length --- True.

2. We will define a set of rules that the schema must follow to be considered
good

o “Normal forms”: INF, 2NF, 3NF, BCNF, 4NF, ...

> A normal form specifies constraints on the schemas and FDs

3. If not in a “normal form”, we modify the schema

FDs: Example

Title Year Length StarName | Birthdate producerC# | Producer | Prdocuer | netWorth
-address | —-name

Plane
Crazy

Star
Wars

Star
Wars

Star
Wars
King
Kong

King
Kong

1927

1977

1977

1977

1933

2005

121

121

121

100

187

NULL

H. Ford

M. Hamill

C. Fisher

F. Wray

N. Watts

NULL

7/13/42

9/25/51

10/21/56

9/15/07

9/28/68

WD100 Mickey Walt
Rd Disney

GL102 Tatooine George
Lucas

GL102 Tatooine George
Lucas

GL102 Tatooine George
Lucas

MC100

PJ100 Middle Peter

Earth Jackson

100000

10A9

10A9

10A9

10A8

FDs: Example 2

State
Name

Alabama

Alabama

Alabama

Alabama

Alabama

Alabama

AL

AL

AL

AL

AL

AL

State

Population

4779736

4779736

4779736

4779736

4779736

4779736

County
Name

Autauga

Baldwin

Barbour

Autauga

Baldwin

Barbour

County

Population

54571

182265

27457

54571

182265

27457

Senator
Name

Jeff
Sessions

Jeff
Sessions

Jeff
Sessions

Richard
Shelby

Richard
Shelby

Richard
Shelby

Senator
Elected

1997

1997

1997

1987

1987

1987

Senator

Born

1946

1946

1946

1934

1934

1934

Senator
Affiliatio

FDs: Example 3

Course | Course | Dept Credits Semester | Year Building | Room Capacity | Time
ID Name Name No. Slot ID

Functional dependencies

course_id - title, dept_name, credits
building, room_number = capacity
course _id, section_id, semester, year - building, room_number, time_slot _id

Examples from Quiz

» advisor(s id,i id, s name, s dept name, i name,
i dept name)

» friends(useridl, userid2, namel, name2, birthdatel,
birthdate?2)

