CMSCA424: Database Design
sSQlL

February 19, 2020

Instructor: Amol Deshpande

amol@cs.umd.edu




Today’s Plan

» Project 1 discussion

» Entity-Relationship Model Details

» Anatomy of a Web Application
° Project 2

» Converting from E/R Model to Relational Schema




Today’s Plan

» Project 1 discussion

» Entity-Relationship Model Details

» Anatomy of a Web Application
° Project 2

» Converting from E/R Model to Relational Schema




Entity-Relationship Model

» Two key concepts
o Entities:

* An object that exists and is distinguishable from other objects
- Examples: Bob Smith, BofA, CMSC424

* Have attributes (people have names and addresses)

* Form entity sets with other entities of the same type that share the
same properties

- Set of all people, set of all classes

* Entity sets may overlap

* Customers and Employees




Entity-Relationship Model

» Two key concepts

o Relationships:

* Relate 2 or more entities
- E.g. Bob Smith has account at College Park Branch

* Form relationship sets with other relationships of the same type
that share the same properties

« Customers have accounts at Branches

* Can have attributes:

* has account at may have an attribute start-date

* Can involve more than 2 entities

- Employee works at Branch at Job




Entities and relationships

Two Entity Sets

76766

Crick

45565

Katz

10101

Srinivasan

98345

Kim

76543

Singh

22222

Einstein

instructor

98988

Tanaka

12345

Shankar

00128

Zhang

76543

Brown

76653

Aoi

23121

Chavez

44553

Peltier

student

Advisor Relationship, with and without attributes

76766

Crick

45565

Katz

98988

Tanaka

10101

Srinivasan

]

98345

Kim

76543

Singh

22222

Einstein

instructor

12345

Shankar

I

00128

Zhang

I

76543

Brown

I

76653

Aoi

23121

Chavez

| 76766 | Crick

| 45565 Katz

]
F

| 10101 | Srinivasan |\

98345| Kim

| 76543 Singh

| 22222 | Einstein

I A A A

I

44553

Peltier

student

instructor

6 June 2009

30 June 2007
31 May 2007

4 May 2006

12 June 2006

student




ER Diagram

date

instructor /\
ID adovisor

student

name \/

salary

Alternative representation,

ID
name
tot_cred

used in the book in the past O

cust-name

Both notations used | customer

commonly -
( cust-city )

( number )

account |

( balance )7



Rest of the class

» Details of the ER Model

> How to represent various types of constraints/semantic
information etc.

» Design issues

» A detailed example




Next: Relationship Cardinalities

» We may know:

* One customer can only open one account
OR
* One customer can open multiple accounts

» Representing this is important
» Why ?

o Better manipulation of data

* |f former, can store the account info in the customer table
> Can enforce such a constraint
* Application logic will have to do it; NOT GOOD

°© Remember: If not represented in conceptual model, the domain
knowledge may be lost




Mapping Cardinalities

» Express the number of entities to which another entity
can be associated via a relationship set

» Most useful in describing binary relationship sets




Mapping Cardinalities

» One-to-One | Instructor @

4 One-to-Many | Instructor

> Many-to-One | Instructor @

4 Many-to-Many | Instructor

Student

Student

Student

Student



Mapping Cardinalities

» Express the number of entities to which another entity
can be associated via a relationship set

» Most useful in describing binary relationship sets

» N-ary relationships ?
° More complicated
> Details in the book

project

instructor student

ID
name
salary

ID
name
tot_cred

proj_guide

Figure 7.13 E-R diagram with a ternary relationship.




Next: Types of Attributes

» Simple vs Composite
> Single value per attribute ?

» Single-valued vs Multi-valued
> E.g. Phone numbers are multi-valued

» Derived
> |f date-of-birth is present, age can be derived
> Can help in avoiding redundancy, enforcing constraints etc...




Types of Attributes

instructor

Primary key underlined ) D
name

first_name
middle _initial

last_name
/ address
street
Composite Ee— street_number

street_name
apt_number
city
state
zip
Multi-valued Wl { phone_number |
date_of _birth

. Derived “ age ()



Relationship Set Keys

» What attributes are needed to represent a relationship

completely and uniquely ?
> Union of primary keys of the entities involved, and relationship

attributes
instructor student
ID ID
narmie narmie
tot_cred

salary

Figure 7.8 E-R diagram with an attribute attached to a relationship set.

° {instructor.ID, date, student.ID} describes a relationship
completely




Relationship Set Keys

» Is {student_id, date, instructor _id} a candidate key ?
> No. Attribute date can be removed from this set without losing key-ness

° In fact, union of primary keys of associated entities is always a superkey

nstructor student

ID ID

name narmie
tot_cred

salary

Figure 7.8 E-R diagram with an attribute attached to a relationship set.




Relationship Set Keys

» Is {student_id, instructor_id} a candidate key ?

> Depends
date
I
instructor : student
ID ID
nare name
salary tot_cred

Figure 7.8 E-R diagram with an attribute attached to a relationship set.




Relationship Set Keys

» Is {student_id, instructor_id} a candidate key ?

> Depends
instructor student
ID ID
name narme
tot_cred

salary

Figure 7.8 E-R diagram with an attribute attached to a relationship set.

If one-to-one relationship, either {instructor _id} or {student id} sufficient
Since a given instructor can only have one advisee, an instructor entity can
only participate in one relationship

e Ditto student




Relationship Set Keys

» Is {student_id, instructor_id} a candidate key ?

> Depends
instructor student
ID ID
name narme
tot_cred

salary

Figure 7.8 E-R diagram with an attribute attached to a relationship set.

e If one-to-many relationship (as shown), {student id} is a candidate key

e Agiven instructor can have many advisees, but at most one advisor per
student allowed




Relationship Set Keys

» General rule for binary relationships
> one-to-one: primary key of either entity set
> one-to-many: primary key of the entity set on the many side

° many-to-many: union of primary keys of the associate entity
sets

» n-ary relationships
> More complicated rules




» What have we been doing
» Why ?

» Understanding this is important
o Rest are details !!
> That’s what books/manuals are for.




Recursive Relationships

» Sometimes a relationship associates an entity set to
itself

» Need “roles” to distinguish

course :
course_id

course id
e | preunsa <




Weak Entity Sets

» An entity set without enough attributes to have a
primary key
» E.g. Section Entity

» Still need to be able to distinguish between weak
entities
o Called “discriminator attributes”: dashed underline

course section
cgurse 1d sec_id
title semester
credits year




Participation Constraints

» Sometimes a relationship associates an entity set to
itself

» Need “roles” to distinguish

course section
cgurse 1d sec_id
title semester
credits year




Specialization/Generalization

Similar to object-oriented programming: allows inheritance etc.

person

ID
name
address

VAN

employee student

salary tot_credits

?

instructor secretary
rank hours_per_week




Aggregation
» No relationships allowed between relationships

» Suppose we want to record evaluations of a student
by a guide on a project

project

instructor /\ student

proj_guide

>

evaluation




Thoughts...

» Nothing about actual data

o How is it stored ?

» No talk about the query languages
> How do we access the data ?
» Semantic vs Syntactic Data Models
> Remember: E/R Model is used for conceptual modeling
° Many conceptual models have the same properties
» They are much more about representing the knowledge
than about database storage/querying




Thoughts...

» Basic design principles

° Faithful
* Must make sense
Satisfies the application requirements
Models the requisite domain knowledge
* If not modeled, lost afterwards
> Avoid redundancy

o

o

* Potential for inconsistencies
Go for simplicity

» Typically an iterative process that goes back and forth

o




Design Issues

» Entity sets vs attributes
> Depends on the semantics of the application
o Consider telephone

» Entity sets vs Relationsihp sets
o Consider loan

» N-ary vs binary relationships

> Possible to avoid n-ary relationships, but there are some cases
where it is advantageous to use them

» It is not an exact science !!




Recap

» Entity-relationship Model
° Intuitive diagram-based representation of domain knowledge,
data properties etc...
> Two key concepts:
* Entities

* Relationships
> We also looked at:
* Relationship cardinalities
* Keys
* Weak entity sets




Recap

» Entity-relationship Model

> No standardized model (as far as | know)
* You will see different types of symbols/constructs

> Easy to reason about/understand/construct

> Not as easy to implement

« Came after the relational model, so no real implementation was
ever done

* Mainly used in the design phase




Today’s Plan

» Project 1 discussion

» Entity-Relationship Model Details

» Anatomy of a Web Application
° Project 2

» Converting from E/R Model to Relational Schema




Application Architecture Evolution

» Three distinct eras of application architecture
Mainframe (1960’s and 70’s)
Personal computer era (1980’ s)

Web era (mid 1990" s onwards)
Web and Smartphone era (2010 onwards)

o

o

o

o

Terminals
] ..o ]

Propietary Network or
dial up phone lines

Mainframe Computer

)

Web Application Server 4@

Database
atabas Database

(a) Mainframe Era (b) Personal Computer Era (c) Web era




Web or Mobile Applications

» Web browsers and mobile applications have become de

facto standard user interface
> Wide cross-platform accessibility
> No need to download something

/Three Tier or Two Tier Architectures

|
( web server )

(application server)

[ database server j

|
web server and
application server

[ database server )
HTTP
data

browser

Y
browser data é@

server

server



« Flask, Django, Tomcat, Node.js, and

others

Accept requests from the client and

pass to the application server

« Pass application server response
back to the client

e Support HTTP and HTTPS

connections

What runs where?

|
[ web server

|
(application server |¢ammmmm—m+ Encapsulates business logic
| * Needs to support different
( database server ) user flows

-/

HTTP
m data * Needs to handle all of the
rendering and visualization
, server * Ruby-on-rails, Django, Flask,
Angular, React, PHP, and
1.  Web Browser (Firefox, Chrome, many others
Safari, Edge)
2. HTML to render webpages
3. Javascript for “client-side scripting”
(running code in your browser » PostgreSQL, Oracle, SQL Server,
without contacting the server) Amazon RDS (Relational
4. Flash (not supported much — too Databases)
much security risk) MongoDB (Document/JSON
5. Java “applets” — less common databases)
today « SQLite --- not typically for production

environments
 Pretty much any database can be
used...




Application Server

» Fair amount of complexity in here

» Need to deal with “user flows”
> Different types of actions user can take
o Typically multi-step flows across screens
> What happens when a user clicks this vs that

» Need to interface with the database
> To look up the information needed to show to a user
> To save updates made by the user

» Need to deal with rendering of the information

° Generating the HTML to show the information to the user
> Handling the “forms” for when a user makes changes




Django Architecture

odels.p
De e e difre pes of e a
e 0 O O 0
”Urls.py”: 0 D or exp
- Map incoming URLs to Views W Django 0 o e g the RDB
Django App \
Model
peauest, (770)
—>
Response
P N = R o DB server
Browser
Apache web Templates
server

views.py’:
- Fetch data from DB through models
- Do computations, create new objects, etc.

Send data to “template”

templates directory:

Create dynamic HTML using the data sent
by “view.py”

A mix of HTML and embedded Django
code

Figure from: https://www.researchgate.net/figure/Specific-
Django-architecture_fig1 332023947



Project 2: “urls.py”

from django.conf.urls import url
from . import views

urlpatterns = [
url(r'~$', views.mainindex, name='mainindex'),

url(r'~user/(?P<user_id>[0-9]1+)/$', views.userindex, name='userindex'),

url(r'~event/(?P<event_id>[0-9]+)/$', views.eventindex, name='eventindex'),

url(r'~calendar/(?P<calendar_id>[0-9]+)/$', views.calendarindex, name='calendarindex'),

url(r'~user/(?P<user_id>[0-9]+)/createevent$', views.createevent, name='createevent'),

url(r'~user/(?P<user_id>[0-9]+)/submitcreateevent/$', views.submitcreateevent, name='submitcreateever

url(r'”user/(?P<user_id>[0-9]+)/createdevent/(?P<event_id>[0-9]1+)/$', views.createdevent, name='creat

url(r'~waiting/user/(?P<user_id>[0-9]+)/calendar/(?P<calendar_id>[0-9]+)/$', views.waiting, name='wai

url(r'~summary$', views.summary, name='summary'),




Project 2: “views.py”

def eventindex(request, event_id):
event = Event.objects.get(pk=event_id)

statuses = [(c.title, BelongsTo.Status(BelongsTo.objects.get(event=event, calendar=c).status)) for c in event.calendars
context = {'event': event, 'statuses': statuses}
return render(request, 'mycalendar/eventindex.html', context)

- Get the event object from the database
- Get all the “status” associated with it

- Create the “context” object

- Pass it to “eventindex” template




I”

Project 2: “eventindex.htm

Django command - pulls the title
from the “event” object passed by
views.py

{% if event %}
<h3> Event Information </h3>
<b> Event Title: </b> {{ event.title }} <br>
<b> Start Time: </b> {{ event.start_time }} <br>
<b> End Time: </b> {{ event.end_time }} <br>
<h4> Invited Calendars: </h4>
<table style="border:2px solid black; padding: 1@px; border-collapse: collapse">

<tr> <th style="border:2px solid black"> Calendar Name </th> <th style="border:2px solid black"> Status </th> </tr>
{% for x, y in statuses %}

<tr> <td style="borde solid black"> {{ x }} </td> <td style="border:2px solid black"> {{ y.label }}</td> </tr>
{% endfor %}
</table>

{% endif %}

You can do for loops and
conditionals, but not arbitrary
python (that’s for “views.py”




Project 2: “models.py”

class Event(models.Model):
title = models.CharField(max_length=50)
start_time = models.DateTimeField()
end_time = models.DateTimeField()
calendars = models.ManyToManyField(Calendar, through='BelongsTo')
created_by = models.ForeignKey(User, on_delete=models.CASCADE)
def __str__ (self):
return self.title

Maps to a table in the backend (SQLite3) Database

sqlite> .schema mycalendar_event

CREATE TABLE IF NOT EXISTS "mycalendar_event"
( "id" integer NOT NULL PRIMARY KEY AUTOINCREMENT,

"start_time" datetime NOT NULL,

"end_time" datetime NOT NULL,

"created_by_id" integer NOT NULL REFERENCES "mycalendar_user" ("id")
DEFERRABLE INITIALLY DEFERRED,

"title" varchar(50) NOT NULL);




