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Today’s Plan

» Project 1 discussion

» Entity-Relationship Model Details

» Anatomy of a Web Application
° Project 2

» Converting from E/R Model to Relational Schema
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Entity-Relationship Model

» Two key concepts
o Entities:

* An object that exists and is distinguishable from other objects
- Examples: Bob Smith, BofA, CMSC424

* Have attributes (people have names and addresses)

* Form entity sets with other entities of the same type that share the
same properties

- Set of all people, set of all classes

* Entity sets may overlap

* Customers and Employees




Entity-Relationship Model

» Two key concepts

o Relationships:

* Relate 2 or more entities
- E.g. Bob Smith has account at College Park Branch

* Form relationship sets with other relationships of the same type
that share the same properties

« Customers have accounts at Branches

* Can have attributes:

* has account at may have an attribute start-date

* Can involve more than 2 entities

- Employee works at Branch at Job




Entities and relationships
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ER Diagram

date
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Rest of the class

» Details of the ER Model

> How to represent various types of constraints/semantic
information etc.

» Design issues

» A detailed example




Next: Relationship Cardinalities

» We may know:

* One customer can only open one account
OR
* One customer can open multiple accounts

» Representing this is important
» Why ?

o Better manipulation of data

* |f former, can store the account info in the customer table
> Can enforce such a constraint
* Application logic will have to do it; NOT GOOD

°© Remember: If not represented in conceptual model, the domain
knowledge may be lost




Mapping Cardinalities

» Express the number of entities to which another entity
can be associated via a relationship set

» Most useful in describing binary relationship sets




Mapping Cardinalities

» One-to-One | Instructor @

4 One-to-Many | Instructor

> Many-to-One | Instructor @

4 Many-to-Many | Instructor

Student

Student

Student

Student



Mapping Cardinalities

» Express the number of entities to which another entity
can be associated via a relationship set

» Most useful in describing binary relationship sets

» N-ary relationships ?
° More complicated
> Details in the book

project

instructor student

ID
name
salary

ID
name
tot_cred

proj_guide

Figure 7.13 E-R diagram with a ternary relationship.




Next: Types of Attributes

» Simple vs Composite
> Single value per attribute ?

» Single-valued vs Multi-valued
> E.g. Phone numbers are multi-valued

» Derived
> |f date-of-birth is present, age can be derived
> Can help in avoiding redundancy, enforcing constraints etc...




Types of Attributes
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name

first_name
middle _initial

last_name
/ address
street
Composite Ee— street_number

street_name
apt_number
city
state
zip
Multi-valued Wl { phone_number |
date_of _birth

. Derived “ age ()



Relationship Set Keys

» What attributes are needed to represent a relationship

completely and uniquely ?
> Union of primary keys of the entities involved, and relationship

attributes
instructor student
ID ID
narmie narmie
tot_cred

salary

Figure 7.8 E-R diagram with an attribute attached to a relationship set.

° {instructor.ID, date, student.ID} describes a relationship
completely




Relationship Set Keys

» Is {student_id, date, instructor _id} a candidate key ?
> No. Attribute date can be removed from this set without losing key-ness

° In fact, union of primary keys of associated entities is always a superkey

nstructor student

ID ID

name narmie
tot_cred

salary

Figure 7.8 E-R diagram with an attribute attached to a relationship set.




Relationship Set Keys

» Is {student_id, instructor_id} a candidate key ?

> Depends
date
I
instructor : student
ID ID
nare name
salary tot_cred

Figure 7.8 E-R diagram with an attribute attached to a relationship set.




Relationship Set Keys

» Is {student_id, instructor_id} a candidate key ?

> Depends
instructor student
ID ID
name narme
tot_cred

salary

Figure 7.8 E-R diagram with an attribute attached to a relationship set.

If one-to-one relationship, either {instructor _id} or {student id} sufficient
Since a given instructor can only have one advisee, an instructor entity can
only participate in one relationship

e Ditto student




Relationship Set Keys

» Is {student_id, instructor_id} a candidate key ?

> Depends
instructor student
ID ID
name narme
tot_cred

salary

Figure 7.8 E-R diagram with an attribute attached to a relationship set.

e If one-to-many relationship (as shown), {student id} is a candidate key

e Agiven instructor can have many advisees, but at most one advisor per
student allowed




Relationship Set Keys

» General rule for binary relationships
> one-to-one: primary key of either entity set
> one-to-many: primary key of the entity set on the many side

° many-to-many: union of primary keys of the associate entity
sets

» n-ary relationships
> More complicated rules




» What have we been doing
» Why ?

» Understanding this is important
o Rest are details !!
> That’s what books/manuals are for.




Recursive Relationships

» Sometimes a relationship associates an entity set to
itself

» Need “roles” to distinguish

course :
course_id

course id
e | preunsa <




Weak Entity Sets

» An entity set without enough attributes to have a
primary key
» E.g. Section Entity

» Still need to be able to distinguish between weak
entities
o Called “discriminator attributes”: dashed underline

course section
cgurse 1d sec_id
title semester
credits year




Participation Constraints

» Sometimes a relationship associates an entity set to
itself

» Need “roles” to distinguish

course section
cgurse 1d sec_id
title semester
credits year




Specialization/Generalization

Similar to object-oriented programming: allows inheritance etc.

person

ID
name
address

VAN

employee student

salary tot_credits

?

instructor secretary
rank hours_per_week




Aggregation
» No relationships allowed between relationships

» Suppose we want to record evaluations of a student
by a guide on a project

project

instructor /\ student

proj_guide

>

evaluation




Thoughts...

» Nothing about actual data

o How is it stored ?

» No talk about the query languages
> How do we access the data ?
» Semantic vs Syntactic Data Models
> Remember: E/R Model is used for conceptual modeling
° Many conceptual models have the same properties
» They are much more about representing the knowledge
than about database storage/querying




Thoughts...

» Basic design principles

° Faithful
* Must make sense
Satisfies the application requirements
Models the requisite domain knowledge
* If not modeled, lost afterwards
> Avoid redundancy

o

o

* Potential for inconsistencies
Go for simplicity

» Typically an iterative process that goes back and forth

o




Design Issues

» Entity sets vs attributes
> Depends on the semantics of the application
o Consider telephone

» Entity sets vs Relationsihp sets
o Consider loan

» N-ary vs binary relationships

> Possible to avoid n-ary relationships, but there are some cases
where it is advantageous to use them

» It is not an exact science !!




Recap

» Entity-relationship Model
° Intuitive diagram-based representation of domain knowledge,
data properties etc...
> Two key concepts:
* Entities

* Relationships
> We also looked at:
* Relationship cardinalities
* Keys
* Weak entity sets




Recap

» Entity-relationship Model

> No standardized model (as far as | know)
* You will see different types of symbols/constructs

> Easy to reason about/understand/construct

> Not as easy to implement

« Came after the relational model, so no real implementation was
ever done

* Mainly used in the design phase
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Application Architecture Evolution

» Three distinct eras of application architecture
Mainframe (1960’s and 70’s)
Personal computer era (1980’ s)

Web era (mid 1990" s onwards)
Web and Smartphone era (2010 onwards)

o

o

o

o

Terminals
] ..o ]

Propietary Network or
dial up phone lines

Mainframe Computer

)

Web Application Server 4@

Database
atabas Database

(a) Mainframe Era (b) Personal Computer Era (c) Web era




Web or Mobile Applications

» Web browsers and mobile applications have become de

facto standard user interface
> Wide cross-platform accessibility
> No need to download something

/Three Tier or Two Tier Architectures

|
( web server )

(application server)

[ database server j

|
web server and
application server

[ database server )
HTTP
data

browser

Y
browser data é@

server

server



« Flask, Django, Tomcat, Node.js, and

others

Accept requests from the client and

pass to the application server

« Pass application server response
back to the client

e Support HTTP and HTTPS

connections

What runs where?

|
[ web server

|
(application server |¢ammmmm—m+ Encapsulates business logic
| * Needs to support different
( database server ) user flows

-/

HTTP
m data * Needs to handle all of the
rendering and visualization
, server * Ruby-on-rails, Django, Flask,
Angular, React, PHP, and
1.  Web Browser (Firefox, Chrome, many others
Safari, Edge)
2. HTML to render webpages
3. Javascript for “client-side scripting”
(running code in your browser » PostgreSQL, Oracle, SQL Server,
without contacting the server) Amazon RDS (Relational
4. Flash (not supported much — too Databases)
much security risk) MongoDB (Document/JSON
5. Java “applets” — less common databases)
today « SQLite --- not typically for production

environments
 Pretty much any database can be
used...




Application Server

» Fair amount of complexity in here

» Need to deal with “user flows”
> Different types of actions user can take
o Typically multi-step flows across screens
> What happens when a user clicks this vs that

» Need to interface with the database
> To look up the information needed to show to a user
> To save updates made by the user

» Need to deal with rendering of the information

° Generating the HTML to show the information to the user
> Handling the “forms” for when a user makes changes




Django Architecture

odels.p
De e e difre pes of e a
e 0 O O 0
”Urls.py”: 0 D or exp
- Map incoming URLs to Views W Django 0 o e g the RDB
Django App \
Model
peauest, (770)
—>
Response
P N = R o DB server
Browser
Apache web Templates
server

views.py’:
- Fetch data from DB through models
- Do computations, create new objects, etc.

Send data to “template”

templates directory:

Create dynamic HTML using the data sent
by “view.py”

A mix of HTML and embedded Django
code

Figure from: https://www.researchgate.net/figure/Specific-
Django-architecture_fig1 332023947



Project 2: “urls.py”

from django.conf.urls import url
from . import views

urlpatterns = [
url(r'~$', views.mainindex, name='mainindex'),

url(r'~user/(?P<user_id>[0-9]1+)/$', views.userindex, name='userindex'),

url(r'~event/(?P<event_id>[0-9]+)/$', views.eventindex, name='eventindex'),

url(r'~calendar/(?P<calendar_id>[0-9]+)/$', views.calendarindex, name='calendarindex'),

url(r'~user/(?P<user_id>[0-9]+)/createevent$', views.createevent, name='createevent'),

url(r'~user/(?P<user_id>[0-9]+)/submitcreateevent/$', views.submitcreateevent, name='submitcreateever

url(r'”user/(?P<user_id>[0-9]+)/createdevent/(?P<event_id>[0-9]1+)/$', views.createdevent, name='creat

url(r'~waiting/user/(?P<user_id>[0-9]+)/calendar/(?P<calendar_id>[0-9]+)/$', views.waiting, name='wai

url(r'~summary$', views.summary, name='summary'),




Project 2: “views.py”

def eventindex(request, event_id):
event = Event.objects.get(pk=event_id)

statuses = [(c.title, BelongsTo.Status(BelongsTo.objects.get(event=event, calendar=c).status)) for c in event.calendars
context = {'event': event, 'statuses': statuses}
return render(request, 'mycalendar/eventindex.html', context)

- Get the event object from the database
- Get all the “status” associated with it

- Create the “context” object

- Pass it to “eventindex” template




I”

Project 2: “eventindex.htm

Django command - pulls the title
from the “event” object passed by
views.py

{% if event %}
<h3> Event Information </h3>
<b> Event Title: </b> {{ event.title }} <br>
<b> Start Time: </b> {{ event.start_time }} <br>
<b> End Time: </b> {{ event.end_time }} <br>
<h4> Invited Calendars: </h4>
<table style="border:2px solid black; padding: 1@px; border-collapse: collapse">

<tr> <th style="border:2px solid black"> Calendar Name </th> <th style="border:2px solid black"> Status </th> </tr>
{% for x, y in statuses %}

<tr> <td style="borde solid black"> {{ x }} </td> <td style="border:2px solid black"> {{ y.label }}</td> </tr>
{% endfor %}
</table>

{% endif %}

You can do for loops and
conditionals, but not arbitrary
python (that’s for “views.py”




Project 2: “models.py”

class Event(models.Model):
title = models.CharField(max_length=50)
start_time = models.DateTimeField()
end_time = models.DateTimeField()
calendars = models.ManyToManyField(Calendar, through='BelongsTo')
created_by = models.ForeignKey(User, on_delete=models.CASCADE)
def __str__ (self):
return self.title

Maps to a table in the backend (SQLite3) Database

sqlite> .schema mycalendar_event

CREATE TABLE IF NOT EXISTS "mycalendar_event"
( "id" integer NOT NULL PRIMARY KEY AUTOINCREMENT,

"start_time" datetime NOT NULL,

"end_time" datetime NOT NULL,

"created_by_id" integer NOT NULL REFERENCES "mycalendar_user" ("id")
DEFERRABLE INITIALLY DEFERRED,

"title" varchar(50) NOT NULL);




