
Instructor: Amol Deshpande
amol@cs.umd.edu

} SQL (Chapter 3, 4)
◦ Views (4.2)
◦ Transactions (4.3)
◦ Integrity Constraints (4.4)
◦ Triggers (5.3)
◦ Functions and Procedures (5.2), Recursive Queries (5.4),

Authorization (4.6), Ranking (5.5)

} Some Complex SQL Examples

} Provide a mechanism to hide certain data from the view of certain
users. To create a view we use the command:

} Can be used in any place a normal table can be used
} For users, there is no distinction in terms of using it

create view v as <query expression>

where:
<query expression> is any legal expression
The view name is represented by v

} A view consisting of branches and their customers

Find all customers of the Perryridge branch

create view all-customers as
(select branch-name, customer-name
from depositor, account
where depositor.account-number = account.account-number)
union

(select branch-name, customer-name
from borrower, loan
where borrower.loan-number = loan.loan-number)

select customer-name
from all-customers
where branch-name = ‘Perryridge’

} Is it different from DBMS’s side ?
◦ Yes; a view may or may not be materialized
◦ Pros/Cons ?

} Updates into views have to be treated differently
◦ In most cases, disallowed.

It’s a new table.
You can do what you want.

In any select query.
Only some update queries.

Can be used

It’s a new table.
Stored on disk.

1. Evaluate the query and store
it on disk as if a table.
2. Don’t store. Substitute in
queries when referenced.

Maintained as

T is a separate table; there
is no reason why DBMS
should keep it updated. If
you want that, you must
define a trigger.

1. If stored on disk, the stored
table is automatically
updated to be accurate.

2. If we are just substituting,
there is no need to do
anything.

What if a tuple
inserted in A ?

Create table T
as (select *

from A, B
where …)

Create view V
as (select *

from A, B
where …)

Creating

} Views strictly supercede “create a table and define a trigger to keep it
updated”

} Two main reasons for using them:
◦ Security/authorization
◦ Ease of writing queries

� E.g. IndividualMedals table

� The way we are doing it, the IndividualMedals table is an instance of “creating
table”, and not “creating view”

� Creating a view might have been better.

} Perhaps the only reason to create a table is to force the DBMS to
choose the option of “materializing”
◦ That has efficiency advantages in some cases
◦ Especially if the underlying tables don’t change

} Create a view of all loan data in loan relation, hiding the amount attribute
create view branch-loan as

select branch-name, loan-number
from loan

} Add a new tuple to branch-loan
insert into branch-loan

values (‘Perryridge’, ‘L-307’)
} This insertion must be represented by the insertion of the tuple

(‘L-307’, ‘Perryridge’, null)
into the loan relation

} Updates on more complex views are difficult or impossible to translate, and
hence are disallowed.

} Many SQL implementations allow updates only on simple views (without
aggregates) defined on a single relation

} SQL (Chapter 3, 4)
◦ Views (4.2)
◦ Transactions (4.3)
◦ Integrity Constraints (4.4)
◦ Triggers (5.3)
◦ Functions and Procedures (5.2), Recursive Queries (5.4),

Authorization (4.6), Ranking (5.5)

} Some Complex SQL Examples

} A transaction is a sequence of queries and update statements executed as a
single unit
◦ Transactions are started implicitly and terminated by one of

� commit work: makes all updates of the transaction permanent in the database
� rollback work: undoes all updates performed by the transaction.

} Motivating example
◦ Transfer of money from one account to another involves two steps:

� deduct from one account and credit to another
◦ If one steps succeeds and the other fails, database is in an inconsistent state
◦ Therefore, either both steps should succeed or neither should

} If any step of a transaction fails, all work done by the transaction can be
undone by rollback work.

} Rollback of incomplete transactions is done automatically, in case of system
failures

} In most database systems, each SQL statement that
executes successfully is automatically committed.
◦ Each transaction would then consist of only a single statement
◦ Automatic commit can usually be turned off, allowing multi-

statement transactions, but how to do so depends on the
database system
◦ Another option in SQL:1999: enclose statements within

begin atomic
…

end

} SQL (Chapter 3, 4)
◦ Views (4.2)
◦ Transactions (4.3)
◦ Integrity Constraints (4.4)
◦ Triggers (5.3)
◦ Functions and Procedures (5.2), Recursive Queries (5.4),

Authorization (4.6), Ranking (5.5)

} Some Complex SQL Examples

} A trigger is a statement that is executed automatically
by the system as a side effect of a modification to the
database.

} Suppose that instead of allowing negative account
balances, the bank deals with overdrafts by
◦ 1. setting the account balance to zero
◦ 2. creating a loan in the amount of the overdraft
◦ 3. giving this loan a loan number identical to the account

number of the overdrawn account

create trigger overdraft-trigger after update on account
referencing new row as nrow
for each row
when nrow.balance < 0
begin atomic

actions to be taken
end

create trigger overdraft-trigger after update on account
referencing new row as nrow
for each row
when nrow.balance < 0
begin atomic

insert into borrower
(select customer-name, account-number
from depositor
where nrow.account-number = depositor.account-number);

insert into loan values
(nrow.account-number, nrow.branch-name, nrow.balance);

update account set balance = 0
where account.account-number = nrow.account-number

end

} External World Actions
◦ How does the DB order something if the inventory is low ?

} Syntax
◦ Every system has its own syntax

} Careful with triggers
◦ Cascading triggers, Infinite Sequences…

} More Info/Examples:
◦ http://www.adp-gmbh.ch/ora/sql/create_trigger.html
◦ Google: “create trigger” oracle download-uk

http://www.adp-gmbh.ch/ora/sql/create_trigger.html

} SQL (Chapter 3, 4)
◦ Views (4.2)
◦ Transactions (4.3)
◦ Integrity Constraints (4.4)
◦ Triggers (5.3)
◦ Functions and Procedures (5.2), Recursive Queries (5.4),

Authorization (4.6), Ranking (5.5)

} Some Complex SQL Examples

} Integrity constraints

} ??

} Prevent semantic inconsistencies

} Predicates on the database
} Must always be true (checked whenever db gets updated)

} There are the following 4 types of IC’s:
◦ Key constraints (1 table)

e.g., 2 accts can’t share the same acct_no
◦ Attribute constraints (1 table)

e.g., accts must have nonnegative balance
◦ Referential Integrity constraints (2 tables)

E.g. bnames associated w/ loans must be names of real branches
◦ Global Constraints (n tables)

E.g., all loans must be carried by at least 1 customer with a savings
acct

Idea: specifies that a relation is a set, not a bag
SQL examples:

1. Primary Key:
CREATE TABLE branch(

bname CHAR(15) PRIMARY KEY,
bcity CHAR(20),
assets INT);

or
CREATE TABLE depositor(

cname CHAR(15),
acct_no CHAR(5),
PRIMARY KEY(cname, acct_no));

2. Candidate Keys:
CREATE TABLE customer (

ssn CHAR(9) PRIMARY KEY,
cname CHAR(15),
address CHAR(30),
city CHAR(10),
UNIQUE (cname, address, city));

Effect of SQL Key declarations
PRIMARY (A1, A2, .., An) or
UNIQUE (A1, A2, ..., An)

Insertions: check if any tuple has same values for A1, A2, .., An as any
inserted tuple. If found, reject insertion

Updates to any of A1, A2, ..., An: treat as insertion of entire tuple

Primary vs Unique (candidate)
1. 1 primary key per table, several unique keys allowed.
2. Only primary key can be referenced by “foreign key” (ref integrity)
3. DBMS may treat primary key differently

(e.g.: create an index on PK)

How would you implement something like this ?

} Idea:
◦ Attach constraints to values of attributes
◦ Enhances types system (e.g.: >= 0 rather than integer)

} In SQL:
1. NOT NULL

e.g.: CREATE TABLE branch(
bname CHAR(15) NOT NULL,
....
)

Note: declaring bname as primary key also prevents null values

2. CHECK
e.g.: CREATE TABLE depositor(

....
balance int NOT NULL,
CHECK(balance >= 0),
....
)

affect insertions, update in affected columns

Domains: can associate constraints with DOMAINS rather than
attributes

e.g: instead of: CREATE TABLE depositor(
....
balance INT NOT NULL,
CHECK (balance >= 0)
)

One can write:
CREATE DOMAIN bank-balance INT (

CONSTRAINT not-overdrawn CHECK (value >= 0),
CONSTRAINT not-null-value CHECK(value NOT NULL));

CREATE TABLE depositor (
.....
balance bank-balance,
)

Advantages?

Advantage of associating constraints with domains:

1. can avoid repeating specification of same constraint
for multiple columns

2. can name constraints
e.g.: CREATE DOMAIN bank-balance INT (

CONSTRAINT not-overdrawn
CHECK (value >= 0),

CONSTRAINT not-null-value
CHECK(value NOT NULL));

allows one to:
1. add or remove:

ALTER DOMAIN bank-balance
ADD CONSTRAINT capped

CHECK(value <= 10000)
2. report better errors (know which constraint violated)

Idea: prevent “dangling tuples” (e.g.: a loan with a bname,
Kenmore, when no Kenmore tuple in branch)

Referencing
Relation
(e.g. loan)

Referenced
Relation
(e.g. branch)

“foreign key”
bname primary key

bname

Ref Integrity:
ensure that:

foreign key value à primary key value

(note: don’t need to ensure ß, i.e., not all branches have to have loans)

Referencing
Relation
(e.g. loan)

Referenced
Relation
(e.g. branch)

bname bname
x

x x

In SQL:
CREATE TABLE branch(

bname CHAR(15) PRIMARY KEY
....)

CREATE TABLE loan (
.........
FOREIGN KEY bname REFERENCES branch);

Affects:
1) Insertions, updates of referencing relation
2) Deletions, updates of referenced relation

c c
x

x x

A B
what happens when
we try to delete
this tuple?

ti

tj

Ans: 3 possibilities
1) reject deletion/ update

2) set ti [c], tj[c] = NULL

3) propagate deletion/update
DELETE: delete ti, tj
UPDATE: set ti[c], tj[c] to updated values

c c
x

x x

A B

what happens when
we try to delete
this tuple?

ti

tj

CREATE TABLE A (.....
FOREIGN KEY c REFERENCES B action
..........)

Action: 1) left blank (deletion/update rejected)

2) ON DELETE SET NULL/ ON UPDATE SET NULL
sets ti[c] = NULL, tj[c] = NULL

3) ON DELETE CASCADE
deletes ti, tj

ON UPDATE CASCADE
sets ti[c], tj[c] to new key values

Idea: two kinds
1) single relation (constraints spans multiple columns)
◦ E.g.: CHECK (total = svngs + check) declared in the CREATE TABLE

2) multiple relations: CREATE ASSERTION

SQL examples:
1) single relation: All Bkln branches must have assets > 5M

CREATE TABLE branch (
..........
bcity CHAR(15),
assets INT,
CHECK (NOT(bcity = ‘Bkln’) OR assets > 5M))

Affects:
insertions into branch
updates of bcity or assets in branch

SQL example:
2) Multiple relations: every loan has a borrower with a savings account

CHECK (NOT EXISTS (
SELECT *
FROM loan AS L
WHERE NOT EXISTS(

SELECT *
FROM borrower B, depositor D, account A
WHERE B.cname = D.cname AND

D.acct_no = A.acct_no AND
L.lno = B.lno)))

Problem: Where to put this constraint? At depositor? Loan?

Ans: None of the above:
CREATE ASSERTION loan-constraint

CHECK(.....)

Checked with EVERY DB update!
very expensive.....

Constraint Type Where declared Affects... Expense

Key Constraints CREATE TABLE
(PRIMARY KEY, UNIQUE)

Insertions, Updates Moderate

Attribute Constraints CREATE TABLE
CREATE DOMAIN
(Not NULL, CHECK)

Insertions, Updates Cheap

Referential Integrity Table Tag
(FOREIGN KEY
REFERENCES)

1.Insertions into
referencing rel’n
2. Updates of
referencing rel’n of
relevant attrs
3. Deletions from
referenced rel’n
4. Update of
referenced rel’n

1,2: like key constraints.
Another reason to
index/sort on the primary
keys
3,4: depends on
a. update/delete policy

chosen
b. existence of indexes
on foreign key

Global Constraints Table Tag (CHECK)
or

outside table
(CREATE ASSERTION)

1. For single rel’n
constraint, with
insertion, deletion of
relevant attrs
2. For assesrtions w/
every db modification

1. cheap

2. very expensive

Constraint Type Where declared Affects... Expense

Key Constraints CREATE TABLE
(PRIMARY KEY, UNIQUE)

Insertions, Updates Moderate

Attribute Constraints CREATE TABLE
CREATE DOMAIN
(Not NULL, CHECK)

Insertions, Updates Cheap

Referential Integrity Table Tag
(FOREIGN KEY
REFERENCES)

1.Insertions into
referencing rel’n
2. Updates of
referencing rel’n of
relevant attrs
3. Deletions from
referenced rel’n
4. Update of
referenced rel’n

1,2: like key constraints.
Another reason to
index/sort on the primary
keys
3,4: depends on
a. update/delete policy

chosen
b. existence of indexes
on foreign key

Global Constraints Table Tag (CHECK)
or

outside table
(CREATE ASSERTION)

1. For single rel’n
constraint, with
insertion, deletion of
relevant attrs
2. For assesrtions w/
every db modification

1. cheap

2. very expensive

} SQL (Chapter 3, 4)
◦ Views (4.2)
◦ Transactions (4.3)
◦ Integrity Constraints (4.4)
◦ Triggers (5.3)
◦ Functions and Procedures (5.2), Recursive Queries (5.4),

Authorization (4.6), Ranking (5.5)

} Some Complex SQL Examples

} Function to count number of instructors in a department
create function dept_count (dept_name varchar(20))

returns integer
begin
declare d_count integer;

select count (*) into d_count
from instructor
where instructor.dept_name = dept_name

return d_count;
end

} Can use in queries
select dept_name, budget
from department
where dept_count (dept_name) > 12

} Same function as a procedure
create procedure dept_count_proc (in dept_name varchar(20),

out d_count integer)
begin

select count(*) into d_count
from instructor
where instructor.dept_name = dept_count_proc.dept_name

end

} But use differently:
declare d_count integer;
call dept_count_proc(‘Physics’, d_count);

} HOWEVER: Syntax can be wildly different across different systems
◦ Was put in place by DBMS systems before standardization
◦ Hard to change once customers are already using it

} Example: find which courses are a prerequisite, whether directly or
indirectly, for a specific course

with recursive rec_prereq(course_id, prereq_id) as (
select course_id, prereq_id
from prereq

union
select rec_prereq.course_id, prereq.prereq_id,
from rec_rereq, prereq
where rec_prereq.prereq_id = prereq.course_id

)
select ∗
from rec_prereq;

Makes SQL Turing Complete (i.e., you can write any program in SQL)

But: Just because you can, doesn’t mean you should

} Ranking is done in conjunction with an order by specification.

} Consider: student_grades(ID, GPA)

} Find the rank of each student.
select ID, rank() over (order by GPA desc) as s_rank
from student_grades
order by s_rank

} Equivalent to:
select ID, (1 + (select count(*)

from student_grades B
where B.GPA > A.GPA)) as s_rank

from student_grades A
order by s_rank;

} GRANT and REVOKE keywords
◦ grant select on instructor to U1, U2, U3

◦ revoke select on branch from U1, U2, U3

} Can provide select, insert, update, delete priviledges

} Can also create “Roles” and do security at the level of roles

} Some databases support doing this at the level of individual “tuples”
◦ MS SQL Server: https://docs.microsoft.com/en-us/sql/relational-databases/security/row-level-

security?view=sql-server-ver15
◦ PostgreSQL: https://www.postgresql.org/docs/10/ddl-rowsecurity.html

https://docs.microsoft.com/en-us/sql/relational-databases/security/row-level-security%3Fview=sql-server-ver15

} SQL (Chapter 3, 4)
◦ Views (4.2)
◦ Transactions (4.3)
◦ Integrity Constraints (4.4)
◦ Triggers (5.3)
◦ Functions and Procedures (5.2), Recursive Queries (5.4),

Authorization (4.6), Ranking (5.5)

} Some Complex SQL Examples

} https://blog.jooq.org/2016/04/25/10-sql-tricks-that-
you-didnt-think-were-possible/
◦ Long slide-deck linked off of this page
◦ Complex SQL queries showing how to do things like: do

Mandelbrot, solve subset sum problem etc.

} The MADlib Analytics Library or MAD Skills, the SQL;
https://arxiv.org/abs/1208.4165

} https://www.red-gate.com/simple-talk/blogs/statistics-
sql-simple-linear-regressions/

https://blog.jooq.org/2016/04/25/10-sql-tricks-that-you-didnt-think-were-possible/
https://arxiv.org/abs/1208.4165

https://blog.jooq.org/2016/04/25/10-sql-tricks-that-you-didnt-
think-were-possible/

https://blog.jooq.org/2016/04/25/10-sql-tricks-that-you-didnt-think-were-possible/

https://blog.jooq.org/2016/04/25/10-sql-tricks-that-you-didnt-
think-were-possible/

Makes SQL
Turing-Complete

https://blog.jooq.org/2016/04/25/10-sql-tricks-that-you-didnt-think-were-possible/

https://www.postgresql.org/docs/9.3/tutorial-window.html

https://www.red-gate.com/simple-talk/blogs/statistics-sql-simple-linear-regressions/

} Recursive algorithm to assign weights to
the nodes of a graph (Web Link Graph)

} Weight for a node depends on the
weights of the nodes that point to it

} Typically done in iterations till
“convergence”

} Not obvious that you can do it in SQL,
but:
◦ Each iteration is just a LEFT OUTERJOIN
◦ Stopping condition is trickier

} Other ways to do it as well

https://devnambi.com/2013/pagerank.html

