
Instructor: Amol Deshpande
amol@cs.umd.edu

} Reading Homework 2

} SQL (Chapter 3)
◦ Null values (3.6)
◦ Aggregates (3.7)
◦ Views (4.2)
◦ Transactions (4.3)
◦ Integrity Constraints (4.4)
◦ Triggers (5.3)

The “dirty little secret” of SQL
(major headache for query optimization)

Can be a value of any attribute
e.g: branch =

What does this mean?
(unknown) We don’t know Waltham’s assets?
(inapplicable) Waltham has a special kind of account without
assets
(withheld) We are not allowed to know

bname bcity assets
Downtown Boston 9M

Perry Horseneck 1.7M

Mianus Horseneck .4M

Waltham Boston NULL

Arithmetic Operations with Null

n + NULL = NULL (similarly for all arithmetic ops: +, -, *, /, mod, …)

SELECT bname, assets * 2 as a2
FROM branch

e.g: branch =

=

bname bcity assets
Downtown Boston 9M

Perry Horseneck 1.7M

Mianus Horseneck .4M

Waltham Boston NULL

bname a2
Downtown 18M

Perry 3.4M

Mianus .8M

Waltham NULL

Boolean Operations with Null
n < NULL = UNKNOWN (similarly for all boolean ops: >, <=, >=, <>, =, …)

e.g: branch =

=SELECT *
FROM branch
WHERE assets = NULL

bname bcity assets
Downtown Boston 9M

Perry Horseneck 1.7M

Mianus Horseneck .4M

Waltham Boston NULL

bname bcity assets

Counter-intuitive: select * from movies
where length >= 120 or length <= 120

Counter-intuitive: NULL * 0 = NULL

Boolean Operations with Null
n < NULL = UNKNOWN (similarly for all boolean ops: >, <=, >=, <>, =, …)

e.g: branch =

=SELECT *
FROM branch
WHERE assets IS NULL

bname bcity assets
Downtown Boston 9M

Perry Horseneck 1.7M

Mianus Horseneck .4M

Waltham Boston NULL

bname bcity assets
Waltham Boston NULL

Boolean Operations with Unknown

Can write:
SELECT …

FROM …

WHERE booleanexp IS UNKNOWN

Intuition: substitute each of TRUE, FALSE for unknown. If
different answer results, results is unknown

n < NULL = UNKNOWN (similarly for all boolean ops: >, <=, >=, <>, =, …)

FALSE OR UNKNOWN = UNKNOWN

TRUE AND UNKNOWN = UNKNOWN

UNKNOWN OR UNKNOWN = UNKNOWN

UNKNOWN AND UNKNOWN = UNKNOWN

NOT (UNKNOWN) = UNKNOWN

UNKNOWN tuples are not included in final result

} Reading Homework 2

} SQL (Chapter 3)
◦ Null values (3.6)
◦ Aggregates (3.7)
◦ Views (4.2)
◦ Transactions (4.3)
◦ Integrity Constraints (4.4)
◦ Triggers (5.3)

Find the average salary of instructors
in the Computer Science
select avg(salary)
from instructor
where dept_name = ‘Comp. Sci’;

Other common aggregates:
max, min, sum, count, stdev, …

select count (distinct ID)
from teaches
where semester = ’Spring’ and year = 2010

Can specify aggregates in any query.

Find max salary over instructors teaching in S’10.
select max(salary)
from teaches natural join instructor
where semester = ’Spring’ and year = 2010;

Aggregate result can be used as a scalar.
Find instructors with max salary:
select *
from instructor
where salary = (select max(salary) from instructor);

Aggregate result can be used as a scalar.
Find instructors with max salary:
select *
from instructor
where salary = (select max(salary) from instructor);

Following doesn’t work:

select *
from instructor
where salary = max(salary);

select name, max(salary)
From instructor;

Split the tuples into groups, and computer the aggregate for each group
select dept_name, avg (salary)
from instructor
group by dept_name;

72 Chapter 3 Introduction to SQL

ID name dept name salary course id sec id semester year

10101 Srinivasan Comp. Sci. 65000 CS-101 1 Fall 2009
10101 Srinivasan Comp. Sci. 65000 CS-315 1 Spring 2010
10101 Srinivasan Comp. Sci. 65000 CS-347 1 Fall 2009
12121 Wu Finance 90000 FIN-201 1 Spring 2010
15151 Mozart Music 40000 MU-199 1 Spring 2010
22222 Einstein Physics 95000 PHY-101 1 Fall 2009
32343 El Said History 60000 HIS-351 1 Spring 2010
45565 Katz Comp. Sci. 75000 CS-101 1 Spring 2010
45565 Katz Comp. Sci. 75000 CS-319 1 Spring 2010
76766 Crick Biology 72000 BIO-101 1 Summer 2009
76766 Crick Biology 72000 BIO-301 1 Summer 2010
83821 Brandt Comp. Sci. 92000 CS-190 1 Spring 2009
83821 Brandt Comp. Sci. 92000 CS-190 2 Spring 2009
83821 Brandt Comp. Sci. 92000 CS-319 2 Spring 2010
98345 Kim Elec. Eng. 80000 EE-181 1 Spring 2009

Figure 3.8 The natural join of the instructor relation with the teaches relation.

The result relation, shown in Figure 3.8, has only 13 tuples, the ones that
give information about an instructor and a course that that instructor actually
teaches. Notice that we do not repeat those attributes that appear in the schemas
of both relations; rather they appear only once. Notice also the order in which the
attributes are listed: first the attributes common to the schemas of both relations,
second those attributes unique to the schema of the first relation, and finally, those
attributes unique to the schema of the second relation.

Consider the query “For all instructors in the university who have taught
some course, find their names and the course ID of all courses they taught”,
which we wrote earlier as:

select name, course id
from instructor, teaches
where instructor.ID= teaches.ID;

This query can be written more concisely using the natural-join operation in
SQL as:

select name, course id
from instructor natural join teaches;

Both of the above queries generate the same result.
As we saw earlier, the result of the natural join operation is a relation. Concep-

tually, expression “instructor natural join teaches” in the from clause is replaced

Output will have 3 tuples:

Summer, ….
Fall, ….
Spring, …

72 Chapter 3 Introduction to SQL

ID name dept name salary course id sec id semester year

10101 Srinivasan Comp. Sci. 65000 CS-101 1 Fall 2009
10101 Srinivasan Comp. Sci. 65000 CS-315 1 Spring 2010
10101 Srinivasan Comp. Sci. 65000 CS-347 1 Fall 2009
12121 Wu Finance 90000 FIN-201 1 Spring 2010
15151 Mozart Music 40000 MU-199 1 Spring 2010
22222 Einstein Physics 95000 PHY-101 1 Fall 2009
32343 El Said History 60000 HIS-351 1 Spring 2010
45565 Katz Comp. Sci. 75000 CS-101 1 Spring 2010
45565 Katz Comp. Sci. 75000 CS-319 1 Spring 2010
76766 Crick Biology 72000 BIO-101 1 Summer 2009
76766 Crick Biology 72000 BIO-301 1 Summer 2010
83821 Brandt Comp. Sci. 92000 CS-190 1 Spring 2009
83821 Brandt Comp. Sci. 92000 CS-190 2 Spring 2009
83821 Brandt Comp. Sci. 92000 CS-319 2 Spring 2010
98345 Kim Elec. Eng. 80000 EE-181 1 Spring 2009

Figure 3.8 The natural join of the instructor relation with the teaches relation.

The result relation, shown in Figure 3.8, has only 13 tuples, the ones that
give information about an instructor and a course that that instructor actually
teaches. Notice that we do not repeat those attributes that appear in the schemas
of both relations; rather they appear only once. Notice also the order in which the
attributes are listed: first the attributes common to the schemas of both relations,
second those attributes unique to the schema of the first relation, and finally, those
attributes unique to the schema of the second relation.

Consider the query “For all instructors in the university who have taught
some course, find their names and the course ID of all courses they taught”,
which we wrote earlier as:

select name, course id
from instructor, teaches
where instructor.ID= teaches.ID;

This query can be written more concisely using the natural-join operation in
SQL as:

select name, course id
from instructor natural join teaches;

Both of the above queries generate the same result.
As we saw earlier, the result of the natural join operation is a relation. Concep-

tually, expression “instructor natural join teaches” in the from clause is replaced

Output will have 2 tuples:

2009,
2010,

72 Chapter 3 Introduction to SQL

ID name dept name salary course id sec id semester year

10101 Srinivasan Comp. Sci. 65000 CS-101 1 Fall 2009
10101 Srinivasan Comp. Sci. 65000 CS-315 1 Spring 2010
10101 Srinivasan Comp. Sci. 65000 CS-347 1 Fall 2009
12121 Wu Finance 90000 FIN-201 1 Spring 2010
15151 Mozart Music 40000 MU-199 1 Spring 2010
22222 Einstein Physics 95000 PHY-101 1 Fall 2009
32343 El Said History 60000 HIS-351 1 Spring 2010
45565 Katz Comp. Sci. 75000 CS-101 1 Spring 2010
45565 Katz Comp. Sci. 75000 CS-319 1 Spring 2010
76766 Crick Biology 72000 BIO-101 1 Summer 2009
76766 Crick Biology 72000 BIO-301 1 Summer 2010
83821 Brandt Comp. Sci. 92000 CS-190 1 Spring 2009
83821 Brandt Comp. Sci. 92000 CS-190 2 Spring 2009
83821 Brandt Comp. Sci. 92000 CS-319 2 Spring 2010
98345 Kim Elec. Eng. 80000 EE-181 1 Spring 2009

Figure 3.8 The natural join of the instructor relation with the teaches relation.

The result relation, shown in Figure 3.8, has only 13 tuples, the ones that
give information about an instructor and a course that that instructor actually
teaches. Notice that we do not repeat those attributes that appear in the schemas
of both relations; rather they appear only once. Notice also the order in which the
attributes are listed: first the attributes common to the schemas of both relations,
second those attributes unique to the schema of the first relation, and finally, those
attributes unique to the schema of the second relation.

Consider the query “For all instructors in the university who have taught
some course, find their names and the course ID of all courses they taught”,
which we wrote earlier as:

select name, course id
from instructor, teaches
where instructor.ID= teaches.ID;

This query can be written more concisely using the natural-join operation in
SQL as:

select name, course id
from instructor natural join teaches;

Both of the above queries generate the same result.
As we saw earlier, the result of the natural join operation is a relation. Concep-

tually, expression “instructor natural join teaches” in the from clause is replaced

Output will have 7 tuples:

Comp. Sci,
Finance,
Music,
Physics,
History,
Biology,
Elec. Eng.,

Attributes in the select clause must be aggregates, or must appear in the
group by clause. Following wouldn’t work
select dept_name, ID, avg (salary)
from instructor
group by dept_name;

“having” can be used to select only some of the groups.

select dept_name
from instructor
group by dept_name
having avg(salary) > 42000

Given
branch =

Aggregate Operations
SELECT SUM (assets) =

FROM branch

NULL is ignored for SUM
Same for AVG (3.7M), MIN (0.4M),
MAX (9M)

Also for COUNT(assets) -- returns 3

SUM
11.1 M

COUNT
4

bname bcity assets
Downtown Boston 9M

Perry Horseneck 1.7M

Mianus Horseneck .4M

Waltham Boston NULL

But COUNT (*) returns

Given
branch =

SELECT SUM (assets) =

FROM branch

• Same as AVG, MIN, MAX
• But COUNT (assets) returns

SUM
NULL

COUNT
0

bname bcity assets

} Reading Homework 2

} SQL (Chapter 3)
◦ Null values (3.6)
◦ Aggregates (3.7)
◦ Views (4.2)
◦ Transactions (4.3)
◦ Integrity Constraints (4.4)
◦ Triggers (5.3)

} Reading Homework 2

} SQL (Chapter 3)
◦ Null values (3.6)
◦ Aggregates (3.7)
◦ Views (4.2)
◦ Transactions (4.3)
◦ Integrity Constraints (4.4)
◦ Triggers (5.3)

} Provide a mechanism to hide certain data from the view of certain
users. To create a view we use the command:

} Can be used in any place a normal table can be used
} For users, there is no distinction in terms of using it

create view v as <query expression>

where:
<query expression> is any legal expression
The view name is represented by v

} A view consisting of branches and their customers

Find all customers of the Perryridge branch

create view all-customers as
(select branch-name, customer-name
from depositor, account
where depositor.account-number = account.account-number)
union

(select branch-name, customer-name
from borrower, loan
where borrower.loan-number = loan.loan-number)

select customer-name
from all-customers
where branch-name = ‘Perryridge’

} Reading Homework 2

} SQL (Chapter 3)
◦ Null values (3.6)
◦ Aggregates (3.7)
◦ Views (4.2)
◦ Transactions (4.3)
◦ Integrity Constraints (4.4)
◦ Triggers (5.3)

} Integrity constraints

} ??

} Prevent semantic inconsistencies

} Predicates on the database
} Must always be true (checked whenever db gets updated)

} There are the following 4 types of IC’s:
◦ Key constraints (1 table)

e.g., 2 accts can’t share the same acct_no
◦ Attribute constraints (1 table)

e.g., accts must have nonnegative balance
◦ Referential Integrity constraints (2 tables)

E.g. bnames associated w/ loans must be names of real branches
◦ Global Constraints (n tables)

E.g., all loans must be carried by at least 1 customer with a savings
acct

Idea: specifies that a relation is a set, not a bag
SQL examples:

1. Primary Key:
CREATE TABLE branch(

bname CHAR(15) PRIMARY KEY,
bcity CHAR(20),
assets INT);

or
CREATE TABLE depositor(

cname CHAR(15),
acct_no CHAR(5),
PRIMARY KEY(cname, acct_no));

2. Candidate Keys:
CREATE TABLE customer (

ssn CHAR(9) PRIMARY KEY,
cname CHAR(15),
address CHAR(30),
city CHAR(10),
UNIQUE (cname, address, city));

