CMSCA424: Database Design
Relational Model; SQL

February 3, 2020

Instructor: Amol Deshpande

amol@cs.umd.edu




Today’s Plan

» Review of the Reading Homework 1

» Questions from Reading Homework 1
» Keys

> Foreign keys vs Primary keys

Relational Algebra

» SQL

> Single-table queries

v

° Joins

Virtualization/Vagrant/Cloud Computing (last 20 mins)
Still 14 (at least) who haven’t joined CampusWire

v

4




Keys

» Foreign key: Primary key of a relation that appears in
another relation
> {ID} from student appears in takes, advisor
o student called referenced relation
° takes is the referencing relation
o Typically shown by an arrow from referencing to referenced

» Foreign key constraint: the tuple corresponding to that
primary key must exist

° Imagine:
* Tuple: (‘student101’, ‘CMSC424’) in takes
* But no tuple corresponding to ‘student101’ in student

o Also called referential integrity constraint




Schema Diagram for University Database

advisor

s id
iid

eqar

takes student
ID » 1D
- v name
cour:se id dept_name
sec_id tot_cred
semester
year
: grade
section course
b course_id 3 course_id department
—»{ sec_id title dept_name
—»| semester dept_name —p building
—»( year : credits
—| building time_slot budget
r00MmM_no time_slot id
time_slot_id [ day
start_time
end_time
prereq instructor
classroom  course id ID
| building prereq_id name
»| room_no dept_name
capacity teaches salary
ID
|| course id
sec_id
semester




Schema Diagram for the Banking Enterprise

branch

account

branch—name

depositor

customer

account—-number

branch—city
assets

branch-name
balance

customer—name
account—number

customer—mame

customer—street
customer—city

loan

borrower

loan—number

branch-name
amount

customer—mame
loan—number




Relational Operations

» Some of the languages are “procedural” and provide a
set of operations

o Each operation takes one or two relations as input, and
produces a single relation as output

o Examples: SQL, and Relational Algebra

» The “non-procedural” (also called “declarative”)

languages specify the output, but don’t specify the
operations

o Relational calculus

o Datalog (used as an intermediate layer in quite a few systems
today)




Select Operation

Choose a subset of the tuples that satisfies some predicate
Denoted by "1 in relational algebra

Relation r ] (r)
A=BAD>5

>
o
@

—
w N N|| O

12
23 |1

I I A N R
I I A N R

o




Project

Choose a subset of the columns (for all rows)
Denoted by (! in relational algebra

Relation r AIBICID
Il o117
g1 0157
0121 3
00123110

Relational algebra following “set” semantics — so no duplicates
SQL allows for duplicates — we will cover the formal semantics later




Set Union, Difference

Relationr,s | A | B A
1 N
1] 2 N
0|1 S

Must be compatible schemas

What about intersection ?

Can be derived
ris=r—(r —s);

rils:

I N B N N O




Cartesian Product

Combine tuples from two relations

If one relation contains N tuples and the other contains M tuples, the
result would contain N*M tuples

The result is rarely useful — almost always you want pairs of tuples that
satisfy some condition

Relation I, S Al B CIDI|E rxs: I AlBlclIDIE
1 1110 a g1 1| 01]10] a

10 1110 | a 1110 [10] a

1120 b 111 0120] b

r 1 110| b O l1 |1 01(10| b

S 112 (01110 a

112 01]110]| a

120120 b

01201110 b




Joins

Combine tuples from two relations if the pair of tuples satisfies some
constraint

Equivalent to Cartesian Product followed by a Select

Relation I, S Al B CIDI|E rbd,_cs: AlBIlCcIDIE
1 1110 | a 110110 a

5 1110 | a e ——

_ 1120 b EEmtee e e

R e e e




Natural Join

Combine tuples from two relations if the pair of tuples agree on the
common columns (with the same name)

‘ dept_name ‘ building ‘ budget

Biology Watson 90000
Comp. Sci. | Taylor 100000
Elec. Eng. | Taylor 85000
Finance Painter | 120000
History Painter 50000
Music Packard | 80000
Physics Watson 70000

Figure 2.5 The department relation.

‘ ID ‘ name ‘ dept_name ‘ salary ‘
22222 | Einstein Physics 95000
12121 | Wu Finance 90000
32343 | El Said History 60000
45565 | Katz Comp. Sci. | 75000
98345 | Kim Elec. Eng. | 80000
76766 | Crick Biology 72000
10101 | Srinivasan | Comp. Sci. | 65000
58583 | Califieri History 62000
83821 | Brandt Comp. Sci. | 92000
15151 | Mozart Music 40000
33456 | Gold Physics 87000
76543 | Singh Finance 80000

Figure 2.4

department X instructor:

‘ ID ‘ name salary | dept_name building budget
10101 | Srinivasan | 65000 | Comp. Sci. | Taylor 100000
12121 | Wu 90000 | Finance Painter 120000
15151 | Mozart 40000 | Music Packard 80000
22222 | Einstein 95000 | Physics Watson 70000
32343 | ElSaid 60000 | History Painter 50000
33456 | Gold 87000 | Physics Watson 70000
45565 | Katz 75000 | Comp. Sci. | Taylor 100000
58583 | Califieri 62000 | History Painter 50000
76543 | Singh 80000 | Finance Painter 120000
76766 | Crick 72000 | Biology Watson 90000
83821 | Brandt 92000 | Comp. Sci. | Taylor 100000
98345 | Kim 80000 | Elec. Eng. Taylor 85000

Figure 2.12 Result of natural join of the instructor and department relations.

Unsorted display of the instructor relation. ‘
|




Outline

» Overview of modeling
» Relational Model (Chapter 2)

° Basics

o Keys

> Relational operations

> Relational algebra basics

» SQL (Chapter 3)
o Basic Data Definition (3.2)

Setting up the PostgreSQL database
Basic Queries (3.3-3.5)

Null values (3.6)

Aggregates (3.7)

o

o

o

o




History

>

IBM Sequel language developed as part of System R project at the
IBM San Jose Research Laboratory

Renamed Structured Query Language (SQL)

ANSI and ISO standard SQL.:

- SQL-86, SQL-89, SQL-92

- SQL:1999, SQL:2003, SQL:2008

Commercial systems offer most, if not all, SQL-92 features, plus
varying feature sets from later standards and special proprietary
features.

> Not all examples here may work on your particular system.

Several alternative syntaxes to write the same queries




Different Types of Constructs

» Data definition language (DDL): Defining/modifying schemas

° Integrity constraints: Specifying conditions the data must satisfy
> View definition: Defining views over data
> Authorization: Who can access what

Data-manipulation language (DML): Insert/delete/update
tuples, queries

v

Transaction control:

Embedded SQL: Calling SQL from within programming
languages

Creating indexes, Query Optimization control...

v Vv

>




Data Definition Language

The SQL data-definition language (DDL) allows the
specification of information about relations, including:

The schema for each relation.

The domain of values associated with each attribute.
Integrity constraints

Also: other information such as

> The set of indices to be maintained for each relations.
- Security and authorization information for each relation.
> The physical storage structure of each relation on disk.

v v Vv Vv




SQL Constructs: Data Definition Language

» CREATE TABLE <name> ( <field> <domain>, ... )

create table department
(dept_name varchar(20),
xyz varchar(20),
building varchar(15),
budget numeric(12,2) check (budget > 0),
primary key (xyz, dept_name)
)

—create tabte nstructor|

ID char(5),

name varchar(20) not null,
dept_name varchar(20),

jx varchar(20),
salary numeric(8,2),

primary key (/D),
forelgn key (jx, dept_name) references
Jarteenl (xyz, dept_name)




SQL Constructs: Data Definition Language

» CREATE TABLE <name> ( <field> <domain>, ... )

create table department
(dept_name varchar(20) primary key,
building varchar(15),
budget numeric(12,2) check (budget > 0)

);

create table instructor (
ID char(5) primary key,

name varchar(20) not null,

d_name varchar(20),

salary numeric(8,2),

foreign key (d_name) references department




SQL Constructs: Data Definition Language

» drop table student

» delete from student
> Keeps the empty table around

» alter table
o alter table student add address varchar(50);
o alter table student drop tot_cred;




SQL Constructs: Insert/Delete/Update Tuples

» INSERT INTO <name> (<field names>) VALUES (<field values>)

insert into instructor values (102117, " Smith’, ’ Biology’ , 66000);

insert into instructor (name, ID) values (‘Smith’, “10211");
-- NULL for other two
insert into instructor (ID) values (‘10211’);
-- FAIL

» DELETE FROM <name> WHERE <condition>
delete from department where budget < 80000;
o Syntax is fine, but this command may be rejected because of

referential integrity constraints.




SQL Constructs: Insert/Delete/Update Tuples

» DELETE FROM <name> WHERE <condition>
delete from department where budget < 80000;

dept_name | building | budget b name sl |
: 10101 | Srinivasan | 65000 | Comp. Sci.
Biology | Watson | 90000 12121 | Wu 90000 | Finance
Comp. Sci. | Taylor | 100000 15151 | Mozart 40000 | Music
Elec. Eng Taylor 85000 22222 Finstein 95000 Phvsics
Finance Painter | 120000 < 32343 | ElSaid 60000 | History >
Mistory Painter 50000 [ —> 33456 | Gora 87000 | lhysics
Music Packard | 80000 - 4222; gaiﬂf : 22888 E?T . Sci.
. 5 alifieri istory
Physics Watson 70000 —~rrrr— —S———sTT T
76766 | Crick 72000 | Biology
: - 83821 | Brandt 92000 | Comp. Sci.
Figure 2.5 The department relation. 08345 | Kim 80000 | Elec. Eng.
We can choose what happens: Instructor relation

(1) Reject the delete, or
(2) Delete the rows in Instructor (may be a cascade), or
3) Set the appropriate values in Instructor to NULL




SQL Constructs: Insert/Delete/Update Tuples

» DELETE FROM <name> WHERE <condition>
delete from department where budget < 80000;

create table instructor

(ID varchar(5),

name varchar(20) not null,

dept_name varchar(20),

salary numeric(8,2) check (salary > 29000),

primary key (ID),

f = ferences department
te set null

D,

We can choose what happens:

(1) Reject the delete (nothing), or

(2) Delete the rows in Instructor (on delete cascade), or

(3) Set the appropriate values in Instructor to NULL (on delete set null)




SQL Constructs: Insert/Delete/Update Tuples

» DELETE FROM <name> WHERE <condition>
> Delete all classrooms with capacity below average
delete from classroom where capacity <

(select avg(capacity) from classroom);
> Problem: as we delete tuples, the average capacity changes

> Solution used in SQL:

- First, compute avg capacity and find all tuples to delete

- Next, delete all tuples found above (without recomputing avg or
retesting the tuples)

- E.g. consider the query: delete the smallest classroom



SQL Constructs: Insert/Delete/Update Tuples

» UPDATE <name> SET <field name> = <value> WHERE <condition>

> Increase all salaries’s over $100,000 by 6%, all other receive 5%.
> Write two update statements:

update instructor
set salary = salary * 1.06
where salary > 100000;

update instructor
set salary = salary * 1.05
where salary < 10000;

o The order is important
° Can be done better using the case statement




SQL Constructs: Insert/Delete/Update Tuples

» UPDATE <name> SET <field name> = <value> WHERE <condition>

> Increase all salaries’s over $100,000 by 6%, all other receive 5%.
° Can be done better using the case statement

update instructor
set salary =

case
when salary > 100000
then salary * 1.06

when salary <= 100000
then salary * 1.05

end;




