
Instructor: Amol Deshpande
amol@cs.umd.edu

} Review of the Reading Homework 1
} Questions from Reading Homework 1
} Keys
◦ Foreign keys vs Primary keys

} Relational Algebra
} SQL
◦ Single-table queries
◦ Joins

} Virtualization/Vagrant/Cloud Computing (last 20 mins)
} Still 14 (at least) who haven’t joined CampusWire

} Foreign key: Primary key of a relation that appears in
another relation
◦ {ID} from student appears in takes, advisor
◦ student called referenced relation
◦ takes is the referencing relation
◦ Typically shown by an arrow from referencing to referenced

} Foreign key constraint: the tuple corresponding to that
primary key must exist
◦ Imagine:
� Tuple: (‘student101’, ‘CMSC424’) in takes
� But no tuple corresponding to ‘student101’ in student
◦ Also called referential integrity constraint

} Some of the languages are “procedural” and provide a
set of operations
◦ Each operation takes one or two relations as input, and

produces a single relation as output
◦ Examples: SQL, and Relational Algebra

} The “non-procedural” (also called “declarative”)
languages specify the output, but don’t specify the
operations
◦ Relational calculus
◦ Datalog (used as an intermediate layer in quite a few systems

today)

Relation r A B C D

�

�

�

�

�

�

�

�

1

5

12

23

7

7

3

10

�
A=B ∧ D > 5

(r) A B C D

�

�

�

�

1

23

7

10

Choose a subset of the tuples that satisfies some predicate
Denoted by � in relational algebra

Choose a subset of the columns (for all rows)
Denoted by � in relational algebra

Relation r A B C D

�

�

�

�

�

�

�

�

1

5

12

23

7

7

3

10

�
A,D

(r) A D

�

�

�

�

7

7

3

10

A D

�

�

�

7

3

10

Relational algebra following “set” semantics – so no duplicates
SQL allows for duplicates – we will cover the formal semantics later

Relation r, s A B

�

�

�

1

2

1

A B

�

�

2

3

r
s

r � s: A B

�

�

�

�

1

2

1

3

A B

�

�

1

1

r – s:

Must be compatible schemas

What about intersection ?
Can be derived
r ∩ s = r – (r – s);

Relation r, s r × s:A B

�

�

1

2

C D

�
�
�
�

10
10
20
10

E

a
a
b
br

s

A B

�
�
�
�
�
�
�
�

1
1
1
1
2
2
2
2

C D

�
�
�
�
�
�
�
�

10
10
20
10
10
10
20
10

E

a
a
b
b
a
a
b
b

Combine tuples from two relations

If one relation contains N tuples and the other contains M tuples, the
result would contain N*M tuples

The result is rarely useful – almost always you want pairs of tuples that
satisfy some condition

Relation r, s r⋈A = C s:
A B

�

�

1

2

C D

�
�
�
�

10
10
20
10

E

a
a
b
br

s

A B

�
�
�
�
�
�
�
�

1
1
1
1
2
2
2
2

C D

�
�
�
�
�
�
�
�

10
10
20
10
10
10
20
10

E

a
a
b
b
a
a
b
b

Combine tuples from two relations if the pair of tuples satisfies some
constraint

Equivalent to Cartesian Product followed by a Select

Combine tuples from two relations if the pair of tuples agree on the
common columns (with the same name)2.2 Database Schema 43

dept name building budget

Biology Watson 90000
Comp. Sci. Taylor 100000
Elec. Eng. Taylor 85000
Finance Painter 120000
History Painter 50000
Music Packard 80000
Physics Watson 70000

Figure 2.5 The department relation.

similarly the contents of a relation instance may change with time as the relation
is updated. In contrast, the schema of a relation does not generally change.

Although it is important to know the difference between a relation schema
and a relation instance, we often use the same name, such as instructor, to refer
to both the schema and the instance. Where required, we explicitly refer to the
schema or to the instance, for example “the instructor schema,” or “an instance of
the instructor relation.” However, where it is clear whether we mean the schema
or the instance, we simply use the relation name.

Consider the department relation of Figure 2.5. The schema for that relation is

department (dept name, building, budget)

Note that the attribute dept name appears in both the instructor schema and the
department schema. This duplication is not a coincidence. Rather, using common
attributes in relation schemas is one way of relating tuples of distinct relations.
For example, suppose we wish to find the information about all the instructors
who work in the Watson building. We look first at the department relation to
find the dept name of all the departments housed in Watson. Then, for each such
department, we look in the instructor relation to find the information about the
instructor associated with the corresponding dept name.

Let us continue with our university database example.
Each course in a university may be offered multiple times, across different

semesters, or even within a semester. We need a relation to describe each individ-
ual offering, or section, of the class. The schema is

section (course id, sec id, semester, year, building, room number, time slot id)

Figure 2.6 shows a sample instance of the section relation.
We need a relation to describe the association between instructors and the

class sections that they teach. The relation schema to describe this association is

teaches (ID, course id, sec id, semester, year)

2.1 Structure of Relational Databases 41

course id prereq id
BIO-301 BIO-101
BIO-399 BIO-101
CS-190 CS-101
CS-315 CS-101
CS-319 CS-101
CS-347 CS-101
EE-181 PHY-101

Figure 2.3 The prereq relation.

Thus, in the relational model the term relation is used to refer to a table, while
the term tuple is used to refer to a row. Similarly, the term attribute refers to a
column of a table.

Examining Figure 2.1, we can see that the relation instructor has four attributes:
ID, name, dept name, and salary.

We use the term relation instance to refer to a specific instance of a relation,
i.e., containing a specific set of rows. The instance of instructor shown in Figure 2.1
has 12 tuples, corresponding to 12 instructors.

In this chapter, we shall be using a number of different relations to illustrate the
various concepts underlying the relational data model. These relations represent
part of a university. They do not include all the data an actual university database
would contain, in order to simplify our presentation. We shall discuss criteria for
the appropriateness of relational structures in great detail in Chapters 7 and 8.

The order in which tuples appear in a relation is irrelevant, since a relation
is a set of tuples. Thus, whether the tuples of a relation are listed in sorted order,
as in Figure 2.1, or are unsorted, as in Figure 2.4, does not matter; the relations in

ID name dept name salary

22222 Einstein Physics 95000
12121 Wu Finance 90000
32343 El Said History 60000
45565 Katz Comp. Sci. 75000
98345 Kim Elec. Eng. 80000
76766 Crick Biology 72000
10101 Srinivasan Comp. Sci. 65000
58583 Califieri History 62000
83821 Brandt Comp. Sci. 92000
15151 Mozart Music 40000
33456 Gold Physics 87000
76543 Singh Finance 80000

Figure 2.4 Unsorted display of the instructor relation.

department ⋈ instructor:50 Chapter 2 Introduction to the Relational Model

ID name salary dept name building budget

10101 Srinivasan 65000 Comp. Sci. Taylor 100000
12121 Wu 90000 Finance Painter 120000
15151 Mozart 40000 Music Packard 80000
22222 Einstein 95000 Physics Watson 70000
32343 El Said 60000 History Painter 50000
33456 Gold 87000 Physics Watson 70000
45565 Katz 75000 Comp. Sci. Taylor 100000
58583 Califieri 62000 History Painter 50000
76543 Singh 80000 Finance Painter 120000
76766 Crick 72000 Biology Watson 90000
83821 Brandt 92000 Comp. Sci. Taylor 100000
98345 Kim 80000 Elec. Eng. Taylor 85000

Figure 2.12 Result of natural join of the instructor and department relations.

of their dept name attributes are the same. All such matching pairs of tuples are
present in the join result. In general, the natural join operation on two relations
matches tuples whose values are the same on all attribute names that are common
to both relations.

The Cartesian product operation combines tuples from two relations, but unlike
the join operation, its result contains all pairs of tuples from the two relations,
regardless of whether their attribute values match.

Because relations are sets, we can perform normal set operations on relations.
The union operation performs a set union of two “similarly structured” tables
(say a table of all graduate students and a table of all undergraduate students).
For example, one can obtain the set of all students in a department. Other set
operations, such as intersection and set difference can be performed as well.

As we noted earlier, we can perform operations on the results of queries. For
example, if we want to find the ID and salaryfor those instructors who have salary
greater than $85,000, we would perform the first two operations in our example
above. First we select those tuples from the instructor relation where the salary
value is greater than $85,000 and then, from that result, select the two attributes
ID and salary, resulting in the relation shown in Figure 2.13 consisting of the ID

ID salary

12121 90000
22222 95000
33456 87000
83821 92000

Figure 2.13 Result of selecting attributes ID and salaryof instructors with salary greater
than $85,000.

} Overview of modeling
} Relational Model (Chapter 2)
◦ Basics
◦ Keys
◦ Relational operations
◦ Relational algebra basics

} SQL (Chapter 3)
◦ Basic Data Definition (3.2)
◦ Setting up the PostgreSQL database
◦ Basic Queries (3.3-3.5)
◦ Null values (3.6)
◦ Aggregates (3.7)

} IBM Sequel language developed as part of System R project at the
IBM San Jose Research Laboratory

} Renamed Structured Query Language (SQL)
} ANSI and ISO standard SQL:
◦ SQL-86, SQL-89, SQL-92
◦ SQL:1999, SQL:2003, SQL:2008

} Commercial systems offer most, if not all, SQL-92 features, plus
varying feature sets from later standards and special proprietary
features.
◦ Not all examples here may work on your particular system.

} Several alternative syntaxes to write the same queries

} Data definition language (DDL): Defining/modifying schemas
◦ Integrity constraints: Specifying conditions the data must satisfy
◦ View definition: Defining views over data
◦ Authorization: Who can access what

} Data-manipulation language (DML): Insert/delete/update
tuples, queries

} Transaction control:
} Embedded SQL: Calling SQL from within programming

languages
} Creating indexes, Query Optimization control…

} The schema for each relation.
} The domain of values associated with each attribute.
} Integrity constraints
} Also: other information such as
◦ The set of indices to be maintained for each relations.
◦ Security and authorization information for each relation.
◦ The physical storage structure of each relation on disk.

The SQL data-definition language (DDL) allows the
specification of information about relations, including:

} CREATE TABLE <name> (<field> <domain>, …)

create table instructor (
ID char(5),
name varchar(20) not null,
dept_name varchar(20),
jx varchar(20),
salary numeric(8,2),
primary key (ID),
foreign key (jx, dept_name) references
department (xyz, dept_name)

)

create table department
(dept_name varchar(20),
xyz varchar(20),
building varchar(15),
budget numeric(12,2) check (budget > 0),
primary key (xyz, dept_name)
);

} CREATE TABLE <name> (<field> <domain>, …)

create table instructor (
ID char(5) primary key,
name varchar(20) not null,
d_name varchar(20),
salary numeric(8,2),
foreign key (d_name) references department

)

create table department
(dept_name varchar(20) primary key,
building varchar(15),
budget numeric(12,2) check (budget > 0)

);

} drop table student
} delete from student
◦ Keeps the empty table around

} alter table
◦ alter table student add address varchar(50);
◦ alter table student drop tot_cred;

} INSERT INTO <name> (<field names>) VALUES (<field values>)
insert into instructor values (‘10211’, ’Smith’, ’Biology’, 66000);
insert into instructor (name, ID) values (‘Smith’, ‘10211’);

-- NULL for other two
insert into instructor (ID) values (‘10211’);

-- FAIL

} DELETE FROM <name> WHERE <condition>
delete from department where budget < 80000;

◦ Syntax is fine, but this command may be rejected because of
referential integrity constraints.

} DELETE FROM <name> WHERE <condition>
delete from department where budget < 80000;2.2 Database Schema 43

dept name building budget

Biology Watson 90000
Comp. Sci. Taylor 100000
Elec. Eng. Taylor 85000
Finance Painter 120000
History Painter 50000
Music Packard 80000
Physics Watson 70000

Figure 2.5 The department relation.

similarly the contents of a relation instance may change with time as the relation
is updated. In contrast, the schema of a relation does not generally change.

Although it is important to know the difference between a relation schema
and a relation instance, we often use the same name, such as instructor, to refer
to both the schema and the instance. Where required, we explicitly refer to the
schema or to the instance, for example “the instructor schema,” or “an instance of
the instructor relation.” However, where it is clear whether we mean the schema
or the instance, we simply use the relation name.

Consider the department relation of Figure 2.5. The schema for that relation is

department (dept name, building, budget)

Note that the attribute dept name appears in both the instructor schema and the
department schema. This duplication is not a coincidence. Rather, using common
attributes in relation schemas is one way of relating tuples of distinct relations.
For example, suppose we wish to find the information about all the instructors
who work in the Watson building. We look first at the department relation to
find the dept name of all the departments housed in Watson. Then, for each such
department, we look in the instructor relation to find the information about the
instructor associated with the corresponding dept name.

Let us continue with our university database example.
Each course in a university may be offered multiple times, across different

semesters, or even within a semester. We need a relation to describe each individ-
ual offering, or section, of the class. The schema is

section (course id, sec id, semester, year, building, room number, time slot id)

Figure 2.6 shows a sample instance of the section relation.
We need a relation to describe the association between instructors and the

class sections that they teach. The relation schema to describe this association is

teaches (ID, course id, sec id, semester, year)

50 Chapter 2 Introduction to the Relational Model

ID name salary dept name building budget

10101 Srinivasan 65000 Comp. Sci. Taylor 100000
12121 Wu 90000 Finance Painter 120000
15151 Mozart 40000 Music Packard 80000
22222 Einstein 95000 Physics Watson 70000
32343 El Said 60000 History Painter 50000
33456 Gold 87000 Physics Watson 70000
45565 Katz 75000 Comp. Sci. Taylor 100000
58583 Califieri 62000 History Painter 50000
76543 Singh 80000 Finance Painter 120000
76766 Crick 72000 Biology Watson 90000
83821 Brandt 92000 Comp. Sci. Taylor 100000
98345 Kim 80000 Elec. Eng. Taylor 85000

Figure 2.12 Result of natural join of the instructor and department relations.

of their dept name attributes are the same. All such matching pairs of tuples are
present in the join result. In general, the natural join operation on two relations
matches tuples whose values are the same on all attribute names that are common
to both relations.

The Cartesian product operation combines tuples from two relations, but unlike
the join operation, its result contains all pairs of tuples from the two relations,
regardless of whether their attribute values match.

Because relations are sets, we can perform normal set operations on relations.
The union operation performs a set union of two “similarly structured” tables
(say a table of all graduate students and a table of all undergraduate students).
For example, one can obtain the set of all students in a department. Other set
operations, such as intersection and set difference can be performed as well.

As we noted earlier, we can perform operations on the results of queries. For
example, if we want to find the ID and salaryfor those instructors who have salary
greater than $85,000, we would perform the first two operations in our example
above. First we select those tuples from the instructor relation where the salary
value is greater than $85,000 and then, from that result, select the two attributes
ID and salary, resulting in the relation shown in Figure 2.13 consisting of the ID

ID salary

12121 90000
22222 95000
33456 87000
83821 92000

Figure 2.13 Result of selecting attributes ID and salaryof instructors with salary greater
than $85,000.

Instructor relationWe can choose what happens:
(1) Reject the delete, or
(2) Delete the rows in Instructor (may be a cascade), or
(3) Set the appropriate values in Instructor to NULL

} DELETE FROM <name> WHERE <condition>
delete from department where budget < 80000;

We can choose what happens:
(1) Reject the delete (nothing), or
(2) Delete the rows in Instructor (on delete cascade), or
(3) Set the appropriate values in Instructor to NULL (on delete set null)

create table instructor
(ID varchar(5),
name varchar(20) not null,
dept_name varchar(20),
salary numeric(8,2) check (salary > 29000),
primary key (ID),
foreign key (dept_name) references department

on delete set null
);

} DELETE FROM <name> WHERE <condition>
◦ Delete all classrooms with capacity below average

delete from classroom where capacity <
(select avg(capacity) from classroom);

◦ Problem: as we delete tuples, the average capacity changes

◦ Solution used in SQL:
� First, compute avg capacity and find all tuples to delete
� Next, delete all tuples found above (without recomputing avg or

retesting the tuples)

◦ E.g. consider the query: delete the smallest classroom

} UPDATE <name> SET <field name> = <value> WHERE <condition>
◦ Increase all salaries’s over $100,000 by 6%, all other receive 5%.
◦ Write two update statements:

update instructor
set salary = salary * 1.06
where salary > 100000;

update instructor
set salary = salary * 1.05
where salary £ 10000;

◦ The order is important
◦ Can be done better using the case statement

} UPDATE <name> SET <field name> = <value> WHERE <condition>
◦ Increase all salaries’s over $100,000 by 6%, all other receive 5%.
◦ Can be done better using the case statement

update instructor
set salary =

case
when salary > 100000

then salary * 1.06
when salary <= 100000

then salary * 1.05
end;

