CMSC424: Database Design
Relational Model; SQL

Instructor: Amol Deshpande
amol@cs.umd.edu

Outline

» Relational Model (Chapter 2)
o Basics
o Keys
> Relational operations
> Relational algebra basics

» SQL (Chapter 3)
> Setting up the PostgreSQL database
Data Definition (3.2)
Basics (3.3-3.5)
Null values (3.6)
Aggregates (3.7)

(0]

(0]

(0]

O

Context

» Data Models
o Conceptual representation of the data

» Data Retrieval
> How to ask questions of the database
> How to answer those questions

» Data Storage
> How/where to store data, how to access it
» Data Integrity

> Manage crashes, concurrency
> Manage semantic inconsistencies

Relational Data Model

Introduced by Ted Codd (late 60’s — early 70’s)

e Before = “Network Data Model” (Cobol as DDL, DML)
e Very contentious: Database Wars (Charlie Bachman vs. Ted Codd)

Relational data model contributes:

1. Separation of logical, physical data models (data independence)
2. Declarative query languages
3. Formal semantics

4. Query optimization (key to commercial success)

15t prototypes:

e Ingres 2 CA
e Postgres 2 lllustra = Informix = IBM
e System R = Oracle, DB2

Key Abstraction: Relation

Account =

Terms:

bname | acct no | balance
Downtown A-101 500

Brighton A-201 900

Brighton A-217 500

« Tables (aka: Relations)

Why called Relations?

Closely correspond to mathematical concept of a relation

Relations

bname | acct_ no | balance
Account = | Downtown A-101 500

Brighton A-201 900

Brighton A-217 500

Considered equivalent to...

{ (Downtown, A-101, 500),
(Brighton, A-201, 900),
(Brighton, A-217, 500) }

Relational database semantics defined in
terms of mathematical relations

Relations

bname | acct no | balance
Account = | Downtown A-101 500
Brighton A-201 900
Brighton A-217 500
Considered equivalent to...
{ (Downtown, A-101, 500),
(Brighton, A-201, 900),
(Brighton, A-217, 500)}

Terms:

 Tables (aka: Relations)

« Rows (aka: tuples)

» Columns (aka: attributes)

e Schema (e.g.: Acct Schema = (bname, acct no, balance))

Definitions

Relation Schema (or Schema)
A list of attributes and their domains
E.g. account(account-number, branch-name, balance)

‘ Programming language equivalent: A variable (e.g. X) ‘

Relation Instance
A particular instantiation of a relation with actual values

Will change with time

bname acct_no balance
Downtown A-101 500

Brighton A-201 900

Brighton A-217 500

mrogrammmg language equivalent: Value of a variable

Definitions

Domains of an attribute/column
The set of permitted values
e.g., bname must be String, balance must be a positive real number

We typically assume domains are atomicg, i.e., the values are treated
as indivisible (specifically: you can’t store lists or arrays in them)

Null value
A special value used if the value of an attribute for a row is:

unknown (e.g., don’t know address of a customer)
inapplicable (e.g., “spouse name” attribute for a customer)
withheld/hidden

Different interpretations all captured by a single concept — leads to
major headaches and problems

Tables in a University Database

classroom(building, room_number, capacity)

department(dept_name, building, budget)

course(course_id, title, dept_name, credits)

instructor(ID, name, dept_name, salary)

section(course_id, sec_id, semester, year, building,
room_number, time_slot_id)

teaches(ID, course_id, sec_id, semester, year)

student(ID, name, dept_name, tot_cred)

takes(ld, course_id, sec_id, semester, year, grade)
advisor(s_ID, i ID)

time_slot(time_slot_id, day, start_time, end_time)
prereq(course_id, prereq_id)

Outline

» Overview of modeling
» Relational Model (Chapter 2)

> Basics
o Keys
> Relational operations

> Relational algebra basics

» SQL (Chapter 3)

Setting up the PostgreSQL database
Data Definition (3.2)

Basics (3.3-3.5)

Null values (3.6)

Aggregates (3.7)

(0]

(0]

(0]

O

(@)

Keys

» Let KC R

» Kis a superkey of R if values for K are sufficient to identify a
unique tuple of any possible relation r(R)

o Example: {ID} and {ID,name} are both superkeys of instructor.

» Superkey K is a candidate key if K is minimal (i.e., no subset
of it is a superkey)

o Example: {ID}is a candidate key for Instructor

» One of the candidate keys is selected to be the primary key

> Typically one that is small and immutable (doesn’t change often)

» Primary key typically highlighted (e.g., underlined)

Tables in a University Database

classroom(building, room_number, capacity)
department(dept_name, building, budget)
course(course_id, title, dept_name, credits)
instructor(ID, name, dept_name, salary)

Tables in a University Database

takes(ID, course _id, sec_id, semester, year, grade)

What about ID, course_id?
No. May repeat:

(“1011049”, “CMSC424”, “101”, “Spring”, 2014, D)
(“1011049”, “CMSC424”, “102”, “Fall”, 2015, null)

What about ID, course_id, sec_id?
May repeat:
(“1011049”, “CMSC424”, “101”, “Spring”, 2014, D)
(“1011049”, “CMSC424”, “101”, “Fall”, 2015, null)
What about ID, course _id, sec _id, semester?

Still no: (“1011049”, “CMSC424”, “101”, “Spring”, 2014, D)
(“1011049”, “CMSC424”, “101”, “Spring”, 2015, null)

Tables in a University Database

classroom(building, room_number, capacity)

department(dept name, building, budget)

course(course _id, title, dept_name, credits)

instructor(ID, name, dept_name, salary)

section(course_id, sec_id, semester, year, building,
room_number, time_slot_id)

teaches(ID, course_id, sec_id, semester, year)

student(ID, name, dept_name, tot_cred)

takes(ID, course_id, sec_id, semester, year, grade)
advisor(s_ID, i ID)

time_slot(time_slot_id, day, start_time, end_time)
prereq(course_id, prereq_id)

Keys

» Foreign key: Primary key of a relation that appears in
another relation

{ID} from student appears in takes, advisor

student called referenced relation

takes is the referencing relation

Typically shown by an arrow from referencing to referenced

(@)

(@)

(0]

(0]

» Foreign key constraint: the tuple corresponding to that
primary key must exist

° Imagine:
* Tuple: (‘student101’, ‘CMSC424’) in takes
* But no tuple corresponding to ‘student101’ in student

o Also called referential integrity constraint

Schema Diagram for University Database

s

eqar

advisor

s id
iid

takes student
D » ID <
- . name
course id dept_name
sec_id tot_cred
semester
year
: grade
section course
course_id 3 course_id department
sec_id title dept_name
semester dept_name — > buil ding
year : credits
building time_slot budget
room_no time_slot id
time_slot_id [day
start_time
end_time
prereq instructor
classroom — course id ID
|| building prereq_id name
»| room_no dept_name
capacity teaches salary
ID
|| course id
sec_id
semester

Schema Diagram for the Banking Enterprise

branch

account

branch—name

depositor

customer

account—-number

branch—city
assets

branch-name
balance

customer—name
account—number

customer—mame

customer—street
customer—city

loan

borrower

loan—number

branch-name
amount

customer—mame
loan—number

Examples

» Married(personl_ssn, person2_ssn, date_married, date_divorced)
» Account(cust_ssn, account_number, cust_name, balance, cust_address)

» RA(student_id, project_id, superviser_id, appt_time, appt_start_date,
appt_end_date)

» Person(Name, DOB, Born, Education, Religion, ...)
° Information typically found on Wikipedia Pages

Examples

» Married(personl_ssn, person2_ssn, date_married, date_divorced)

» Account(cust_ssn, account_number, cust_name, balance, cust_address)
o If a single account per customer, then: cust_ssn
o Else: (cust_ssn, account_number)

In the latter case, this is not a good schema because it requires repeating information

» RA(student_id, project_id, superviser_id, appt_time, appt_start_date,
appt_end_date)

° Could be smaller if there are some restrictions — requires some domain knowledge of the
data being stored

» Person(Name, DOB, Born, Education, Religion, ...)
° Information typically found on Wikipedia Pages

o Unclear what could be a primary key here: you could in theory have two people who match
on all of those

Outline

» Overview of modeling

» Relational Model (Chapter 2)
> Basics
o Keys
o Relational operations

o Relational algebra basics

» SQL (Chapter 3)
> Setting up the PostgreSQL database
Data Definition (3.2)
Basics (3.3-3.5)
Null values (3.6)
Aggregates (3.7)

(0]

(0]

O

(@)

Relational Query Languages

» Example schema: R(A, B)

» Practical languages
> SQL
* select A from R where B = 5;
> Datalog (sort of practical)
* g(A) :- R(A, 5)
» Formal languages
> Relational algebra
Mo Ogs (R))
> Tuple relational calculus
{t:{A}| 3 s:{A B}(R(A B) A s.B=5)}
° Domain relational calculus
- Similar to tuple relational calculus

Relational Operations

» Some of the languages are “procedural” and provide a
set of operations

> Each operation takes one or two relations as input, and
produces a single relation as output

o Examples: SQL, and Relational Algebra

» The “non-procedural” (also called “declarative”)

languages specify the output, but don’t specify the
operations
o Relational calculus

> Datalog (used as an intermediate layer in quite a few systems
today)

Select Operation

Choose a subset of the tuples that satisfies some predicate
Denoted by o in relational algebra

Relation r

(r)

>
o
O
O

O
A=B AD>5

12| 3
23 |10

= ™™ R g
= ™ ™ g

23

10

Project

Choose a subset of the columns (for all rows)
Denoted by | | in relational algebra

>
w
@)
O
—
=

Relation r

A
(0
(0

12| 3 B

23 110 j/

Relational algebra following “set” semantics — so no duplicates
SQL allows for duplicates — we will cover the formal semantics later

/8/03\1\10

= ™™ R g
= ™ ™ g

Set Union, Difference

Relationr,s | A | B A
o | 1 o
o | 2 B
B | 1 s

Must be compatible schemas

What about intersection ?
Can be derived
rlis=r—(r —s);

rJs:

Cartesian Product

Combine tuples from two relations

If one relation contains N tuples and the other contains M tuples, the
result would contain N*M tuples

The result is rarely useful — almost always you want pairs of tuples that
satisfy some condition

Relationr, s A | B CIDI|E rxss ' AlBICIDIE
o | 1 a 10| a oa| 1| al|10]| a

5| 2 B 110 a al|l1]|p|10] a

B 20| b al|1|p|20]| b

' vy |10 b a| 1|y]10] b

S Bl 2] a]|10]| a

B2 | P |10] a

Bl 2| P |20] b

Bl 2]y 10| b

Joins

Combine tuples from two relations if the pair of tuples satisfies some
constraint

Equivalent to Cartesian Product followed by a Select

Relation I, S Al B C|D r™a=cs: AlBIlCcIDI|E

E

o 1 a |10] a
p 10| a

BLl21 1520/
r vy 10| b

Natural Join

Combine tuples from two relations if the pair of tuples agree on the
common columns (with the same name)

‘ dept_name ‘ building ‘ budget

Biology Watson 90000
Comp. Sci. | Taylor 100000
Elec. Eng. | Taylor 85000
Finance Painter | 120000
History Painter 50000
Music Packard | 80000
Physics Watson 70000

Figure 2.5 The department relation.

‘ ID ‘ name ‘ dept_name ‘ salary ‘
22222 | Einstein Physics 95000
12121 | Wu Finance 90000
32343 | El Said History 60000
45565 | Katz Comp. Sci. | 75000
98345 | Kim Elec. Eng. | 80000
76766 | Crick Biology 72000
10101 | Srinivasan | Comp. Sci. | 65000
58583 | Califieri History 62000
83821 | Brandt Comp. Sci. | 92000
15151 | Mozart Music 40000
33456 | Gold Physics 87000
76543 | Singh Finance 80000

Figure 2.4

department > instructor:

‘ ID ‘ name salary | dept_name building budget
10101 | Srinivasan | 65000 | Comp. Sci. | Taylor 100000
12121 | Wu 90000 | Finance Painter 120000
15151 | Mozart 40000 | Music Packard 80000
22222 | Einstein 95000 | Physics Watson 70000
32343 | ElSaid 60000 | History Painter 50000
33456 | Gold 87000 | Physics Watson 70000
45565 | Katz 75000 | Comp.Sci. | Taylor 100000
58583 | Califieri 62000 | History Painter 50000
76543 | Singh 80000 | Finance Painter 120000
76766 | Crick 72000 | Biology Watson 90000
83821 | Brandt 92000 | Comp. Sci. | Taylor 100000
98345 | Kim 80000 | Elec. Eng. Taylor 85000

Figure 2.12 Result of natural join of the instructor and department relations.

Unsorted display of the instructor relation. ‘
| T —

Outline

» Overview of modeling

» Relational Model (Chapter 2)
> Basics
o Keys
> Relational operations

> Relational algebra basics
» SQL (Chapter 3)
Basic Data Definition (3.2)
Setting up the PostgreSQL database
Basic Queries (3.3-3.5)
Null values (3.6)
Aggregates (3.7)

(0]

(0]

(0]

O

(@)

History

» IBM Sequel language developed as part of System R project at the
IBM San Jose Research Laboratory

» Renamed Structured Query Language (SQL)

» ANSI and ISO standard SQL.:
- SQL-86, SQL-89, SQL-92
- SQL:1999, SQL:2003, SQL:2008

» Commercial systems offer most, if not all, SQL-92 features, plus
varying feature sets from later standards and special proprietary
features.
> Not all examples here may work on your particular system.

» Several alternative syntaxes to write the same queries

Different Types of Constructs

» Data definition language (DDL): Defining/modifying schemas
> Integrity constraints: Specifying conditions the data must satisfy
> View definition: Defining views over data
> Authorization: Who can access what

» Data-manipulation language (DML): Insert/delete/update
tuples, queries

» Transaction control:

» Embedded SQL: Calling SQL from within programming
languages

» Creating indexes, Query Optimization control...

Data Definition Language

The SQL data-definition language (DDL) allows the
specification of information about relations, including:

» The schema for each relation.

» The domain of values associated with each attribute.

» Integrity constraints

» Also: other information such as
> The set of indices to be maintained for each relations.
> Security and authorization information for each relation.
- The physical storage structure of each relation on disk.

SQL Constructs: Data Definition Language

» CREATE TABLE <name> (<field> <domain>, ...)

create table department

(dept_name varchar(20),

building varchar(15),

budget numeric(12,2) check (budget > 0),
primary key (dept_name)

);

create table instructor (

ID char(5),

name varchar(20) not null,
dept_name varchar(20),
salary numeric(8,2),

primary key (/D),
foreign key (dept_name) references department

SQL Constructs: Data Definition Language

» CREATE TABLE <name> (<field> <domain>, ...)

create table department
(dept_name varchar(20) primary key,
building varchar(15),
budget numeric(12,2) check (budget > 0)

);

create table instructor (
ID char(5) primary key,

name varchar(20) not null,

d_name varchar(20),

salary numeric(8,2),

foreign key (d_name) references department

SQL Constructs: Data Definition Language

» drop table student
» delete from student
o Keeps the empty table around

» alter table
o alter table student add address varchar(50);
o alter table student drop tot_cred;

SQL Constructs: Insert/Delete/Update Tuples

» INSERT INTO <name> (<field names>) VALUES (<field values>)

insert into instructor values (102117, ° Smith’, " Biology’ , 66000);
insert into instructor (name, ID) values (‘Smith’, “102117);

-- NULL for other two
insert into instructor (ID) values (‘10211°);

-- FAIL

» DELETE FROM <name> WHERE <condition>
delete from department where budget < 80000;

o Syntax is fine, but this command may be rejected because of
referential integrity constraints.

SQL Constructs: Insert/Delete/Update Tuples

» DELETE FROM <name> WHERE <condition>
delete from department where budget < 80000;

dept_name | building | budget b name sl |
: 10101 | Srinivasan | 65000 | Comp. Sci.
Biology | Watson | 90000 12121 | Wu 90000 | Finance
Comp. Sci. | Taylor | 100000 15151 | Mozart 40000 | Music
Elec. Eng Taylor 85000 22222 Finstein 95000 Phvsics
Finance _Painter | 120000 < 32343 | ElSaid 60000 | History >
“History Painter | 50000 > 33456 [~Gota 87000 | Physics
Music Packard | 80000 | 45565__Katz 22000 _|_Comp. Sci.
. < 58583 | Califieri 62000 | History
Physics Watson 70000 7 —STT———So0——Trance
76766 | Crick 72000 | Biology
: - 83821 | Brandt 92000 | Comp. Sci.
Figure 2.5 The department relation. 08345 | Kim 80000 | Elec. Eng.
We can choose what happens: Instructor relation

(1) Reject the delete, or
(2) Delete the rows in Instructor (may be a cascade), or
3) Set the appropriate values in Instructor to NULL

SQL Constructs: Insert/Delete/Update Tuples

» DELETE FROM <name> WHERE <condition>
delete from department where budget < 80000;

create table instructor

(ID varchar(5),

name varchar(20) not null,

dept_name varchar(20),

salary numeric(8,2) check (salary > 29000),

primqry key (ID),

f = ferences department
te set null

D;

We can choose what happens:

(1) Reject the delete (nothing), or

(2) Delete the rows in Instructor (on delete cascade), or

(3) Set the appropriate values in Instructor to NULL (on delete set null)

SQL Constructs: Insert/Delete/Update Tuples

» DELETE FROM <name> WHERE <condition>
> Delete all classrooms with capacity below average
delete from classroom where capacity <
(select avg(capacity) from classroom);

> Problem: as we delete tuples, the average capacity changes

> Solution used in SQL:
- First, compute avg capacity and find all tuples to delete

- Next, delete all tuples found above (without recomputing avg or
retesting the tuples)

- E.g. consider the query: delete the smallest classroom

SQL Constructs: Insert/Delete/Update Tuples

» UPDATE <name> SET <field name> = <value> WHERE <condition>

> Increase all salaries’s over $100,000 by 6%, all other receive 5%.
> Write two update statements:

update instructor

set salary = salary * 1.06
where salary > 100000;

update instructor
set salary = salary * 1.05
where salary = 10000;

o The order is important
> Can be done better using the case statement

SQL Constructs: Insert/Delete/Update Tuples

» UPDATE <name> SET <field name> = <value> WHERE <condition>

> Increase all salaries’s over $100,000 by 6%, all other receive 5%.
> Can be done better using the case statement

update instructor
set salary =

case
when salary > 100000
then salary * 1.06
when salary <= 100000
then salary * 1.05
end;

Outline

» Overview of modeling

» Relational Model (Chapter 2)
> Basics
o Keys
> Relational operations

> Relational algebra basics
» SQL (Chapter 3)
Basic Data Definition (3.2)
Setting up the PostgreSQL database
Basic Queries (3.3-3.5)
Null values (3.6)
Aggregates (3.7)

(0]

(0]

(0]

O

(@)

Setting up the PostgreSQL database

» Follow the instructions posted on the course website to
set up the University database in PostgreSQL

Outline

» Overview of modeling

» Relational Model (Chapter 2)
> Basics
o Keys
> Relational operations

> Relational algebra basics

» SQL (Chapter 3)
> Basic Data Definition (3.2)
Setting up the PostgreSQL database
Basic Queries (3.3-3.5)
Null values (3.6)
Aggregates (3.7)

(0]

(0]

O

(@)

Basic Query Structure

: — Attributes or expressions
select A, A,, ..., A,

from Iy, Ioy ..., I, 4= Relations (or queries returning tables)
where P ¢ Predicates

Remove duplicates:
select distinct name

from instructor
/ Order the output:
Find the names of all instructors: select distinct name
select name M from instructor

from instructor order by name asc

\ Apply some filters (predicates):

select name
from instructor
where salary > 80000 and dept_name = ‘Finance’;

Basic Query Constructs

Select all attributes:
select *

from instructor _ _
Expressions in the select clause:

M select name, salary < 100000

Find the names of alfinstructors: from instructor
select name

from instructor More complex filters:
select name

from instructor
where (dept_name != ‘Finance’ and salary > 75000)
or (dept_name = ‘Finance’ and salary > 85000);

A filter with a subquery:

select name

from instructor

where dept_name in (select dept_name from
department where budget < 100000);

Basic Query Constructs

Renaming tables or output column names:
select i.name, i.salary * 2 as double_salary

from instructor i
where i.salary < 80000 and i.name like ‘“%g_’;

Find the names of alf instructors:
select name

from instructor More complex expressions:
select concat(name, concat(’, ’, dept_name))

from instructor;

Careful with NULLSs:
select name

from instructor
where salary < 100000 or salary >= 100000;

Wouldn’t return the instructor with NULL salary (if any)

Multi-table Queries

Use predicates to only select “matching” pairs:

select *
from instructor i, department d

f where i.dept_name = d.dept_name;

Cartesian product: |dentical (in this case) to using a natural join:

*
select * ~ select

from instructor, department from instructor natural join department;

N Natural join does an equality on common attributes —
doesn’t work here:

select *
from instructor natural join aadvisor;

Instead can use “on” construct (or where clause as above):

select *
from instructor join advisoron (i_id = id);

Multi-table Queries

3-Table Query to get a list of instructor-teaches-course information:

select i.name as instructor_name, c.title as course _name

from instructor i, course c, teaches
where i.ID = teaches.ID and c.course_id = teaches.course_id;

Beware of unintended common names (happens often)
You may think the following query has the same result as above — it doesn’t

select name, title
from instructor natural join course natural join teaches;

| prefer avoiding “natural joins” for that reason

Note: On the small dataset, the above two have
the same answer, but not on the large dataset.
Large dataset has cases where an instructor
teaches a course from a different department.

Set operations

Find courses that ran in Fall 2009 or Spring 2010

(select course_id from section where semester = ‘Fall’ and year = 2009)
union
(select course_id from section where semester = ‘Spring’ and year = 2010);

In both:

(select course_id from section where semester = ‘Fall’ and year = 2009)
intersect
(select course_id from section where semester = ‘Spring’ and year =2010);

In Fall 2009, but not in Spring 2010:

(select course_id from section where semester = ‘Fall’ and year = 2009)
except
(select course_id from section where semester = ‘Spring’ and year = 2010);

Set operations: Duplicates

Union/Intersection/Except eliminate duplicates in the answer (the other SQL
commands don't) (e.g., try ‘select dept_name from instructor’).

Can use “union all”’ to retain duplicates.
NOTE: The duplicates are retained in a systematic fashion (for all SQL operations)

Suppose a tuple occurs mtimes in rand ntimes in s, then, it occurs:
m + ntimes in runion all s
min(m,n) times in rintersect all s
max(0, m — n) times in rexcept all s

NULLs

Union/Intersection/Except eliminate duplicates in the answer (the other SQL
commands don't) (e.g., try ‘select dept_name from instructor’).

Can use “union all”’ to retain duplicates.
NOTE: The duplicates are retained in a systematic fashion (for all SQL operations)

Suppose a tuple occurs mtimes in rand ntimes in s, then, it occurs:
m + ntimes in runion all s
min(m,n) times in rintersect all s
max(0, m — n) times in rexcept all s

Outline

» Overview of modeling

» Relational Model (Chapter 2)
> Basics
o Keys
> Relational operations

> Relational algebra basics

» SQL (Chapter 3)
> Basic Data Definition (3.2)
Setting up the PostgreSQL database
Basic Queries (3.3-3.5)
Null values (3.6)
Aggregates (3.7)

(0]

(0]

O

(@)

SQL: Nulls

The “dirty little secret” of SQL

(major headache for query optimization)

Can be a value of any attribute

e.g: branch = bname bcity assets
Downtown Boston oM
Perry Horseneck 1.7M
Mianus Horseneck 4AM
Waltham Boston NULL

What does this mean?

(unknown) We don’t know Waltham’s assets?

(inaplplicable) Waltham has a special kind of account without
assets

(withheld) We are not allowed to know

SQL: Nulls

Arithmetic Operations with Nul1l

n + NULL = NULL

e.g: branch =

SELECT bname,
FROM branch

mod,

(similarly for all arithmetic ops: +, *, /,
bname bcity assets
Downtown Boston oM
Perry Horseneck 1.7M
Mianus Horseneck AM
Waltham Boston NULL
assets * 2 as aZz bname a2
= Downtown 18M
Perry 3.4M
Mianus .8M
Waltham NULL

SQL: Nulls

Boolean Operations with Null

n < NULL = UNKNOWN (similarly for all boolean ops: >, <=, >=, <>, =, ...)

bname bcity assets
e.g: branch = —
Downtown Boston oM
Perry Horseneck 1.7M
Mianus Horseneck AM
Waltham Boston NULL
*
SELECT - bname bcity assets

FROM branch
WHERE assets = NULL

Counter-intuitive: NULL * 0 = NULL

Counter-intuitive: select * from movies
where length >= 120 or length <= 120

SQL: Nulls

Boolean Operations with Null

n < NULL = UNKNOWN

e.g: branch =

SELECT *
FROM branch
WHERE assets IS NULL

(similarly for all boolean ops: >, <=, >=, <>, =
bname bcity assets
Downtown Boston oM
Perry Horseneck 1.7M
Mianus Horseneck AM
Waltham Boston NULL
bname bcity assets
Waltham Boston NULL

SQL: Unknown

Boolean Operations with Unknown

n < NULL = UNKNOWN (similarly for all boolean ops: >, <=, >=, <>, =, ...)

FALSE OR UNKNOWN = UNKNOWN
TRUE AND UNKNOWN = UNKNOWN

Intuition: substitute each of TRUE, FALSE for unknown. If
different answer results, results 1s unknown

Can write:
UNKNOWN OR UNKNOWN = UNKNOWN
SELECT ..
UNKNOWN AND UNKNOWN = UNKNOWN
FROM ..

NOT (UNKNOWN) = UNKNOWN

WHERE booleanexp IS UNKNOWN

UNKNOWN tuples are not included in final result

Outline

» Overview of modeling

» Relational Model (Chapter 2)
> Basics
o Keys
> Relational operations

> Relational algebra basics

» SQL (Chapter 3)
> Basic Data Definition (3.2)
Setting up the PostgreSQL database
Basic Queries (3.3-3.5)
Null values (3.6)
Aggregates (3.7)

(0]

(0]

O

(@)

Other common aggregates:

Aggregates max, min, sum, count, stdev, ...

select count (distinct /D)
from teaches
where semester =" Spring’ and year = 2010

Find the average salary of instructors

in the Computer Science Can specify aggregates in any query.

select avg(salary)

from instructor . Find max salary over instructors teaching in S’10
where dept_name = ‘Comp. Sci’; select max(salary)

from teaches natural join instructor
where semester =" Spring’ and year = 2010;

Aggregate result can be used as a scalar.
Find instructors with max salary:

select *

from instructor

. where salary = (select max(salary) from instructor);
R N—

Aggregates

Aggregate result can be used as a scalar.

Find instructors with max salary:

select *

from instructor

where salary = (select max(salary) from instructor);

Following doesn’t work:

select *
from instructor
where salary = max(salary);

select name, max(salary)
from instructor
where salary = max (salary);

Aggregates: Group By

Split the tuples into groups, and computer the aggregate for each group

select dept_name, avg (salary)

from instructor
group by dept_name;

ID | name dept_name | salary
76766 | Crick Biology 72000
45565 | Katz Comp. Sci. | 75000
10101 | Srinivasan | Comp. Sci. | 65000
83821 |Brandt Comp. Sci. | 92000
98345 | Kim Elec. Eng. | 80000
12121 | Wu Finance 90000
76543 | Singh Finance 80000
32343 | El Said History 60000
58583 | Califieri History 62000
15151 | Mozart Music 40000
33456 | Gold Physics 87000
22222 |Einstein Physics 95000

deptname | avg_salary
Biology 72000
Comp. Sci. | 77333
Elec. Eng. | 80000
Finance 85000
History 61000
Music 40000
Physics 91000

Aggregates: Group By

Attributes in the select clause must be aggregates, or must appear in the
group by clause. Following wouldn’t work

select dept_name, ID, avg (salary)
from instructor

group by dept_name;

“having” can be used to select only some of the groups.

select dept_name, ID, avg (salary)
from instructor

group by dept name

having avg(salary) > 42000;

Aggregates and NULLs

Given

branch =

Aggregate Operations

SELECT SUM
FROM branch

bname bcity assets
Downtown Boston oM
Perry Horseneck 1.7M
Mianus Horseneck 4AM
Waltham Boston NULL
(assets) = SUM
1.1 M

NULL is ignored for SUM
Same for AVG (3.7M), MIN (0.4M),

MAX (9M)

Also for COUNT (assets) -- returns 3

But COUNT (*) returns

COUNT
4

Aggregates and NULLs

Given

branch = bname

bcity

assets

SELECT SUM (assets) =
FROM branch

o Same as AVG, MIN, MAX

e But COUNT (assets) returns

7))
C
=

NULL

COUNT

Summary

» Relational Model (Chapter 2)
> Basics
o Keys
> Relational operations
> Relational algebra basics

» SQL (Chapter 3)
> Setting up the PostgreSQL database
Data Definition (3.2)
Basics (3.3-3.5)
Null values (3.6)
Aggregates (3.7)

(0]

(0]

(0]

O

