PHIL309P

Philosophy, Politics and Economics

Eric Pacuit
Department of Philosophy
University of Maryland
pacuit.org

 Himiveliphiosiophy
Game The May's Theorem Gaus
Nash Condorcet'sp paradox
tecesectury CO
Nash Rational Choice Theory Pareto Harsanyi
ArrowSocial Choice TheorySen
Rationality
Arrow's Theorem

Taking stock

 Mas semen wisw Nash consorcets pararobx Theory ParetoHarsanyRational Choice $\underset{\text { Rrows theorem }}{\text { Rationality }}$

- Aggregating judgements: single event, multiple issues, logically connected issues, probabilistic opinions, imprecise probabilities, causal models, ...
- May's Theorem: axiomatic characterization of majority rule
- Condorcet Jury Theorem: epistemic analysis of majority rule
- Aggregation paradoxes: multiple election paradox, doctrinal paradox, discursive dilemma, the problem with conjunction, the corroboration paradox

Judgement Aggregation

U. Endriss. Judgment Aggregation. In F. Brandt, V. Conitzer, U. Endriss, J. Lang, and A. D. Procaccia, editors, Handbook of Computational Social Choice, Cambridge University Press, 2016.
C. List. The theory of judgment aggregation: An introductory review. Synthese 187(1): 179-207, 2012.
D. Grossi and G. Pigozzi. Judgement Aggregation: A Primer. Morgan \& Claypool Publishers, 2014.

Vote by Grading

Approval Voting: Each voter selects a subset of candidates. The candidate with the most "approvals" wins the election.
S. Brams and P. Fishburn. Approval Voting. Birkhauser, 1983.
J.-F. Laslier and M. R. Sanver (eds.). Handbook of Approval Voting. Studies in Social Choice and Welfare, 2010. wans same wesme Economics
 Arrow Sociationality

Under Approval Voting (AV), voters are asked to select the candidates that the voter approves.

Under Approval Voting (AV), voters are asked to select the candidates that the voter approves.

Under ranking voting procedures (such as Borda Count), voters are asked to (linearly) rank the candidates.

Under Approval Voting (AV), voters are asked to select the candidates that the voter approves.

Under ranking voting procedures (such as Borda Count), voters are asked to (linearly) rank the candidates.

The two pieces of information are related, but not derivable from each other

Under Approval Voting (AV), voters are asked to select the candidates that the voter approves.

Under ranking voting procedures (such as Borda Count), voters are asked to (linearly) rank the candidates.

The two pieces of information are related, but not derivable from each other
Approving of a candidate is not (necessarily) the same as simply ranking the candidate first.

Why Approval Voting?

 Nsshame whern Economics Arrowsocial Rality
www.electology.org/approval-voting
S. Brams and P. Fishburn. Going from Theory to Practice: The Mixed Success of Approval Voting. Handbook of Approval Voting, pgs. 19-37, 2010.

Approval Voting is more flexible

 Game Theory Downsmars Theorem Gus.
Nash Consorcelts Paratoox ECOMOMICS Nash Consorcet's Paradorec: OMOMCS ArrowSocial Choice
Rationality

\# voters	2	2	1
	A	B	C
	D	D	A
	B	A	B
	C	C	D

The Condorcet winner is A.

Approval Voting is more flexible

 Nash Condorcets Paradox ECO ParetoHarsanyi Arrowsocial Cholice

There is no fixed rule that always elects a unique Condorcet winner.

\# voters	2	2	1
	A	B	C
	D	D	A
	B	A	B
	C	C	D

The Condorcet winner is A.
Vote-for-1 elects $\{A, B\}$

Approval Voting is more flexible

 Arrowsocial Cholice

There is no fixed rule that always elects a unique Condorcet winner.

\# voters	2	2	1
	A	B	C
	D	D	A
	B	A	B
	C	C	D

The Condorcet winner is A.
Vote-for-1 elects $\{A, B\}$, vote-for-2 elects $\{D\}$

Approval Voting is more flexible

 Arrowsocial Cholice

There is no fixed rule that always elects a unique Condorcet winner.

\# voters	2	2	1
	A	B	C
	D	D	A
	B	A	B
	C	C	D

The Condorcet winner is A.
Vote-for-1 elects $\{A, B\}$, vote-for- 2 elects $\{D\}$, vote-for-3 elects $\{A, B\}$.

Approval Voting is more flexible

 Game Theory Downsmars Theorem Gus.
Nash Consorcelts Paratoox ECOMOMICS Nash Condorcets Paradox ECO
Rational Choice Theory ParetoHarsanyi Arrow Sociaionality

AV may elect the Condorcet winner

\# voters	2	2	1
	A	B	C
	D	D	A
	B	A	B
	C	C	D

The Condorcet winner is A. ($\{A\},\{B\},\{C, A\}$) elects A under AV.

Possible Failure of Unanimity

 Arrowsocial Rnalice

Possible Failure of Unanimity

 Nash Consorcets Paratox ECO ParetoHarsanyi Arrow Rationality

\# voters	1	1	1
	A	C	D
	B	A	A
	C	B	B
	D	D	C

Approval Winners: A, B

Indeterminate or Responsive?

 Nash Consorcet's Paradorec: OMOMCS ArrowSocial Choice TheorySen

\# voters	6	5	4
	A	B	C
	C	C	B
	B	A	A

Plurality winner: A, Borda and Condorcet winner: C.

Indeterminate or Responsive?

 Nashemand cheone Tho Arrow Rationality

\# voters	6	5	4
	A	B	C
	C	C	B
	B	A	A

Plurality winner: A, Borda and Condorcet winner: C.
Any combination of A, B and C can be an AV winner (or AV winners).

Generalizing Approval Voting

Generalizing Approval Voting

 Arrow Social Choice
Rationality

Ask the voters to provide both a linear ranking of the candidates and the candidates that they approve.

Generalizing Approval Voting

 Mas seme temo M Nonomics NashRational Choice Theory ParetoHarsany

Ask the voters to provide both a linear ranking of the candidates and the candidates that they approve.

Make the ballots more expressive: Dis\&Approval voting, RangeVoting, Majority Judgement

Grading

In many group decision situations, people use measures or grades from a common language of evaluation to evaluate candidates or alternatives:

- in figure skating, diving and gymnastics competitions;
- in piano, flute and orchestra competitions;
- in classifying wines at wine competitions;
- in ranking university students;
- in classifying hotels and restaurants, e.g., the Michelin *

Voting by Grading: Questions

Politics
 wens nemen wem Economics
 Arrowsocial Cholice

- What grading language should be used? (e.g., $A-F, 0-10, *-* * * *)$

Voting by Grading: Questions

 wans rame ther Nathemana choice Theory pereteotssan Arrow Sociaionality- What grading language should be used? (e.g., $A-F, 0-10, *-* * * *$)
- How should we aggregate the grades? (e.g., Average or Median)

Voting by Grading: Questions

 mins s.emememe ECONOMiCS ArrowSocial Choice TheorySen $\underset{\text { Rrows theorem }}{\text { Rationaly }}$- What grading language should be used? (e.g., $A-F, 0-10, *-* * * *)$
- How should we aggregate the grades? (e.g., Average or Median)
- Should there be a "no opinion" option?

Voting by Grading: Questions

 mins s.emememe ECONOMiCS ArrowSocial Choice TheorySen $\underset{\text { Rrows theorem }}{\text { Rationaly }}$- What grading language should be used? (e.g., $A-F, 0-10, *-* * * *)$
- How should we aggregate the grades? (e.g., Average or Median)
- Should there be a "no opinion" option?

Voting by Grading: Examples

 Mssheme whern Nast ArrowSocial ChoiceRationality

Approval Voting: voters can assign a single grade "approve" to the candidates

Dis\&Approval Voting: voters can approve or disapprove of the candidates
Majority Judgement, Score Voting: voters can assign any grade from a fixed set of grades to the candidates

Strong Paradox of Grading Systems

Grades: $\{0,1,2,3\}$
Candidates: $\{A, B, C\}$ 3 Voters

\# voters	1	1	1	Avg
A	3	2	0	
B	0	3	1	
C	0	3	1	

Grades: $\{0,1,2,3\}$

 Arrow Rationality
Candidates: $\{A, B, C\}$ $\underset{\text { Arows theorem }}{\text { Rationa }}$

3 Voters

\# voters	1	1	1	Avg
A	3	2	0	$5 / 3$
B	0	3	$1 \mid$	$4 / 3$
C	0	3	1	$4 / 3$

Average Grade Winner: A

Grades: $\{0,1,2,3\}$ Mens shemen wem Economics
 ArrowSocial Choice
Candidates: $\{A, B, C\}$ $\underset{\text { Arows theorem }}{\text { Rationality }}$ 3 Voters

\# voters	1	1	1	Avg
A	3	2	0	
B	0	3	1	
C	0	3	1	

Average Grade Winner: A

$$
B>A
$$

Grades: $\{0,1,2,3\}$
Candidates: $\{A, B, C\}$

 ArrowSocial Choice
Rationality 3 Voters

\# voters	1	1	1	Avg
A	3	2	0	
B	0	3	1	
C	0	3	1	

Average Grade Winner: A

$$
C \sim B>A
$$

Grades: $\{0,1,2,3\}$ Mens shemen wem Economics Nast bemanceremate hec normics ArrowSocial Choice
Candidates: $\{A, B, C\}$ $\underset{\text { Arows theorem }}{\text { Rationality }}$

3 Voters

\# voters	1	1	1	Avg
A	3	2	0	
B	0	3	1	
C	0	3	1	

Average Grade Winner: A

$$
C \sim B>A
$$

Grades: $\{0,1,2,3\}$
Candidates: $\{A, B, C\}$

3 Voters

\# voters	1	1	1	Avg
A	3	2	0	
B	0	3	1	
C	0	3	1	

Average Grade Winner: A
Superior Grade Winners: C, B

Grades: $\{0,1,2,3,4,5\}$
Candidates: $\{A, B, C\}$ 5 Voters

\# voters	1	4	Avg
A	5	0	$5 / 5$
B	0	1	$4 / 5$
C	0	1	$4 / 5$

Average Grade Winner: A
Superior Grade Winner: B, C

To conclude, we have identified a paradox of grading systems, which is not just a mirror of the well-known differences that crop up in aggregating votes under ranking systems. Unlike these systems, for which there is no accepted way of reconciling which candidate to choose when, for example, the Hare, Borda and Condorcet winners differ, AV provides a solution when the AG and SG winners differ.

Theorem (Brams and Potthoff). When there are two grades, the AG and SG winners are identical.

Re-examining the the social choice problem: Maximizing social welfare

Social Utility?

 Nashomand crove Thicar $\underset{\text { Rrrows theorem }}{\text { Ratity }}$

Utilitarianism (Bentham, Mill, etc.): Place at the top the social options that produce the greatest amount of pleasure for the citizenry as a whole

Social Utility?

 Ms.amicher Arrow Rationality

Utilitarianism (Bentham, Mill, etc.): Place at the top the social options that produce the greatest amount of pleasure for the citizenry as a whole

How are we to measure the amount of pleasure available under each social option?

A reminder on modern utility theory...

Utility Function

 mass chame comeres mago ECONOMICS ArrowSocial Choice
Rationality

A utility function on a set X is a function $u: X \rightarrow \mathbb{R}$

Utility Function

 uns nemene wemmenomics NashRational Choice
Theory ParetoHarsany Arrowsocial Cholice

A utility function on a set X is a function $u: X \rightarrow \mathbb{R}$

A preference ordering is represented by a utility function iff x is (weakly) preferred to y provided $u(x) \geq u(y)$

Utility Function

 wans rame ther Nash Rational Choice Theory ParetoHarsany Arrow RationalityA utility function on a set X is a function $u: X \rightarrow \mathbb{R}$

A preference ordering is represented by a utility function iff x is (weakly) preferred to y provided $u(x) \geq u(y)$

What properties does such a preference ordering have?

$$
X=\{M, C, P, L\}
$$

$M \subset P L$
$M P L$

C $P L$

M C P
$M \subset L$

$$
X=\{M, C, P, L\}
$$

$$
\begin{gathered}
\geq=\{(M, C),(C, M),(M, P),(M, L),(C, P),(C, L),(P, L), \\
(M, M),(P, P),(C, C),(L, L)\}
\end{gathered}
$$

$$
X=\{M, C, P, L\}
$$

$$
\begin{gathered}
\geq=\{(M, C),(C, M),(M, P),(M, L),(C, P),(C, L),(P, L), \\
(M, M),(P, P),(C, C),(L, L)\}
\end{gathered}
$$

$$
X=\{M, C, P, L\}
$$

$$
\begin{gathered}
\geq=\{(M, C),(C, M),(M, P),(M, L),(C, P),(C, L),(P, L), \\
(M, M),(P, P),(C, C),(L, L)\}
\end{gathered}
$$

$$
X=\{M, C, P, L\}
$$

$$
\begin{gathered}
\geq=\{(M, C),(C, M),(M, P),(M, L),(C, P),(C, L),(P, L), \\
(M, M),(P, P),(C, C),(L, L)\}
\end{gathered}
$$

$$
X=\{M, C, P, L\}
$$

$$
X=\{M, C, P, L\}
$$

$$
X=\{M, C, P, L\}
$$

$M C P L$

$M P L$

(C) $P L$ \vdots

Important

All three of the utility functions represent the preference $x>y>z$

Item	u_{1}	u_{2}	u_{3}
x	3	10	1000
y	2	5	99
z	1	0	1

$x>y>z$ is represented by both $(3,2,1)$ and $(1000,999,1)$, so one cannot say that y is "closer" to x than to z.

Ordinal vs. Cardinal Utility

 wavs nemeneme
 ArrowSocial Choice
Rationality
arrows theocem
Ordinal scale: Qualitative comparisons of objects allowed, no information about differences or ratios.

Ordinal vs. Cardinal Utility

Ordinal scale: Qualitative comparisons of objects allowed, no information about differences or ratios.

Cardinal scales:

Interval scale: Quantitative comparisons of objects, accurately reflects differences between objects.
E.g., the difference between $75^{\circ} \mathrm{F}$ and $70^{\circ} \mathrm{F}$ is the same as the difference between $30^{\circ} \mathrm{F}$ and $25^{\circ} \mathrm{F}$ However, $70^{\circ} \mathrm{F}\left(=21.11^{\circ} \mathrm{C}\right)$ is not twice as hot as $35^{\circ} \mathrm{F}\left(=1.67^{\circ} \mathrm{C}\right)$. The difference between $70^{\circ} \mathrm{F}$ and $65^{\circ} \mathrm{F}$ is not the same as the difference between $25^{\circ} \mathrm{C}$ and $20^{\circ} \mathrm{C}$.

Ordinal vs. Cardinal Utility

Ordinal scale: Qualitative comparisons of objects allowed, no information about differences or ratios.

Cardinal scales:

Interval scale: Quantitative comparisons of objects, accurately reflects differences between objects.
E.g., the difference between $75^{\circ} \mathrm{F}$ and $70^{\circ} \mathrm{F}$ is the same as the difference between $30^{\circ} \mathrm{F}$ and $25^{\circ} \mathrm{F}$ However, $70^{\circ} \mathrm{F}\left(=21.11^{\circ} \mathrm{C}\right)$ is not twice as hot as $35^{\circ} \mathrm{F}\left(=1.67^{\circ} \mathrm{C}\right)$. The difference between $70^{\circ} \mathrm{F}$ and $65^{\circ} \mathrm{F}$ is not the same as the difference between $25^{\circ} \mathrm{C}$ and $20^{\circ} \mathrm{C}$.

Ratio scale: Quantitative comparisons of objects, accurately reflects ratios between objects. E.g., 10 lb is twice as much as 5 lb . But, 10 kg is not twice as much as 5 lb .

Suppose that X is a set of outcomes.

A (simple) lottery over X is denoted $\left[x_{1}: p_{1}, x_{2}: p_{2}, \ldots, x_{n}: p_{n}\right]$ where for $i=1, \ldots, n, x_{i} \in X$ and $p_{i} \in[0,1]$, and $\sum_{i} p_{i}=1$.

Let \mathcal{L} be the set of (simple) lotteries over X. We identify elements $x \in X$ with the lottery $[x: 1]$.

Suppose that \geq is a relation on \mathcal{L}.

Axioms

 was same thery ArrowSocial Choice TheorySen

Preference

Independence

Continuity

Compound Lotteries The decision maker is indifferent between every compound lottery and the corresponding simple lottery.

For all $L_{1}, L_{2}, L_{3} \in \mathcal{L}$ and $a \in(0,1], L_{1}>L_{2}$ if, and only if,
$\left[L_{1}: a, L_{3}:(1-a)\right]>\left[L_{2}: a, L_{3}:(1-a)\right]$.
\geq is reflexive, transitive and complete

$$
\left[\mathrm{L}_{1}: a, \mathrm{~L}_{3}: 1(1-a)\right]>\left[\mathrm{L}_{2}: a, \mathrm{~L}_{3}:(1-a)\right] .
$$

For all $L_{1}, L_{2}, L_{3} \in \mathcal{L}$ and $a \in(0,1]$, if $L_{1}>L_{2}>L_{3}$, then there exists $a \in(0,1)$ such that $\left[L_{1}: a, L_{3}:(1-a)\right] \sim L_{2}$
$u: \mathcal{L} \rightarrow \Re$ is linear provided for all $L=\left[L_{1}: p_{1}, \ldots, L_{n}: p_{n}\right] \in \mathcal{L}$,

$$
u(L)=\sum_{i=1}^{n} p_{i} u\left(L_{i}\right)
$$

von Neumann-Morgenstern Representation Theorem A binary relation \geq on \mathcal{L} satisfies Preference, Compound Lotteries, Independence and Continuity iff \geq is representable by a linear utility function $u: \mathcal{L} \rightarrow \mathfrak{R}$.
Moreover, $u^{\prime}: \mathcal{L} \rightarrow \mathfrak{R}$ represents \geq iff there exists real numbers $c>0$ and d such that $u^{\prime}(\cdot)=c u(\cdot)+d$. (" u is unique up to linear transformations.")

Cardinal Utility Theory

 Nas shemen mocronomics NashRational Choice Theory ParetoHarsany Arrowsocia Choice

Von Neumann-Morgenstern Theorem. If an agent satisfies the previous axioms, then the agent's ordinal utility function can be turned into cardinal utility function.

Cardinal Utility Theory

Von Neumann-Morgenstern Theorem. If an agent satisfies the previous axioms, then the agent's ordinal utility function can be turned into cardinal utility function.

- Utility is unique only up to linear transformations. So, it still does not make sense to add two different agents cardinal utility functions.

Cardinal Utility Theory

Von Neumann-Morgenstern Theorem. If an agent satisfies the previous axioms, then the agent's ordinal utility function can be turned into cardinal utility function.

- Utility is unique only up to linear transformations. So, it still does not make sense to add two different agents cardinal utility functions.
- Issue with continuity: 1EUR >1 cent $>$ death, but who would accept a lottery which is p for 1EUR and $(1-p)$ for death??

Cardinal Utility Theory

Von Neumann-Morgenstern Theorem. If an agent satisfies the previous axioms, then the agent's ordinal utility function can be turned into cardinal utility function.

- Utility is unique only up to linear transformations. So, it still does not make sense to add two different agents cardinal utility functions.
- Issue with continuity: 1EUR >1 cent $>$ death, but who would accept a lottery which is p for 1EUR and $(1-p)$ for death??
- Important issues about how to identify correct descriptions of the outcomes and options.

Social Utility

Suppose that N is a set of agents and for $i \in N, u_{i}$ is i 's cardinal utility function.

Social Utility

Politicscasan fumi fum

 ArrowSocial Choice
Rationality

Suppose that N is a set of agents and for $i \in N, u_{i}$ is i 's cardinal utility function.
Measures of Social Utility:

- Sum Utilitarian: maximize $\sum_{i} u_{i}$
- Average Utilitarian: maximize $\frac{\sum_{i} u_{i}}{|N|}$

Social Utility

 Arrowsocial Choice
Rationality
Arrows theocem

Suppose that N is a set of agents and for $i \in N, u_{i}$ is i 's cardinal utility function.
Measures of Social Utility:

- Sum Utilitarian: maximize $\sum_{i} u_{i}$
- Average Utilitarian: maximize $\frac{\sum_{i} u_{i}}{|N|}$
- Egalitarian: maximize $\min _{i}\left\{u_{i}\right\}$

Social Utility

 ArrowSocial Choice
Rationality

Suppose that N is a set of agents and for $i \in N, u_{i}$ is i 's cardinal utility function.
Measures of Social Utility:

- Sum Utilitarian: maximize $\sum_{i} u_{i}$
- Average Utilitarian: maximize $\frac{\sum_{i} u_{i}}{|N|}$
- Egalitarian: maximize $\min _{i}\left\{u_{i}\right\}$
- Nash: maximize $\Pi_{i} u_{i}$

	v_{1}	v_{2}	$U(\cdot)$
A	0	1	1
B	1	-1	0
C	-1	0	-1

$$
\begin{array}{c|cc|c}
& v_{1} & v_{2} & U(\cdot) \\
\hline A & 0 & 1 & 1 \\
\hline B & 1 & -1 & 0 \\
C & -1 & 0 & -1
\end{array}
$$

\section*{| | v_{1} | v_{2} | $U(\cdot)$ |
| :---: | :---: | :---: | :---: |
| A | 0 | 1 | 1 |
| B | 1 | -1 | 0 |
| C | -1 | 0 | -1 |}

	v_{1}	v_{2}	$U(\cdot)$
A	0	1	1
B	10	-1	9
C	-10	0	-10

	v_{1}	v_{2}	$U(\cdot)$
A	0	1	1
B	1	-1	0
C	-1	0	-1

	v_{1}	v_{2}	$U(\cdot)$
A	0	1	1
B	10	-1	9
C	-10	0	-10

	v_{1}	v_{2}	$U(\cdot)$
A	0	100	100
B	10	-100	-90
C	-10	0	-10

	v_{1}	v_{2}	$U(\cdot)$
A	0	1	1
B	1	-1	0
C	-1	0	-1

	v_{1}	v_{2}	$U(\cdot)$
A	0	1	1
B	10	-1	9
C	-10	0	-10

Mary seashore $>_{M}$ museums $>_{M}$ camping

Sam camping $>_{S}$ museums $>_{S}$ seashore

- The seashore is the only alternative that Mary finds bearable, although she feels more negative about going to the mountains than to the museums.
- Each choice is fine with Sam, although he would much prefer going to the mountains.

	Mary	Sam	Total
Seashore	20		
Museums	10		
Mountains	9		

	Mary	Sam	Total
Seashore	20	86	
Museums	10	93	
Mountains	9	100	

	Mary	Sam	Total
Seashore	20	86	106
Museums	10	93	103
Mountains	9	100	109

	Mary	Sam	Total
Seashore	20	86	106
Museums	10	93	103
Mountains	9	100	109

For Mary, the difference between the seashore and the mountains crosses the threshold between the bearable and the intolerable. She feels that her "right to an emotionally recuperative vacation" will be violated by following a utilitarian scheme.

	Mary	Sam	Total
Seashore	200	86	286
Museums	100	93	190
Mountains	90	100	190

Mary: My preferences are so intense in comparison with yours that my scale should range between 0 and 1,000, if yours range between 0 and 100 .

	Mary	Sam	Total
Seashore	20	86	106
Museums	10	93	103
Mountains	9	100	109

Sam: You think that my preferences are rather weak, but the fact is I feel things quite deeply. I have been brought up in a culture very different from yours and have been trained to avoid emotional outbursts...But I have strong feelings all the same.

	Mary	Sam	Total
Seashore	20	86	106
Museums	10	93	103
Mountains	9	100	109

Sam: I do not think that extra weight should be given in a utilitarian calculation to those who are capable of more intense preferences.

- Is Mary's preference for the seashore really stronger than Sam's for the mountains? Or, is Mary just a more vocal person?
- If some people's preferences are in fact stronger than others', how could we know this?
- Does it make any more sense to compare Sam's preferences with Mary's than it does to compare a dog's preference for steak bones with a horse's preference for oats?
- Even if we answer all these questions affirmatively, is it morally proper to respond to such information in making social choices?

Can't we just wait for psychologists to develop an adequate theory of emotions?

Don't we make interpersonal comparisons all the time?

Can't we just wait for psychologists to develop an adequate theory of emotions?

Don't we make interpersonal comparisons all the time?

Is there more to emotions than our display of them?

Harsanyi's Theorem

Assume that there is a finite number of citizens $(N=\{1, \ldots, n\})$, and a finite set of social states X.

Assume that there is a finite number of citizens $(N=\{1, \ldots, n\})$, and a finite set of social states X.

Assume that there is a Planner.

- The planner's utility function matches the social utility function
- If the Planner is a citizen, he is required to have two (but not necessarily different) preference orderings - his personal ordering and his moral ordering.

Individual and Social Rationality Each citizen and the Planner have a ranking $\geq_{1}, \geq_{2}, \ldots, \geq_{n}, \geq$ over $\mathcal{L}(X)$ (the set of lotteries over the social states X) satisfying the Von Neumann-Morgenstern axioms.

Individual and Social Rationality Each citizen and the Planner have a ranking $\geq_{1}, \geq_{2}, \ldots, \geq_{n}, \geq$ over $\mathcal{L}(X)$ (the set of lotteries over the social states X) satisfying the Von Neumann-Morgenstern axioms.

- Each citizen's preference is represented by a linear utility function u_{i}
- The Planner's preference is represented by a linear utility function u
- Assume that all the citizens use 0 to 1 utility scales.
- Assume that 0 is the lowest utility scale for the Planner.

Strong Pareto

 Nashtional Choice Theory Pareto Harssanyi Arrow Rationality
(P1) For each L, L^{\prime} if $L \sim_{i} L^{\prime}$ for all $i \in N$, then $L \sim L^{\prime}$
(P2) For each L, L^{\prime} if $L \geq_{i} L^{\prime}$ for all $i \in N$ and $L>_{j} L^{\prime}$ for some $j \in N$, then $L>L^{\prime}$

Each lottery L is associated with a vector of real numbers, $\left(u_{i}(L), \ldots, u_{n}(L)\right) \in \mathfrak{R}^{n}$. That is, the sequence of utility values of L for each agent.

Each lottery L is associated with a vector of real numbers, $\left(u_{i}(L), \ldots, u_{n}(L)\right) \in \mathfrak{R}^{n}$. That is, the sequence of utility values of L for each agent.

Defined the following two sets:

$$
\mathcal{R}^{n}=\left\{\left(r_{1}, \ldots, r_{n}\right) \in \mathfrak{R}^{n} \mid \text { there is a } L \in \mathcal{L} \text { such that for all } i=1, \ldots, n, u_{i}(L)=r_{i}\right\}
$$

and

$$
\mathcal{R}=\{r \in \mathfrak{R} \mid \text { there is a } L \in \mathcal{L} \text { such that } u(L)=r\}
$$

Each lottery L is associated with a vector of real numbers, $\left(u_{i}(L), \ldots, u_{n}(L)\right) \in \mathfrak{R}^{n}$. That is, the sequence of utility values of L for each agent.

Defined the following two sets:

$$
\mathcal{R}^{n}=\left\{\left(r_{1}, \ldots, r_{n}\right) \in \mathfrak{R}^{n} \mid \text { there is a } L \in \mathcal{L} \text { such that for all } i=1, \ldots, n, u_{i}(L)=r_{i}\right\}
$$

and

$$
\mathcal{R}=\{r \in \mathfrak{R} \mid \text { there is a } L \in \mathcal{L} \text { such that } u(L)=r\}
$$

Define a function $f: \mathcal{R}^{n} \rightarrow \mathcal{R}$ as follows: for all $\left(r_{1}, \ldots, r_{n}\right)$, let $f\left(r_{1}, \ldots, r_{n}\right)=r$ where $r=u(L)$ with L a lottery such that $\left(u_{1}(L), \ldots, u_{n}(L)\right)=\left(r_{1}, \ldots, r_{n}\right)$.

Equity

 wavs nemeneme Economics Arrow Social Choice
Rationality
Arrows theocem
(E) All agents should be treated equally by the Planner. Formally, this means that $f\left(r_{1}, \ldots, r_{n}\right)=f\left(r_{1}^{\prime}, \ldots, r_{n}^{\prime}\right)$ when there is a permutation $\pi: N \rightarrow N$ such that for each $i=1, \ldots, n, r_{i}^{\prime}=r_{\pi(i)}$.

Harsanyi's Theorem For all $\left(r_{1}, \ldots, r_{n}\right) \in \mathcal{R}^{n}, f\left(r_{1}, \ldots, r_{n}\right)=r_{1}+\cdots+r_{n}$.

Observation. The function f is well-defined.

Observation. The function f is well-defined.

Proof. Suppose that $L, L^{\prime} \in \mathcal{L}$ such that $\left(u_{1}(L), \ldots, u_{n}(L)\right)=\left(u_{1}\left(L^{\prime}\right), \ldots, u_{n}\left(L^{\prime}\right)\right)$. Then, for all $i \in N, i$ is indifferent between L and L^{\prime} (i.e., $L \sim_{i} L^{\prime}$). Then, by axiom $P 1$, we have $L \sim L^{\prime}$. Thus, $u(L)=u\left(L^{\prime}\right)$; and so, f is well-defined.

For each $i \in N$ and $L \in \mathcal{L}$, we have $0 \leq u_{i}(L) \leq 1$.

For each $i \in N$, let $e_{i}=(0,0, \ldots, 1, \ldots, 0)$ (where there is a 1 in the i th position and 0 everywhere else).

This corresponds to a situation in which a single agent gets her most preferred outcome while all the other agents get their least-preferred outcome.

Lemma. For each $i, j \in N, f\left(e_{i}\right)=f\left(e_{j}\right)$

Lemma. For all $a \in \mathfrak{R}, a f\left(r_{1}, \ldots, r_{n}\right)=f\left(a r_{1}, \ldots, a r_{n}\right)$.

Let L be the lottery such that for each $i \in N, u_{i}(L)=r_{i}$. Consider the lottery $L^{\prime}=[L: a, \mathbf{0}:(1-a)]$, where $\mathbf{0}$ is the lottery in which everyone gets their lowest-ranked outcome.

Then, for each $i \in N, u_{i}(\mathbf{0})=0$. Furthermore, by the Pareto principle $P 1$, we must have $u(\mathbf{0})=0$.

Then, for all $i \in N$, we have

1. $u_{i}\left(L^{\prime}\right)=a u_{i}(L)+(1-a) u_{i}(\mathbf{0})=a u_{i}(L)=a r_{i}$; and
2. $u\left(L^{\prime}\right)=a u(L)+(1-a) u(0)=a u(L)$
$a f\left(r_{1}, \ldots, r_{n}\right)=a u(L)$
(definition of f)

Then, for all $i \in N$, we have

1. $u_{i}\left(L^{\prime}\right)=a u_{i}(L)+(1-a) u_{i}(\mathbf{0})=a u_{i}(L)=a r_{i}$; and
2. $u\left(L^{\prime}\right)=a u(L)+(1-a) u(0)=a u(L)$

$$
\begin{aligned}
a f\left(r_{1}, \ldots, r_{n}\right) & =a u(L) \\
& =u\left(L^{\prime}\right)
\end{aligned}
$$

(definition of f)
(item 2.)

Then, for all $i \in N$, we have

1. $u_{i}\left(L^{\prime}\right)=a u_{i}(L)+(1-a) u_{i}(\mathbf{0})=a u_{i}(L)=a r_{i}$; and
2. $u\left(L^{\prime}\right)=a u(L)+(1-a) u(0)=a u(L)$

$$
\begin{aligned}
a f\left(r_{1}, \ldots, r_{n}\right) & =a u(L) & & \text { (definition of } f \text {) } \\
& =u\left(L^{\prime}\right) & & \text { (item 2.) } \\
& =f\left(u_{1}\left(L^{\prime}\right), \ldots, u_{n}\left(L^{\prime}\right)\right) & & \text { (definition of } f \text {) }
\end{aligned}
$$

Then, for all $i \in N$, we have

1. $u_{i}\left(L^{\prime}\right)=a u_{i}(L)+(1-a) u_{i}(\mathbf{0})=a u_{i}(L)=a r_{i}$; and
2. $u\left(L^{\prime}\right)=a u(L)+(1-a) u(0)=a u(L)$

$$
\begin{aligned}
a f\left(r_{1}, \ldots, r_{n}\right) & =a u(L) & & \text { (definition of } f \text {) } \\
& =u\left(L^{\prime}\right) & & \text { (item 2.) } \\
& =f\left(u_{1}\left(L^{\prime}\right), \ldots, u_{n}\left(L^{\prime}\right)\right) & & \text { (definition of } f \text {) } \\
& =f\left(a r_{1}, \ldots a r_{n}\right) & & \text { (item 1.) }
\end{aligned}
$$

Theorem. For all $\left(r_{1}, \ldots, r_{n}\right) \in \mathcal{R}^{n}, f\left(r_{1}, \ldots, r_{n}\right)=r_{1}+\cdots+r_{n}$.

Consider a lottery L such that for all $i \in N, u_{i}(L)=r_{i}$. Consider lotteries L_{i} such that $u_{i}\left(L_{i}\right)=r_{i}$ and for all $j \neq i, u_{j}\left(L_{i}\right)=0$. Consider the lottery $L^{\prime}=\left[L_{1}: 1 / n, \ldots, L_{n}: 1 / n\right]$.

Consider a lottery L such that for all $i \in N, u_{i}(L)=r_{i}$. Consider lotteries L_{i} such that $u_{i}\left(L_{i}\right)=r_{i}$ and for all $j \neq i, u_{j}\left(L_{i}\right)=0$. Consider the lottery $L^{\prime}=\left[L_{1}: 1 / n, \ldots, L_{n}: 1 / n\right]$.

- $u_{i}\left(L^{\prime}\right)=\sum_{k=1}^{n} \frac{1}{n} u_{i}\left(L_{k}\right)=\frac{1}{n} u_{i}\left(L_{i}\right)=\frac{1}{n} r_{i}$.
- $f\left(0, \ldots, r_{k}, \ldots, 0\right)=r_{k} f(0, \ldots, 1, \ldots, 0)=r_{k}$

Consider a lottery L such that for all $i \in N, u_{i}(L)=r_{i}$. Consider lotteries L_{i} such that $u_{i}\left(L_{i}\right)=r_{i}$ and for all $j \neq i, u_{j}\left(L_{i}\right)=0$. Consider the lottery

$$
L^{\prime}=\left[L_{1}: 1 / n, \ldots, L_{n}: 1 / n\right] .
$$

	1	2	P
L_{1}	r_{1}	0	$f\left(r_{1}, 0\right)=r_{1} f(1,0)$
L_{2}	0	r_{2}	$f\left(0, r_{2}\right)=r_{2} f(0,1)$
L^{\prime}	$\frac{1}{2} u\left(L_{1}\right)+\frac{1}{2} u\left(L_{2}\right)=\frac{1}{2} r_{1}$	$\frac{1}{2} u\left(L_{1}\right)+\frac{1}{2} u\left(L_{2}\right)=\frac{1}{2} r_{1}$	$f\left(\frac{1}{2} r_{1}, \frac{1}{2} r_{2}\right)$

$$
\frac{1}{2} f\left(r_{1}, r_{2}\right)=f\left(\frac{1}{2} r_{1}, \frac{1}{2} r_{2}\right)=u\left(L^{\prime}\right)=\frac{1}{2} u\left(L_{1}\right)+\frac{1}{2} u\left(L_{2}\right)=\frac{1}{2} r_{1} f(1,0)+\frac{1}{2} r_{2} f(0,1)
$$

$$
u\left(L^{\prime}\right)=\sum_{k=1}^{n} \frac{1}{n} u\left(L_{k}\right)
$$

$$
\begin{aligned}
u\left(L^{\prime}\right) & =\sum_{k=1}^{n} \frac{1}{n} u\left(L_{k}\right) \\
& =\sum_{k=1}^{n} \frac{1}{n} f\left(u_{1}\left(L_{k}\right), \ldots, u_{k}\left(L_{k}\right), \ldots, u_{n}\left(L_{k}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
u\left(L^{\prime}\right) & =\sum_{k=1}^{n} \frac{1}{n} u\left(L_{k}\right) \\
& =\sum_{k=1}^{n} \frac{1}{n} f\left(u_{1}\left(L_{k}\right), \ldots, u_{k}\left(L_{k}\right), \ldots, u_{n}\left(L_{k}\right)\right) \\
& =\sum_{k=1}^{n} \frac{1}{n} f\left(0, \ldots, r_{k}, \ldots, 0\right)
\end{aligned}
$$

$$
\begin{aligned}
u\left(L^{\prime}\right) & =\sum_{k=1}^{n} \frac{1}{n} u\left(L_{k}\right) \\
& =\sum_{k=1}^{n} \frac{1}{n} f\left(u_{1}\left(L_{k}\right), \ldots, u_{k}\left(L_{k}\right), \ldots, u_{n}\left(L_{k}\right)\right) \\
& =\sum_{k=1}^{n} \frac{1}{n} f\left(0, \ldots, r_{k}, \ldots, 0\right) \\
& =\sum_{k=1}^{n} \frac{1}{n} r_{k} f(0, \ldots, 1, \ldots, 0)
\end{aligned}
$$

$$
\begin{aligned}
u\left(L^{\prime}\right) & =\sum_{k=1}^{n} \frac{1}{n} u\left(L_{k}\right) \\
& =\sum_{k=1}^{n} \frac{1}{n} f\left(u_{1}\left(L_{k}\right), \ldots, u_{k}\left(L_{k}\right), \ldots, u_{n}\left(L_{k}\right)\right) \\
& =\sum_{k=1}^{n} \frac{1}{n} f\left(0, \ldots, r_{k}, \ldots, 0\right) \\
& =\sum_{k=1}^{n} \frac{1}{n} r_{k} f(0, \ldots, 1, \ldots, 0) \\
& =\sum_{k=1}^{n} \frac{1}{n} r_{k}
\end{aligned}
$$

$u\left(L^{\prime}\right)=f\left(u_{1}\left(L^{\prime}\right), \ldots, u_{n}\left(L^{\prime}\right)\right)$

$$
\begin{aligned}
u\left(L^{\prime}\right) & =f\left(u_{1}\left(L^{\prime}\right), \ldots, u_{n}\left(L^{\prime}\right)\right) \\
& =f\left(\frac{1}{n} r_{1}, \ldots, \frac{1}{n} r_{n}\right)
\end{aligned}
$$

$$
\begin{aligned}
u\left(L^{\prime}\right) & =f\left(u_{1}\left(L^{\prime}\right), \ldots, u_{n}\left(L^{\prime}\right)\right) \\
& =f\left(\frac{1}{n} r_{1}, \ldots, \frac{1}{n} r_{n}\right) \\
& =\frac{1}{n} f\left(r_{1}, \ldots, r_{n}\right)
\end{aligned}
$$

Thus,

$$
\frac{1}{n} f\left(r_{1}, \ldots, r_{k}\right)=u\left(L^{\prime}\right)=\sum_{k=1}^{n} \frac{1}{n} r_{k}=\frac{1}{n} \sum_{k=1}^{n} r_{k}
$$

Hence, $f\left(r_{1}, \ldots, r_{n}\right)=r_{1}+\cdots+r_{n}$, as desired.

For 2 citizens, Harsanyi's Theorem require the existence of the following vectors of utilities:

$$
(0,0) \quad(0,1) \quad(1,0) \quad\left(u_{1}, 0\right) \quad\left(0, u_{2}\right) \quad\left(u_{1}, u_{2}\right)
$$

For 2 citizens, Harsanyi's Theorem require the existence of the following vectors of utilities:

$$
(0,0) \quad(0,1) \quad(1,0) \quad\left(u_{1}, 0\right) \quad\left(0, u_{2}\right) \quad\left(u_{1}, u_{2}\right)
$$

Problem. None of Harsanyi's conditions guarantee the existence of this social outcomes.

Suppose the problem is to give a scholarship to exactly one of the citizens.

- $(1,0)$: give the scholarship to citizen 1
- $(0,1)$: give the scholarship to citizen 2

Suppose the problem is to give a scholarship to exactly one of the citizens.

- $(1,0)$: give the scholarship to citizen 1
- $(0,1)$: give the scholarship to citizen 2
- What is the outcome $(0,0)$?

Distributable Goods Assumption

For every vector of numbers $\left(u_{1}, \ldots, u_{n}\right)$ with $0 \leq u_{i} \leq 1$, there is at least one social option for which the distribution of citizens' utilities equals the vector in question.

A distributable good is one, such as food, health, education, talent, friendship, for which all distributions throughout society are at least logically possible.

Problem: Philosophers also look to social choice theory for help in resolving problems in which interests conflict-situations, for example, in which citizens gain only at the expense of others, or ones in which the citizens envy each other, or prefer to sacrifice for each other. These are situations in which we cannot count on the distributable goods assumption to hold.

- A defense of the theorem must argue either that a "true" representation of the citizens' preferences will give rise to the appropriate vectors or that there is a set of "background" options sufficiently rich to support the same vectors, or that certain profiles, such as those in which considerations of envy or altruism are operative, should not be considered.

1. An employer must choose between two equally qualified employees to promote. Assume that everything about their contributions to the firm, their length of service, personal financial needs, and so forth, is the same. The employer summons both employees to her office for separate conversations. The first is an impassive type who allows that he would be pleased to be promoted. The second, on the other hand, effusively tells the employer how long he has hoped for the promotion, etc.
2. An employer must choose between two equally qualified employees to promote. Assume that everything about their contributions to the firm, their length of service, personal financial needs, and so forth, is the same. The employer summons both employees to her office for separate conversations. The first is an impassive type who allows that he would be pleased to be promoted. The second, on the other hand, effusively tells the employer how long he has hoped for the promotion, etc. The employer promotes the second employee explaining that "it meant so much more to the second"...
3. A politician must decide whether to demolish a block of old houses to make room for a new library. The residents of the houses are old and feeble, and the sponsors of the library are young and quite vocal. Both send delegates to speak to the politician. The politician finds it politically expedient to favor the young.

Those that believe in interpersonal comparison of utilities will grant that the two cases have been correctly described: The employer weighed the utilities of her two employees and the politician simply responded to political pressure.

Those who are skeptical about interpersonal comparisons of utility, will argue that in both cases the decision maker is simply behaving in accordance with cultural conditioning to respond in certain ways to the actions of others...the second employee's effusiveness is just as much a form of pressure as the political activists'.

- interpersonal comparison of utility levels
- interpersonal comparison of utility increments

Harsanyi's social welfare function deals with incremental utilities and ignores utility levels.

- The ranking of x and y in terms of sums is preserved if adding (the same or different) numbers to both x and y. Adding these numbers is tantamount to changing the zero points of the citizens' utilities.
- Harsanyi's social welfare function does respond to changes in the units used to measure utility increments.

Some social choice methods respond only to changes in the utility origins, these presuppose the interpersonal comparison of utility origins.

Some social choice methods respond only to change in utility units and presuppose interpersonal comparison of utility units.

Some social choice methods respond to changes in both utility origins and units and presupposes interpersonal comparison of both.

