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Taking stock

I Aggregating judgements: single event, multiple issues, logically
connected issues, probabilistic opinions, imprecise probabilities, causal
models, ...

I May’s Theorem: axiomatic characterization of majority rule

I Condorcet Jury Theorem: epistemic analysis of majority rule

I Aggregation paradoxes: multiple election paradox, doctrinal paradox,
discursive dilemma, the problem with conjunction, the corroboration
paradox
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Judgement Aggregation

U. Endriss. Judgment Aggregation. In F. Brandt, V. Conitzer, U. Endriss, J. Lang, and A. D.
Procaccia, editors, Handbook of Computational Social Choice, Cambridge University Press,
2016.

C. List. The theory of judgment aggregation: An introductory review. Synthese 187(1): 179-207,
2012.

D. Grossi and G. Pigozzi. Judgement Aggregation: A Primer. Morgan & Claypool Publishers,
2014.
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Vote by Grading
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Approval Voting: Each voter selects a subset of candidates. The candidate
with the most “approvals” wins the election.

S. Brams and P. Fishburn. Approval Voting. Birkhauser, 1983.

J.-F. Laslier and M. R. Sanver (eds.). Handbook of Approval Voting. Studies in Social Choice and
Welfare, 2010.
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Under Approval Voting (AV), voters are asked to select the candidates that
the voter approves.

Under ranking voting procedures (such as Borda Count), voters are asked to
(linearly) rank the candidates.

The two pieces of information are related, but not derivable from each other

Approving of a candidate is not (necessarily) the same as simply ranking the
candidate first.
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Why Approval Voting?

www.electology.org/approval-voting

S. Brams and P. Fishburn. Going from Theory to Practice: The Mixed Success of Approval Voting.
Handbook of Approval Voting, pgs. 19-37, 2010.
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Approval Voting is more flexible

There is no fixed rule that always elects a unique Condorcet winner.

# voters 2 2 1

A B C

D D A

B A B

C C D

The Condorcet winner is A.
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Approval Voting is more flexible

AV may elect the Condorcet winner

# voters 2 2 1

A B C

D D A

B A B

C C D

The Condorcet winner is A.
({A}, {B}, {C,A}) elects A under AV.
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Possible Failure of Unanimity

# voters 1 1 1

A C D

B A A

C B B

D D C

Approval Winners: A,B
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Indeterminate or Responsive?

# voters 6 5 4

A B C

C C B

B A A

Plurality winner: A, Borda and Condorcet winner: C.
Any of A, B or C can be an AV winner.
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Generalizing Approval Voting

Ask the voters to provide both a linear ranking of the candidates and the
candidates that they approve.

Make the ballots more expressive: Dis&Approval voting, RangeVoting,
Majority Judgement
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Grading

In many group decision situations, people use measures or grades from a
common language of evaluation to evaluate candidates or alternatives:

I in figure skating, diving and gymnastics competitions;
I in piano, flute and orchestra competitions;
I in classifying wines at wine competitions;
I in ranking university students;
I in classifying hotels and restaurants, e.g., the Michelin ∗
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Voting by Grading: Questions

I What grading language should be used? (e.g., A − F, 0 − 10, ∗ − ∗∗∗∗)

I How should we aggregate the grades? (e.g., Average or Median)

I Should there be a “no opinion” option?
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Voting by Grading: Examples

Approval Voting: voters can assign a single grade “approve” to the
candidates

Dis&Approval Voting: voters can approve or disapprove of the candidates

Majority Judgement, Score Voting: voters can assign any grade from a fixed
set of grades to the candidates
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Strong Paradox of Grading Systems

15 / 64



Grades: {0, 1, 2, 3}
Candidates: {A,B,C}
3 Voters

# voters 1 1 1 Avg

A 3 2 0 8/9

B 0 3 1 8/9

C 0 3 1 11/9

Average Grade Winner: C

Superior Grade Winner: A,B,C
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Grades: {0, 1, 2, 3, 4, 5}
Candidates: {A,B,C}
5 Voters

# voters 1 4 Avg

A 5 0 5/5

B 0 1 4/5

C 0 1 4/5

Average Grade Winner: A

Superior Grade Winner: B,C
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To conclude, we have identified a paradox of grading systems, which is not
just a mirror of the well-known differences that crop up in aggregating votes
under ranking systems. Unlike these systems, for which there is no accepted
way of reconciling which candidate to choose when, for example, the Hare,
Borda and Condorcet winners differ, AV provides a solution when the AG
and SG winners differ.

Theorem (Brams and Potthoff). When there are two grades, the AG and SG
winners are identical.
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Re-examining the the social choice problem: Maximizing social welfare
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Social Utility?

Utilitarianism (Bentham, Mill, etc.): Place at the top the social options that
produce the greatest amount of pleasure for the citizenry as a whole

How are we to measure the amount of pleasure available under each social
option?
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A reminder on modern utility theory...
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Utility Function

A utility function on a set X is a function u : X → R

A preference ordering is represented by a utility function iff x is (weakly)
preferred to y provided u(x) ≥ u(y)

What properties does such a preference ordering have?
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X = {M,C,P,L}
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X = {M,C,P,L}

M C P LM C

M P LM

C P LC

M C PM C

M C LM C

M CM C

M PM

M LM

C PC

C LC

P LP

MM

CC

PP
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X = {M,C,P,L}

M C

P L

M C
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�= {(M,C), (C,M), (M,P), (M,L), (C,P), (C,L), (P,L),
(M,M), (P,P), (C,C), (L,L)}
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X = {M,C,P,L}

M

C

P
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3
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X = {M,C,P,L}

M

C

P

L
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3

2.9
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X = {M,C,P,L}

M C P LM C
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M CM C

P LP
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...
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Important

All three of the utility functions represent the preference x � y � z

Item u1 u2 u3

x 3 10 1000
y 2 5 99
z 1 0 1

x � y � z is represented by both (3, 2, 1) and (1000, 999, 1), so one cannot say
that y is “closer” to x than to z.
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Ordinal vs. Cardinal Utility
Ordinal scale: Qualitative comparisons of objects allowed, no information
about differences or ratios.

Cardinal scales:

Interval scale: Quantitative comparisons of objects, accurately reflects
differences between objects.

E.g., the difference between 75◦F and 70◦F is the same as the difference
between 30◦F and 25◦F However, 70◦F (= 21.11◦C) is not twice as hot as
35◦F (= 1.67◦C). The difference between 70◦F and 65◦F is not the same as
the difference between 25◦C and 20◦C.

Ratio scale: Quantitative comparisons of objects, accurately reflects
ratios between objects. E.g., 10lb is twice as much as 5lb. But, 10kg is not
twice as much as 5lb.
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Suppose that X is a set of outcomes.

A (simple) lottery over X is denoted [x1 : p1, x2 : p2, . . . , xn : pn] where for
i = 1, . . . ,n, xi ∈ X and pi ∈ [0, 1], and

∑
i pi = 1.

Let L be the set of (simple) lotteries over X. We identify elements x ∈ X with
the lottery [x : 1].

Suppose that � is a relation on L.
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Axioms
Preference � is reflexive, transitive and complete

Compound Lotteries The decision maker is indifferent between every
compound lottery and the corresponding
simple lottery.

Independence For all L1,L2,L3 ∈ L and a ∈ (0, 1], L1 � L2

if, and only if,
[L1 : a,L3 : (1 − a)] � [L2 : a,L3 : (1 − a)].

Continuity For all L1,L2,L3 ∈ L and a ∈ (0, 1],
if L1 � L2 � L3, then there exists a ∈ (0, 1)
such that [L1 : a,L3 : (1 − a)] ∼ L2
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u : L → < is linear provided for all L = [L1 : p1, . . . ,Ln : pn] ∈ L,

u(L) =

n∑
i=1

piu(Li)

von Neumann-Morgenstern Representation Theorem A binary relation � on
L satisfies Preference, Compound Lotteries, Independence and Continuity iff
� is representable by a linear utility function u : L → <.

Moreover, u′ : L → < represents � iff there exists real numbers c > 0 and d
such that u′(·) = cu(·) + d. (“u is unique up to linear transformations.”)

26 / 64



Cardinal Utility Theory

Von Neumann-Morgenstern Theorem. If an agent satisfies the previous
axioms, then the agent’s ordinal utility function can be turned into cardinal
utility function.

I Utility is unique only up to linear transformations. So, it still does not make
sense to add two different agents cardinal utility functions.

I Issue with continuity: 1EUR � 1 cent � death, but who would accept a
lottery which is p for 1EUR and (1 − p) for death??

I Important issues about how to identify correct descriptions of the
outcomes and options.
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Social Utility

Suppose that N is a set of agents and for i ∈ N, ui is i’s cardinal utility function.

Measures of Social Utility:

I Sum Utilitarian: maximize
∑

i ui

I Average Utilitarian: maximize
∑

i ui
|N|

I Egalitarian: maximize mini{ui}

I Nash: maximize Πiui
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v1 v2 U(·)
A 0 1 1
B 1 −1 0
C −1 0 −1
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Mary seashore �M museums �M camping

Sam camping �S museums �S seashore

I The seashore is the only alternative that Mary finds bearable, although
she feels more negative about going to the mountains than to the
museums.

I Each choice is fine with Sam, although he would much prefer going to
the mountains.
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Mary Sam Total
Seashore 20

86 106

Museums 10

93 103

Mountains 9

100 109
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Mary Sam Total

Seashore 20 86 106

Museums 10 93 103

Mountains 9 100 109

For Mary, the difference between the seashore and the mountains crosses the
threshold between the bearable and the intolerable. She feels that her “right
to an emotionally recuperative vacation” will be violated by following a
utilitarian scheme.
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Mary Sam Total

Seashore 200 86 286

Museums 100 93 190

Mountains 90 100 190

Mary: My preferences are so intense in comparison with yours that my scale
should range between 0 and 1,000, if yours range between 0 and 100.
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Mary Sam Total

Seashore 20 86 106

Museums 10 93 103

Mountains 9 100 109

Sam: You think that my preferences are rather weak, but the fact is I feel
things quite deeply. I have been brought up in a culture very different from
yours and have been trained to avoid emotional outbursts...But I have strong
feelings all the same.

32 / 64



Mary Sam Total

Seashore 20 86 106

Museums 10 93 103

Mountains 9 100 109

Sam: I do not think that extra weight should be given in a utilitarian
calculation to those who are capable of more intense preferences.

32 / 64



I Is Mary’s preference for the seashore really stronger than Sam’s for the
mountains? Or, is Mary just a more vocal person?

I If some people’s preferences are in fact stronger than others’, how could
we know this?

I Does it make any more sense to compare Sam’s preferences with Mary’s
than it does to compare a dog’s preference for steak bones with a horse’s
preference for oats?

I Even if we answer all these questions affirmatively, is it morally proper
to respond to such information in making social choices?
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Can’t we just wait for psychologists to develop an adequate theory of
emotions?

Don’t we make interpersonal comparisons all the time?

Is there more to emotions than our display of them?
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Harsanyi’s Theorem
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Assume that there is a finite number of citizens (N = {1, . . . ,n}), and a finite set
of social states X.

Assume that there is a Planner.

I The planner’s utility function matches the social utility function
I If the Planner is a citizen, he is required to have two (but not necessarily

different) preference orderings — his personal ordering and his moral
ordering.
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Individual and Social Rationality Each citizen and the Planner have a
ranking �1,�2, . . . ,�n,� over L(X) (the set of lotteries over the social states X)
satisfying the Von Neumann-Morgenstern axioms.

I Each citizen’s preference is represented by a linear utility function ui

I The Planner’s preference is represented by a linear utility function u
I Assume that all the citizens use 0 to 1 utility scales.
I Assume that 0 is the lowest utility scale for the Planner.
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I Assume that 0 is the lowest utility scale for the Planner.
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Strong Pareto

(P1) For each L,L′ if L ∼i L′ for all i ∈ N, then L ∼ L′

(P2) For each L,L′ if L �i L′ for all i ∈ N and L �j L′ for some j ∈ N,
(P2) then L � L′
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Each lottery L is associated with a vector of real numbers,
(ui(L), . . . ,un(L)) ∈ <n. That is, the sequence of utility values of L for each
agent.

Defined the following two sets:

Rn = {(r1, . . . , rn) ∈ <n | there is a L ∈ L such that for all i = 1, . . . ,n, ui(L) = ri}

and
R = {r ∈ < | there is a L ∈ L such that u(L) = r}

Define a function f : Rn → R as follows: for all (r1, . . . , rn), let f (r1, . . . , rn) = r
where r = u(L) with L a lottery such that (u1(L), . . . ,un(L)) = (r1, . . . , rn).
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Equity

(E) All agents should be treated equally by the Planner. Formally, this
means that f (r1, . . . , rn) = f (r′1, . . . , r

′
n) when there is a permutation π : N → N

such that for each i = 1, . . . ,n, r′i = rπ(i).
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Harsanyi’s Theorem For all (r1, . . . , rn) ∈ Rn, f (r1, . . . , rn) = r1 + · · · + rn.
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Observation. The function f is well-defined.

Proof. Suppose that L,L′ ∈ L such that (u1(L), . . . ,un(L)) = (u1(L′), . . . ,un(L′)).
Then, for all i ∈ N, i is indifferent between L and L′ (i.e., L ∼i L′). Then, by
axiom P1, we have L ∼ L′. Thus, u(L) = u(L′); and so, f is well-defined.
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For each i ∈ N and L ∈ L, we have 0 ≤ ui(L) ≤ 1.

For each i ∈ N, let ei = (0, 0, . . . , 1, . . . , 0) (where there is a 1 in the ith position
and 0 everywhere else).

This corresponds to a situation in which a single agent gets her most preferred
outcome while all the other agents get their least-preferred outcome.
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Lemma. For each i, j ∈ N, f (ei) = f (ej)
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Lemma. For all a ∈ <, af (r1, . . . , rn) = f (ar1, . . . , arn).
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Let L be the lottery such that for each i ∈ N, ui(L) = ri. Consider the lottery
L′ = [L : a, 0 : (1 − a)], where 0 is the lottery in which everyone gets their
lowest-ranked outcome.

Then, for each i ∈ N, ui(0) = 0. Furthermore, by the Pareto principle P1, we
must have u(0) = 0.
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Then, for all i ∈ N, we have

1. ui(L′) = aui(L) + (1 − a)ui(0) = aui(L) = ari; and
2. u(L′) = au(L) + (1 − a)u(0) = au(L)

af (r1, . . . , rn) = au(L) (definition of f )

= u(L′) (item 2.)
= f (u1(L′), . . . ,un(L′)) (definition of f )
= f (ar1, . . . arn) (item 1.)
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Theorem. For all (r1, . . . , rn) ∈ Rn, f (r1, . . . , rn) = r1 + · · · + rn.
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Consider a lottery L such that for all i ∈ N, ui(L) = ri. Consider lotteries Li such
that ui(Li) = ri and for all j , i, uj(Li) = 0. Consider the lottery
L′ = [L1 : 1/n, . . . ,Ln : 1/n].

I ui(L′) =
∑n

k=1
1
nui(Lk) = 1

nui(Li) = 1
nri.

I f (0, . . . , rk, . . . , 0) = rkf (0, . . . , 1, . . . , 0) = rk
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Consider a lottery L such that for all i ∈ N, ui(L) = ri. Consider lotteries Li such
that ui(Li) = ri and for all j , i, uj(Li) = 0. Consider the lottery
L′ = [L1 : 1/n, . . . ,Ln : 1/n].

1 2 P
L1 r1 0 f (r1, 0) = r1 f (1, 0)

L2 0 r2 f (0, r2) = r2 f (0, 1)

L′ 1
2u(L1) + 1

2u(L2) = 1
2r1

1
2u(L1) + 1

2u(L2) = 1
2r1 f ( 1

2r1,
1
2r2)

1
2

f (r1, r2) = f (
1
2

r1,
1
2

r2) = u(L′) =
1
2

u(L1) +
1
2

u(L2) =
1
2

r1 f (1, 0) +
1
2

r2 f (0, 1)
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u(L′) =
∑n

k=1
1
n u(Lk)

=
∑n

k=1
1
n f (u1(Lk), . . . ,uk(Lk), . . . ,un(Lk))

=
∑n

k=1
1
n f (0, . . . , rk, . . . , 0)

=
∑n

k=1
1
n rk f (0, . . . , 1, . . . , 0)

=
∑n

k=1
1
n rk
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u(L′) = f (u1(L′), . . . ,un(L′))

= f ( 1
n r1, . . . ,

1
nrn)

= 1
n f (r1, . . . , rn)
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Thus,
1
n

f (r1, . . . , rk) = u(L′) =

n∑
k=1

1
n

rk =
1
n

n∑
k=1

rk

Hence, f (r1, . . . , rn) = r1 + · · · + rn, as desired.
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For 2 citizens, Harsanyi’s Theorem require the existence of the following
vectors of utilities:

(0, 0) (0, 1) (1, 0) (u1, 0) (0,u2) (u1,u2)

Problem. None of Harsanyi’s conditions guarantee the existence of this social
outcomes.
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Suppose the problem is to give a scholarship to exactly one of the citizens.

I (1, 0): give the scholarship to citizen 1
I (0, 1): give the scholarship to citizen 2

I What is the outcome (0, 0)?
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Distributable Goods Assumption

For every vector of numbers (u1, . . . ,un) with 0 ≤ ui ≤ 1, there is at least one
social option for which the distribution of citizens’ utilities equals the vector
in question.

A distributable good is one, such as food, health, education, talent, friendship,
for which all distributions throughout society are at least logically possible.
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Problem: Philosophers also look to social choice theory for help in resolving
problems in which interests conflict-situations, for example, in which citizens
gain only at the expense of others, or ones in which the citizens envy each
other, or prefer to sacrifice for each other. These are situations in which we
cannot count on the distributable goods assumption to hold.
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I A defense of the theorem must argue either that a “true” representation
of the citizens’ preferences will give rise to the appropriate vectors or that
there is a set of “background” options sufficiently rich to support the
same vectors, or that certain profiles, such as those in which
considerations of envy or altruism are operative, should not be
considered.
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1. An employer must choose between two equally qualified employees to
promote. Assume that everything about their contributions to the firm,
their length of service, personal financial needs, and so forth, is the same.
The employer summons both employees to her office for separate
conversations. The first is an impassive type who allows that he would
be pleased to be promoted. The second, on the other hand, effusively
tells the employer how long he has hoped for the promotion, etc.

The
employer promotes the second employee explaining that “it meant so
much more to the second”...
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2. A politician must decide whether to demolish a block of old houses to
make room for a new library. The residents of the houses are old and
feeble, and the sponsors of the library are young and quite vocal. Both
send delegates to speak to the politician. The politician finds it politically
expedient to favor the young.
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Those that believe in interpersonal comparison of utilities will grant that the
two cases have been correctly described: The employer weighed the utilities
of her two employees and the politician simply responded to political
pressure.

Those who are skeptical about interpersonal comparisons of utility, will argue
that in both cases the decision maker is simply behaving in accordance with
cultural conditioning to respond in certain ways to the actions of others...the
second employee’s effusiveness is just as much a form of pressure as the
political activists’.
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I interpersonal comparison of utility levels
I interpersonal comparison of utility increments
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Harsanyi’s social welfare function deals with incremental utilities and ignores
utility levels.

I The ranking of x and y in terms of sums is preserved if adding (the same
or different) numbers to both x and y. Adding these numbers is
tantamount to changing the zero points of the citizens’ utilities.

I Harsanyi’s social welfare function does respond to changes in the units
used to measure utility increments.
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Some social choice methods respond only to changes in the utility origins,
these presuppose the interpersonal comparison of utility origins.

Some social choice methods respond only to change in utility units and
presuppose interpersonal comparison of utility units.

Some social choice methods respond to changes in both utility origins and
units and presupposes interpersonal comparison of both.
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