PHIL309P

Philosophy, Politics and Economics

Eric Pacuit
Department of Philosophy
University of Maryland
pacuit.org

 Himiveliphiosiophy
Game The May's Theorem Gaus
Nash Condorcet'sp paradox
tecesectury CO
Nash Rational Choice Theory Pareto Harsanyi
ArrowSocial Choice TheorySen
Rationality
Arrow's Theorem

Group of voters
Assume that there are an odd number of experts
Candidates:
Two candidates A and B
Preferences:
Rank A above B
Rank B above A
Indifferent between A and B
Aggregation method
Majority rule: A wins if more voters rank A above B than B above $A ; B$ wins if more voters rank B above A than A above B;

Group of experts
Assume that there are an odd number of experts
Agenda:
A single proposition P
Judgements:
Accept $P /$ Judge that P is true
Reject $P /$ Judge that P is false
Suspend judgement about P
Aggregation method
Majority rule: Accept P if more people accept P than reject P; Reject P if more people reject P than accept P

Condorcet Jury Theorem

 wans same wemmeconomics Nash oanal Choice Theory ParetoHarsanyi Arrowsocial CholiceSuppose that the P takes values 0 and 1
R_{i} is the event that voter i reports correctly.

Condorcet Jury Theorem

Suppose that the P takes values 0 and 1
R_{i} is the event that voter i reports correctly.
Independence The reports of the voters are independent conditional on the state of the world: R_{1}, R_{2}, \ldots are independent conditional on P

Competence: For each voter, the probability that the reports correctly is greater than $1 / 2$: for each $x \in\{0,1\}, p\left(R_{i} \mid P=x\right)>\frac{1}{2}$ and

Condorcet Jury Theorem

Suppose that the P takes values 0 and 1
R_{i} is the event that voter i reports correctly.
Independence The reports of the voters are independent conditional on the state of the world: R_{1}, R_{2}, \ldots are independent conditional on P

Competence: For each voter, the probability that the reports correctly is greater than $1 / 2$: for each $x \in\{0,1\}, p\left(R_{i} \mid P=x\right)>\frac{1}{2}$ and

Condorcet Jury Theorem. Suppose Independence and Competence. As the group size increases, the probability that majority opinion is correct (i) increases and (ii) converges to one.

Literature

 Ms.amician Arrow Social Choice
Ratrows theonem
D. Austen-Smith and J. Banks. Aggregation, Rationality and the Condorcet Jury Theorem. The American Political Science Review, 90:1, pgs. 34-45, 1996.
D. Estlund. Opinion Leaders, Independence and Condorcet's Jury Theorem. Theory and Decision, 36, pgs. 131-162, 1994.
F. Dietrich. The premises of Condorcet's Jury Theorem are not simultaneously justified. Episteme,5:1, pgs. 56-73, 2008.
S. Nitzan. Collective Preference and Choice (Part III). Cambridge University Press, 2010.

Judgement aggregation model

 mars Theorem GruersNash Consorce fis Paratox ECOMOMICS Nash Consorcet's Paradox LCO
Rational Choice Theory ParetoHarsanyi ArrowSocial Choice
Rationality

- Group of experts
- Agenda
- Judgement
- Aggregation method
\qquad
Group of experts
- Evidence: shared or independent
- Communication: Allow communication/sharing of opinions
- Opinionated
- Coherent: logically and/or probabilistically

Agenda

- Single issue/proposition
- Set of independent issues/propositions
- Set of logically connected issues/propositions

Do you accept P_{1} ?
Do you accept P_{2} ?
Is P true?
Do you accept P_{n} ?
Do you accept P ?
Do you accept $P \rightarrow Q$?
Do you accept Q ?

Agenda

 Nastional chowe Theory feretedisisn Arrowsocial Cholice

- Single issue/proposition
- Set of independent issues/propositions
- Set of logically connected issues/propositions
- Value from some range (quantity/chance)
- Causal relationships between variables

What is the chance that E will happen?
What is the value of x ?
Which intervention will be most effective?

Judgements

 Nast enand herame Arrow Rationality

- Expressions of judgement vs. expressions of preference
- Qualitative: Accept/Reject; Orderings; Grades

Accept P

P_{1}	P_{2}	\cdots	P_{n}
Y	N	\cdots	Y

$$
P \geq Q \geq R \geq \cdots
$$

Reject P

P	$P \rightarrow Q$	Q
Y	N	N

P is very likely
Q is very likely
R is very unlikely

Judgements

- Expressions of judgement vs. expressions of preference
- Qualitative: Accept/Reject; Orderings; Grades
- Quantitative: Probabilities; Imprecise probabilities
- Causal models
- Do the experts provide their reasons/arguments/confidence?

$$
\operatorname{Pr}(P)=p \quad \operatorname{Pr}(P)=[l, h]
$$

Aggregation method

 Mssheme whern ArrowSocial Choice TheorySen Rationality

- Functions from profiles of judgements to judgements.
- Is the group judgement the same type as the individual judgements?
- Hides disagreement among the experts.

Aggregation method

 Mssheme whern ArrowSocial Choice
Rationality

- Epistemic considerations: How likely is it that the group judgement is correct?
- Procedural/fairness considerations: Does the group judgement reflect the individual judgements?

Wisdom of the Crowds

Politics
 Nentine ine Fconomics Nash Consorcet's Paradox LeCO Pation ParetoHarsanyi
Rational Choice Theory Arrowsocial Rnalice

Collective Intelligence

Politics Game funciriam Philosophy Nas shemen mo
 Arowsocit chone Ration

THE WISDOM OF CROWDS

JAMES
SUROWIECKI

Cass R. Sunstein

Reid Hastie

Helene Landemore
\square
ciompen

Collective wisdom

A. Lyon and EP. The wisdom of crowds: Methods of human judgement aggregation. Handbook of Human Computation, pp. 599-614, 2013.
C. Sunstein. Deliberating groups versus prediction markets (or Hayek's challenge to Habermas). Episteme, 3:3, pgs. 192-213, 2006.
A. B. Kao and I. D. Couzin. Decision accuracy in complex environments is often maximized by small group sizes. Proceedings of the Royal Society: Biological Sciences, 281(1784), 2014.

- In many group decision making problems, one of the alternatives is the correct one. Which aggregation method is best for finding the "correct" alternative?
- Group decision problems often exhibit a combinatorial structure. For example, selecting a committee from a set of candidates or voting on a number of yes/no issues in a referendum. Furthermore, the propositions in the agenda may be interconnected.
S. Brams, D. M. Kilgour, and W. Zwicker. The paradox of multiple elections. Social Choice and Welfare, 15(2), pgs. 211-236, 1998.

Multiple Elections Paradox

 was shamen weine Economics Arrow Rationality
Voters are asked to give their opinion on three yes/no issues:

$Y Y Y$	$Y Y N$	$Y N Y$	$Y N N$	$N Y Y$	$N Y N$	$N N Y$	$N N N$
1	1	1	3	1	3	3	0

Multiple Elections Paradox

 wavs nemenemerneconomics Nash Condorcet's ParadoxRational Choice Theory Pareto Harsanyi ArrowSocial Choice
Rationality

Voters are asked to give their opinion on three yes/no issues:

$Y Y Y$	$Y Y N$	$Y N Y$	$Y N N$	$N Y Y$	$N Y N$	$N N Y$	$N N N$
1	1	1	3	1	3	3	0

Outcome by majority vote

Proposition 1: $N(7-6)$

Multiple Elections Paradox

 Nash Condorcet's Paradox
Rational Choice Theory Pareto Harsanyi ArrowSocial Choice
Rationality
Voters are asked to give their opinion on three yes/no issues:

$Y Y Y$	$Y Y N$	$Y N Y$	$Y N N$	$N Y Y$	$N Y N$	$N N Y$	$N N N$
1	1	1	3	1	3	3	0

Outcome by majority vote

Proposition 1: $N(7-6)$
 Proposition 2: $N(7-6)$

Multiple Elections Paradox

 Nash Condorcets Paradox
Rational Choice Theory Pareto Harsanyi Arrow Rationality
Voters are asked to give their opinion on three yes/no issues:

$Y Y Y$	$Y Y N$	$Y N Y$	$Y N N$	$N Y Y$	$N Y N$	$N N Y$	$N N N$
1	1	1	3	1	3	3	0

Outcome by majority vote
Proposition 1: $N(7-6)$
Proposition 2: $N(7-6)$
Proposition 3: $N(7-6)$

Multiple Elections Paradox

 We can irow Fonomics Nash Condorcets ParatoxRational Choice
Theory P ParetoHarsany Arrowsocial Cholice
Voters are asked to give their opinion on three yes/no issues:

$Y Y Y$	$Y Y N$	$Y N Y$	$Y N N$	$N Y Y$	$N Y N$	$N N Y$	$N N N$
1	1	1	3	1	3	3	0

Outcome by majority vote

> Proposition 1: $N(7-6)$
> Proposition 2: $N(7-6)$
> Proposition 3: $N(7-6)$

But there is no support for NNN!

Complete Reversal

$Y Y Y N$	$Y Y N Y$	$Y N Y Y$	$N Y Y Y$	$N N N N$
2	2	2	2	3

Outcome by majority vote
Proposition 1: $Y(6-5)$
Proposition 2: $Y(6-5)$
Proposition 3: $Y(6-5)$
Proposition 4: $Y(6-5)$
$Y Y Y Y$ wins proposition-wise voting, but the "opposite" outcome NNN has the most overall support!
S. Brams, M. Kilgour and W. Zwicker. Voting on referenda: the separability problem and possible solutions. Electoral Studies, 16(3), pp. 359-377, 1997.
D. Lacy and E. Niou. A problem with referenda. Journal of Theoretical Politics 12(1), pp. 5-31, 2000.
J. Lang and L. Xia. Sequential composition of voting rules in multi-issue domains. Mathematical Social Sciences 57(3), pp. 304-324, 2009.
L. Xia, V. Conitzer and J. Lang. Strategic Sequential Voting in Multi-Issue Domains and MultipleElection Paradoxes. In Proceedings of the Twelfth ACM Conference on Electronic Commerce (EC-11), pp. 179-188, 2010.

A decision has to be made about whether or not to build a new swimming pool (S or \bar{S}) and a new tennis court (T or \bar{T}). Consider 5 voters with rankings over $\{S T, \bar{S} T, S \bar{T}, \bar{S} \bar{T}\}$:

rank	2 voters	2 voters	1 voter
1	$S \bar{T}$	$\bar{S} T$	$S T$
2	$\bar{S} T$	$S \bar{T}$	$S \bar{T}$
3	$\bar{S} \bar{T}$	$\bar{S} \bar{T}$	$\bar{S} T$
4	$S T$	$S T$	$\bar{S} \bar{T}$

A decision has to be made about whether or not to build a new swimming pool (S or \bar{S}) and a new tennis court (T or \bar{T}). Consider 5 voters with rankings over $\{S T, \bar{S} T, S \bar{T}, \bar{S} \bar{T}\}$:

rank	2 voters	2 voters	1 voter
1	$S \bar{T}$	$\bar{S} T$	$S T$
2	$\bar{S} T$	$S \bar{T}$	$S \bar{T}$
3	$\bar{S} \bar{T}$	$\bar{S} \bar{T}$	$\bar{S} T$
4	$S T$	$S T$	$\bar{S} \bar{T}$

The preferences of voters 1-4 are not separable. So, they will have a hard time voting on S vs. \bar{S} and T vs. \bar{T}.

A decision has to be made about whether or not to build a new swimming pool (S or \bar{S}) and a new tennis court (T or \bar{T}). Consider 5 voters with rankings over $\{S T, \bar{S} T, S \bar{T}, \bar{S} \bar{T}\}$:

rank	2 voters	2 voters	1 voter
1	$S \bar{T}$	$\bar{S} T$	$S T$
2	$\bar{S} T$	$S \bar{T}$	$S \bar{T}$
3	$\bar{S} \bar{T}$	$\bar{S} \bar{T}$	$\bar{S} T$
4	$S T$	$S T$	$\bar{S} \bar{T}$

Assume that the voters are optimistic: They vote for the options that are top on their list.

A decision has to be made about whether or not to build a new swimming pool (S or \bar{S}) and a new tennis court (T or \bar{T}). Consider 5 voters with rankings over $\{S T, \bar{S} T, S \bar{T}, \bar{S} \bar{T}\}$:

rank	2 voters	2 voters	1 voter
1	$S \bar{T}$	$\bar{S} T$	$S T$
2	$\bar{S} T$	$S \bar{T}$	$S \bar{T}$
3	$\bar{S} \bar{T}$	$\bar{S} \bar{T}$	$\bar{S} T$
4	$S T$	$S T$	$\bar{S} \bar{T}$

When voting on the individual issues, S wins (3-2) and T wins (3-2), but the outcome $S T$ is a Condorcet loser.
 Arowsocil chice theor Mrantionaily
Arous mexem
"Is a conflict between the proposition and combination winners necessarily bad?
"Is a conflict between the proposition and combination winners necessarily bad? ... The paradox does not just highlight problems of aggregation and packaging, however, but strikes at the core of social choice-both what it means and how to uncover it.
"Is a conflict between the proposition and combination winners necessarily bad? ... The paradox does not just highlight problems of aggregation and packaging, however, but strikes at the core of social choice-both what it means and how to uncover it. In our view, the paradox shows there may be a clash between two different meanings of social choice, leaving unsettled the best way to uncover what this elusive quantity is."
(pg. 234).
S. Brams, D. M. Kilgour, and W. Zwicker. The paradox of multiple elections. Social Choice and Welfare, 15(2), pgs. 211-236, 1998.

The Doctrinal Paradox/Discursive Dilemma

Kornhauser and Sager. Unpacking the court. Yale Law Journal, 1986.
P. Mongin. The doctrinal paradox, the discursive dilemma, and logical aggregation theory. Theory and Decision, 73(3), pp 315-355, 2012.
C. List and P. Pettit. Aggregating sets of judgments: An impossibility result. Economics and Philosophy 18, pp. 89-110, 2002.

Suppose that three experts independently form opinions about three propositions. For instance,

1. $c:$ "Carbon dioxide emissions are above the threshold x."
2. $c \rightarrow g$: "If carbon dioxide emissions are above the threshold x, then there will be global warming."
3. g : "There will be global warming."

	c		c
c	c		

Should we hire (h) candidate C?

Is C good at research (r) ? Is C good at teaching (t) ?

Should we hire (h) candidate C ?
Is C good at research (r) ? Is C good at teaching (t) ?

Should we hire (h) candidate C ?
Is C good at research (r) ? Is C good at teaching (t) ?
We should hire (h) if and only if $r \wedge t$.

Should we hire (h) candidate C ?
Is C good at research (r) ? Is C good at teaching (t) ?
We should hire (h) if and only if $r \wedge t$.

	r		t	$(r \wedge t) \leftrightarrow h$		h
Voter 1	Yes	Yes	Yes	Yes		
Voter 2	Yes	No	Yes	No		
Voter 3	No	Yes	Yes	No		
Group			Yes			

Should we hire (h) candidate C ?
Is C good at research (r) ? Is C good at teaching (t) ?
We should hire (h) if and only if $r \wedge t$.

	r	t	$(r \wedge t) \leftrightarrow h$	h
Voter 1	Yes	Yes	Yes	Yes
Voter 2	Yes	No	Yes	No
Voter 3	No	Yes	Yes	No
Group	Yes	Yes	Yes	No

Suppose that there are five experts $\{1,2,3,4,5\}$ that are asked about five atomic sentences $\left\{p_{1}, p_{2}, p_{3}, p_{4}, p_{5}\right\}$ and the disjunction $p_{1} \vee p_{2} \vee p_{3} \vee p_{4} \vee p_{5}$.

Suppose that there are five experts $\{1,2,3,4,5\}$ that are asked about five atomic sentences $\left\{p_{1}, p_{2}, p_{3}, p_{4}, p_{5}\right\}$ and the disjunction $p_{1} \vee p_{2} \vee p_{3} \vee p_{4} \vee p_{5}$.

Suppose that each expert i, believes p_{i}, disbelieves each of the other atomic propositions and believes the disjunction.

Suppose that there are five experts $\{1,2,3,4,5\}$ that are asked about five atomic sentences $\left\{p_{1}, p_{2}, p_{3}, p_{4}, p_{5}\right\}$ and the disjunction $p_{1} \vee p_{2} \vee p_{3} \vee p_{4} \vee p_{5}$.

Suppose that each expert i, believes p_{i}, disbelieves each of the other atomic propositions and believes the disjunction.

There is unanimous support for the disjunction $p_{1} \vee p_{2} \vee p_{3} \vee p_{4} \vee p_{5}$, but 0.8 support against each disjunct (i.e., for the negation of each disjunct).
F. Cariani. Local Supermajorities. Erkenntnis, 81(2), pp. 391-406, 2016.

Philosophy department: Should we hire a logician, epistemologist or a metaphysician?

Philosophy department: Should we hire a logician, epistemologist or a metaphysician?

	Epistemologist?	Logician?	Metaphysician?
1	Yes	Yes	No
2	No	Yes	Yes
3	Yes	No	Yes
4	Yes	No	No
5	No	Yes	Yes
Majority	Yes	Yes	Yes

Philosophy department: Should we hire a logician, epistemologist or a metaphysician?

	Epistemologist?	Logician?	Metaphysician?
1	Yes	Yes	No
2	No	Yes	Yes
3	Yes	No	Yes
4	Yes	No	No
5	No	Yes	Yes
Majority	Yes	Yes	Yes

University: You can't hire three people.
U. Endriss. Judgment Aggregation with Rationality and Feasibility Constraints. In Proceedings of the 17th International Conference on Autonomous Agents and Multiagent Systems (AAMAS2018).

Philosophy department: Should we hire a logician, epistemologist or a metaphysician? (Rationality constraint: $e \vee l \vee m$)

	Epistemologist?	Logician?	Metaphysician?
1	Yes	Yes	No
2	No	Yes	Yes
3	Yes	No	Yes
4	Yes	No	No
5	No	Yes	Yes
Majority	Yes	Yes	Yes

University: You can't hire three people. (Feasibility constraint: $\neg(e \wedge l \wedge m)$)
U. Endriss. Judgment Aggregation with Rationality and Feasibility Constraints. In Proceedings of the 17th International Conference on Autonomous Agents and Multiagent Systems (AAMAS2018).

Electing Diverse Committees

Choose a committee that consists of members from different parts of the university and is diverse.

Social Sciences	Natural Sciences	Humanities
Ann	Carol	Ellen
Bob	David	Fred

Electing Diverse Committees

Choose a committee that consists of members from different parts of the university and is diverse.

Social Sciences	Natural Sciences	Humanities
Ann	Carol	Ellen
Bob	David	Fred

Voter 1	Voter 2	Voter 3
Ann, David, Fred	Bob, Carol, Fred	Bob, David, Ellen

Electing Diverse Committees

Choose a committee that consists of members from different parts of the university and is diverse.

Social Sciences	Natural Sciences	Humanities
Ann	Carol	Ellen
Bob	David	Fred

Voter 1	Voter 2	Voter 3
Ann, David, Fred	Bob, Carol, Fred	Bob, David, Ellen
Winners: Bob, David, Fred		

Electing Diverse Committees

 Mas semen wey Arrow Social Choice
T. Ratliff. Selecting committees. Public Choice, 126, pp. 242-255, 2006.
T. Ratliff. Some startling inconsistencies when electing committees. Social Choice and Welfare, 21(3), pp. 433-454, 2003.
T. Ratliff and D. Saari. Complexities of electing diverse committees. Social Choice and Welfare, 43(1), pp. 55-71, 2014.

Taking stock

- Aggregating judgements: single event, multiple issues, logically connected issues, probabilistic opinions, imprecise probabilities, causal models, ...
- May's Theorem: axiomatic characterization of majority rule
- Condorcet Jury Theorem: epistemic analysis of majority rule
- Aggregation paradoxes: multiple election paradox, doctrinal paradox, discursive dilemma, the problem with conjunction, the corroboration paradox

Judgement Aggregation

U. Endriss. Judgment Aggregation. In F. Brandt, V. Conitzer, U. Endriss, J. Lang, and A. D. Procaccia, editors, Handbook of Computational Social Choice, Cambridge University Press, 2016.
C. List. The theory of judgment aggregation: An introductory review. Synthese 187(1): 179-207, 2012.
D. Grossi and G. Pigozzi. Judgement Aggregation: A Primer. Morgan \& Claypool Publishers, 2014.

Vote by Grading

Approval Voting: Each voter selects a subset of candidates. The candidate with the most "approvals" wins the election.
S. Brams and P. Fishburn. Approval Voting. Birkhauser, 1983.
J.-F. Laslier and M. R. Sanver (eds.). Handbook of Approval Voting. Studies in Social Choice and Welfare, 2010. wans s.ame wesme Economics Mastional chooce Thecr y feretignssy Arrow Sociationality

Under Approval Voting (AV), voters are asked to select the candidates that the voter approves.

Under Approval Voting (AV), voters are asked to select the candidates that the voter approves.

Under ranking voting procedures (such as Borda Count), voters are asked to (linearly) rank the candidates.

Under Approval Voting (AV), voters are asked to select the candidates that the voter approves.

Under ranking voting procedures (such as Borda Count), voters are asked to (linearly) rank the candidates.

The two pieces of information are related, but not derivable from each other

Under Approval Voting (AV), voters are asked to select the candidates that the voter approves.

Under ranking voting procedures (such as Borda Count), voters are asked to (linearly) rank the candidates.

The two pieces of information are related, but not derivable from each other
Approving of a candidate is not (necessarily) the same as simply ranking the candidate first.

Why Approval Voting?

 Nsshame whern Economics Arrow Socia
Rationality
www.electology.org/approval-voting
S. Brams and P. Fishburn. Going from Theory to Practice: The Mixed Success of Approval Voting. Handbook of Approval Voting, pgs. 19-37, 2010.

Approval Voting is more flexible

 Game Theory Downsmars Theorem Gus.
Nash Consorcelts Paratoox ECOMOMICS
 ArrowSocial Choice
Rationality

\# voters	2	2	1
	A	B	C
	D	D	A
	B	A	B
	C	C	D

The Condorcet winner is A.

Approval Voting is more flexible

 Nash Condorcets Parasox ECO ParetoHarsanyi Arrowsocial Cholice

There is no fixed rule that always elects a unique Condorcet winner.

\# voters	2	2	1
	A	B	C
	D	D	A
	B	A	B
	C	C	D

The Condorcet winner is A.
Vote-for-1 elects $\{A, B\}$

Approval Voting is more flexible

 Nash Condorcets Paradox
Rational Choice
Theory Arrow Rationality

There is no fixed rule that always elects a unique Condorcet winner.

\# voters	2	2	1
	A	B	C
	D	D	A
	B	A	B
	C	C	D

The Condorcet winner is A.
Vote-for-1 elects $\{A, B\}$, vote-for-2 elects $\{D\}$

Approval Voting is more flexible

 Arrowsocial Cholice

There is no fixed rule that always elects a unique Condorcet winner.

\# voters	2	2	1
	A	B	C
	D	D	A
	B	A	B
	C	C	D

The Condorcet winner is A.
Vote-for-1 elects $\{A, B\}$, vote-for- 2 elects $\{D\}$, vote-for-3 elects $\{A, B\}$.

Approval Voting is more flexible

 Game Theory Downsmars Theorem Gus.
Nash Consorcelts Paratoox ECOMOMICS Nash Condorcets Paradox ECO
Rational Choice Theory ParetoHarsanyi Arrow Sociaionality

AV may elect the Condorcet winner

\# voters	2	2	1
	A	B	C
	D	D	A
	B	A	B
	C	C	D

The Condorcet winner is A.
($\{A\},\{B\},\{C, A\}$) elects A under AV.

Possible Failure of Unanimity

 Arrowsocial Rnalice

Possible Failure of Unanimity

 Nast Consorcet's Parabox ECO Parnics ArrowSocial Choice
Rationality

\# voters	1	1	1
	A	C	D
	B	A	A
	C	B	B
	D	D	C

Approval Winners: A, B

Indeterminate or Responsive?

 Nash Consorcet's Paradorec: OMOMCS ArrowSocial Choice TheorySen

\# voters	6	5	4
	A	B	C
	C	C	B
	B	A	A

Plurality winner: A, Borda and Condorcet winner: C.

Indeterminate or Responsive?

 Mas seme temo $\underset{\text { Arows theovem }}{\text { Rationality }}$

\# voters	6	5	4
	A	B	C
	C	C	B
	B	A	A

Plurality winner: A, Borda and Condorcet winner: C.
Any combination of A, B and C can be an AV winner (or AV winners).

Generalizing Approval Voting

 Nens shemenem Economics Arows Socil Chioce Treineorysen anaik menaity
Generalizing Approval Voting

 Arrow Sacial Cholice

Ask the voters to provide both a linear ranking of the candidates and the candidates that they approve.

Generalizing Approval Voting

 Mens.ime weon Economics NashRational Choice Theory ParetoHarsany Arrow Rationality

Ask the voters to provide both a linear ranking of the candidates and the candidates that they approve.

Make the ballots more expressive: Dis\&Approval voting, RangeVoting, Majority Judgement

Grading

In many group decision situations, people use measures or grades from a common language of evaluation to evaluate candidates or alternatives:

- in figure skating, diving and gymnastics competitions;
- in piano, flute and orchestra competitions;
- in classifying wines at wine competitions;
- in ranking university students;
- in classifying hotels and restaurants, e.g., the Michelin *

Voting by Grading: Questions

Politics
 wens nemen wem Economics
 Arrowsocial Cholice

- What grading language should be used? (e.g., $A-F, 0-10, *-* * * *)$

Voting by Grading: Questions

 wans rame ther Naghtomana chioce Thear Arrow Sociaionality- What grading language should be used? (e.g., $A-F, 0-10, *-* * * *$)
- How should we aggregate the grades? (e.g., Average or Median)

Voting by Grading: Questions

 waven shme thery Arrow Rationality

- What grading language should be used? (e.g., $A-F, 0-10, *-* * * *)$
- How should we aggregate the grades? (e.g., Average or Median)
- Should there be a "no opinion" option?

Voting by Grading: Questions

 waven shme thery Arrow Rationality

- What grading language should be used? (e.g., $A-F, 0-10, *-* * * *)$
- How should we aggregate the grades? (e.g., Average or Median)
- Should there be a "no opinion" option?

Voting by Grading: Examples

 Mssheme whern ArrowSocial Choice
Rationality

Approval Voting: voters can assign a single grade "approve" to the candidates

Dis\&Approval Voting: voters can approve or disapprove of the candidates
Majority Judgement, Score Voting: voters can assign any grade from a fixed set of grades to the candidates

Strong Paradox of Grading Systems

Grades: $\{0,1,2,3\}$
Candidates: $\{A, B, C\}$ 3 Voters

\# voters	1	1	1	Avg
A	3	2	0	
B	0	3	1	
C	0	3	1	

Grades: $\{0,1,2,3\}$ ways ame ther
 ArrowSocial Choice
Rationality
Candidates: $\{A, B, C\}$ $\underset{\text { Arows theorem }}{\text { Rationa }}$ 3 Voters

\# voters	1	1	1	Avg
A	3	2	0	$5 / 3$
B	0	3	1	$4 / 3$
C	0	3	1	$4 / 3$

Average Grade Winner: A

Grades: $\{0,1,2,3\}$ Mens shemen wem Economics
 ArrowSocial Choice
Candidates: $\{A, B, C\}$ $\underset{\text { Arows theorem }}{\text { Rationality }}$

3 Voters

\# voters	1	1	1	Avg
A	3	2	0	
B	0	3	1	
C	0	3	1	

Average Grade Winner: A

$$
B>A
$$

Grades: $\{0,1,2,3\}$
Candidates: $\{A, B, C\}$

 ArrowSocial Choice
Rationality 3 Voters

\# voters	1	1	1	Avg
A	3	2	0	
B	0	3	1	
C	0	3	1	

Average Grade Winner: A

$$
C \sim B>A
$$

Grades: $\{0,1,2,3\}$ Mens shemen wem Economics Nasc emeace feyay ArrowSocial Choice
Candidates: $\{A, B, C\}$ $\underset{\text { Arows theorem }}{\text { Rationality }}$

3 Voters

\# voters	1	1	1	Avg
A	3	2	0	
B	0	3	1	
C	0	3	1	

Average Grade Winner: A

$$
C \sim B>A
$$

Grades: $\{0,1,2,3\}$
Candidates: $\{A, B, C\}$

3 Voters

\# voters	1	1	1	Avg
A	3	2	0	
B	0	3	1	
C	0	3	1	

Average Grade Winner: A
Superior Grade Winners: C, B

Grades: $\{0,1,2,3,4,5\}$

Candidates: $\{A, B, C\}$ 5 Voters

\# voters	1	4	Avg
A	5	0	$5 / 5$
B	0	1	$4 / 5$
C	0	1	$4 / 5$

Average Grade Winner: A
Superior Grade Winner: B, C

To conclude, we have identified a paradox of grading systems, which is not just a mirror of the well-known differences that crop up in aggregating votes under ranking systems. Unlike these systems, for which there is no accepted way of reconciling which candidate to choose when, for example, the Hare, Borda and Condorcet winners differ, AV provides a solution when the AG and SG winners differ.

Theorem (Brams and Potthoff). When there are two grades, the AG and SG winners are identical.

