PHIL309P

Philosophy, Politics and Economics

Eric Pacuit
Department of Philosophy
University of Maryland
pacuit.org

 Himiveliphiosiophy
Game The May's Theorem Gaus
Nash Condorcet'sp paradox
tecesectury CO
Nash Rational Choice Theory Pareto Harsanyi
ArrowSocial Choice TheorySen
Rationality
Arrow's Theorem

The Social Choice Model

Notation

 was semme whorn Nonomics Nash condores Choice' Theory ParetoHarsany Arrowsocial Cholice- N is a finite set of voters (assume that $N=\{1,2,3, \ldots, n\}$)
- X is a (typically finite) set of alternatives, or candidates
- A relation on X is a linear order if it is transitive, irreflexive, and complete (hence, acyclic)
- $L(X)$ is the set of all linear orders over the set X
- $O(X)$ is the set of all reflexive and transitive relations over the set X

Notation

 Nash Nastional Choice Theory ParetoHarsanyi ArrowSocial Choice TheorySen- A profile for the set of voters N is a sequence of (linear) orders over X, denoted $\mathbf{R}=\left(R_{1}, \ldots, R_{n}\right)$.
- $L(X)^{n}$ is the set of all profiles for n voters (similarly for $\left.O(X)^{n}\right)$
- For a profile $\mathbf{R}=\left(R_{1}, \ldots, R_{n}\right) \in O(X)^{n}$, let $\mathbf{N}_{\mathbf{R}}(A P B)=\left\{i \mid A P_{i} B\right\}$ be the set of voters that rank A above B (similarly for $\mathbf{N}_{\mathbf{R}}(A$ I $B)$ and $\mathbf{N}_{\mathbf{R}}(B P A)$)

Preference Aggregation Methods

 what wheme weine Economics Arrow Rationality

Social Welfare Function: $F: \mathcal{D} \rightarrow L(X)$, where $\mathcal{D} \subseteq L(X)^{n}$

Preference Aggregation Methods

Social Welfare Function: $F: \mathcal{D} \rightarrow L(X)$, where $\mathcal{D} \subseteq L(X)^{n}$
Comments

- \mathcal{D} is the domain of the function: it is the set of all possible profiles
- Aggregation methods are decisive: every profile \mathbf{R} in the domain is associated with exactly one ordering over the candidates
- The range of the function is $L(X)$: the social ordering is assumed to be a linear order
- Tie-breaking rules are built into the definition of a preference aggregation function

Preference Aggregation Methods

 ArrowSocial Choice TheorySen $\underset{\text { Rrows theorem }}{\text { Ratity }}$

Social Welfare Function: $F: \mathcal{D} \rightarrow L(X)$, where $\mathcal{D} \subseteq L(X)^{n}$

Variants

- Social Choice Function: $F: \mathcal{D} \rightarrow \wp(X)$ - \emptyset, where $\mathcal{D} \subseteq L(X)^{n}$ and $\wp(X)$ is the set of all subsets of X.
- Allow Ties: $F: \mathcal{D} \rightarrow O(X)$ where $O(X)$ is the set of orderings (reflexive and transitive) over X
- Allow Indifference and Ties: $F: \mathcal{D} \rightarrow O(X)$ where $O(X)$ is the set of orderings (reflexive and transitive) over X and $\mathcal{D} \subseteq O(X)^{n}$

Examples

 was seme whorn conomics Arrow Social Choice
Rationality
Arows theocem
$\operatorname{Maj}(\mathbf{R})=>_{M}$ where $A>_{M} B$ iff $\left|\mathbf{N}_{\mathbf{R}}(A P B)\right|>\left|\mathbf{N}_{\mathbf{R}}(B P A)\right|$
(the problem is that $>_{M}$ may not be transitive (or complete))

Examples

 Mas seme temo N Nonomics $\underset{\text { Rrrows theorem }}{\text { Ratity }}$
$\operatorname{Maj}(\mathbf{R})=>_{M}$ where $A>_{M} B$ iff $\left|\mathbf{N}_{\mathbf{R}}(A P B)\right|>\left|\mathbf{N}_{\mathbf{R}}(B P A)\right|$
(the problem is that $>_{M}$ may not be transitive (or complete))
$\operatorname{Borda}(\mathbf{R})=\geq_{B C}$ where $A \geq_{B C} B$ iff the Borda score of A is greater than the Borda score for B.
(the problem is that $\geq_{B C}$ may not be a linear order)

Axiomatic characterizations

 wans weme then Economics Nash condorcers Rational Theory ParetoHarsany ArrowSocial ChoiceRationality

1. Fix a set \mathfrak{F} of possible aggregation methods.
2. Identify a set of properties that discriminate between the different methods in \mathfrak{F}.
3. Characterize the subset of \mathfrak{F} consisting of the methods that satisfy the principles identified in the second step.

Competing desiderata

 wave neme thern Economics ArrowSocial Choice TheorySen

1. The voters' inputs (rankings, judgements) should completely determine the group decision.
2. The group decision should depend in the right way on the voters' inputs.
3. The voters' inputs are not constrained in any way (unless there is good reason to think otherwise).

Characterizing Majority Rule

 wens nemen wem Economics Arrowsocial Rality

May's Theorem (1952) A social decision method F satisfies unanimity, neutrality, anonymity and positive responsiveness iff F is majority rule.

Can May's Theorem be generalized to more than 2 candidates?

Can May's Theorem be generalized to more than 2 candidates? No!

Spoiler Candidates: Plurality Rule

 Mame Theory DownsNash Corem Guns
Nato Nash Condorcet's Paradox ECO OPM Pars

ArrowSocial Choice
Rationality

\# voters | 49 | 48 | 3 | |
| :---: | :---: | :---: | :---: |
| | A | B | C |
| | B | A | B |
| | C | C | A |

Winner: A

Spoiler Candidates: Plurality Rule

 ArrowSocial Choice
Rationality

\# voters	49	48	3
	A	B	C
	B	A	B
	C	C	A

Winner: B

Independence of Irrelevant Alternatives: If the voters in two different electorates rank A and B in exactly the same way, then A and B should be ranked the same way in both elections.

Failure of IIA: Borda Count

 Nesemmen Nash condorcets Paradox ECO ParetoHarsanyiRational Choice Theory
ArrowSocial Choice TheorySen Arrowsocial Choice

\# voters	3	2	2
3	A	B	C
2	B	C	A
1	C	A	B
0	X	X	X

Failure of IIA: Borda Count

 un ane fow Economics Nash Condorcets Paradox ECO ParetoHarsanyiRational Choice Theory
ArrowSocial Choice Theory Sen Arrowsocial Cholice

\# voters	3	2	2
3	A	B	C
2	B	C	A
1	C	A	B
0	X	X	X

$A(15)>_{B C} B(14)>_{B C} C(13)>_{B C} X(0)$

Failure of IIA: Borda Count

Politics Mas seme temounconomics
 Arrow Social Choice
Rationality
arrows theocem

\# voters	3	2	2
3	A	B	C
2	B	C	X
1	C	X	A
0	X	A	B

$$
A(15)>_{B C} B(14)>_{B C} C(13)>_{B C} X(0)
$$

Failure of IIA: Borda Count

\# voters	3	2	2
3	A	B	C
2	B	C	A
1	C	A	B
0	X	X	X

$A(15)>_{B C} B(14)>_{B C} C(13)>_{B C} X(0)$

Politics ases hum iloum

 ArrowSocial Choice
Rationality

\# voters	3	2	2
3	A	B	C
2	B	C	X
1	C	X	A
0	X	A	B

$C(13)>_{B C} B(12)>_{B C} A(11)>_{B C} X(6)$

Arrow's Theorem

 wans same weinw Economics

Arrow Social Choice
Rationality
arrows theocem
Let X be a finite set with at least three elements and N a finite set of n voters.

Social Welfare Function: $F: \mathcal{D} \rightarrow O(X)$ where $\mathcal{D} \subseteq O(X)^{n}$

Arrow's Theorem

 Mas seme temo Nash Condorcets Paradox ECO ParetoHarsany Arrowsocial CholiceLet X be a finite set with at least three elements and N a finite set of n voters.

Social Welfare Function: $F: \mathcal{D} \rightarrow O(X)$ where $\mathcal{D} \subseteq O(X)^{n}$
Reminders:

- $O(X)$ is the set of transitive and complete relations on X
- For $R \in O(X)$, let P_{R} denote the strict subrelation and I_{R} the indifference subrelation:
- $A P_{R} B$ iff $A R B$ and not $B R A$
- $A I_{R} B$ iff $A R B$ and $B R A$

Unanimity

 Arrow Rationality
Arow steereen

$$
F: \mathcal{D} \rightarrow O(X)
$$

If each agent ranks A above B, then so does the social ranking.

Unanimity

 uns nemene wein Arrow Rationality
$F: \mathcal{D} \rightarrow O(X)$

If each agent ranks A above B, then so does the social ranking.

For all profiles $\mathbf{R}=\left(R_{1}, \ldots, R_{n}\right) \in \mathcal{D}$:
If for each $i \in N, A P_{i} B$ then $A P_{F(\mathbf{R})} B$

Universal Domain

 Nsaht monacesseme ECOnOMICS ArrowSocial Choice TheorySen $\underset{\text { Rrows theorem }}{\text { Rationality }}$$F: \mathcal{D} \rightarrow O(X)$

Voter's are free to choose any ranking, and the voters' choices are independent.

Universal Domain

 wans rame therneconomics Arrowsocial Cholice
$F: \mathcal{D} \rightarrow O(X)$

Voter's are free to choose any ranking, and the voters' choices are independent.

The domain of F is the set of all profiles, i.e., $\mathcal{D}=O(X)^{n}$.

Independence of Irrelevant Alternatives

 Nash Consorcets Parasoox
Rational Choice Theory ParetoHarsany Arrow Social Chality
Rationality
$F: \mathcal{D} \rightarrow O(X)$

The social ranking (higher, lower, or indifferent) of two alternatives A and B depends only the relative rankings of A and B for each voter.

Independence of Irrelevant Alternatives

 Mas Geme thery Nash Condorcets Paragox ECO ParetoHarsany ArrowSocial Choice TheorySen $\underset{\text { Rrows theorem }}{\text { Ratity }}$$F: \mathcal{D} \rightarrow O(X)$

The social ranking (higher, lower, or indifferent) of two alternatives A and B depends only the relative rankings of A and B for each voter.

For all profiles $\mathbf{R}=\left(R_{1}, \ldots, R_{n}\right)$ and $\mathbf{R}^{\prime}=\left(R_{1}^{\prime}, \ldots, R_{n}^{\prime}\right)$:

$$
\text { If } R_{i\{A, B\}}=R_{i\langle A, B\rangle}^{\prime} \text { for all } i \in N \text {, then } F(\mathbf{R})_{\{A, B\}}=F\left(\mathbf{R}^{\prime}\right)_{\{A, B\}} .
$$

where $R_{\{X, Y\}}=R \cap\{X, Y\} \times\{X, Y\}$

Voter 1	Voter 2	Group
$A B C$	$C B A$	$B A C$
$A C B$	$B C A$	$C B A$
$B A C$	$C A B$	$A B C$
$B C A$	$A C B$	$C A B$
$C B A$	$A B C$	$B C A$
$C A B$	$B A C$	$A B C$

Voter 1	Voter 2	Group
A B	B A	B A
A B	$B \quad A$	B A
B A	A B	A B
$B \quad A$	$A \quad B$	$A B$
B A	$A B$	B A
$A B$	B A	A B

Voter 1	Voter 2	Group
$A B$	B A	B A
$A \quad B$	B A	B A
B A	A B	A B
$B \quad A$	$A \quad B$	$A B$
B A	A B	$A \quad B$
$A B$	B A	B A

Voter 1 Voter 2 Group

B C	C B	$B C$
C B	B C	$C B$
$B \quad C$	C B	B C
B C	$C B$	C B
$C B$	B C	$C B$
$C B$	$B \quad C$	$B \quad C$

Voter 1 Voter 2 Group

B	C	C	B	B	C
C	C	B	C	C	B
B	C	C	B		B
C	C				
$B C$	C	B	B	C	
C	B	B	C	C	B
C	B	B	C	C	B

Voter 1 Voter 2 Group

$A \quad C$	C A	A C
$A C$	$C A$	C A
A C	$C A$	$A \quad C$
C A	A C	A C
C A	A C	A C
C A	A C	$A C$

Voter 1 Voter 2 Group

A	C	C	A	$A C$
$A C$				
$A C$	$C A$	A	C	
$C A$	$A C$	$A C$		
C	A	A	C	A
$C A$	$A C$	$A C$		

Voter 1	Voter 2	Group
$A B C$	$C B A$	$B A C$
$A C B$	$B C A$	$A B C$
$B A C$	$C A B$	$A B C$
$B C A$	$A C B$	$B A C$
$C B A$	$A B C$	$A B C$
$C A B$	$B A C$	$B A C$

Dictatorship

 ArrowSocial Choice TheorySen $\underset{\text { Rrows theorem }}{\text { Rationaly }}$
$F: \mathcal{D} \rightarrow O(X)$

A voter $d \in N$ is a dictator if society strictly prefers A over B whenever d strictly prefers A over B.

Dictatorship

 uns nemene wo conomics Arrow Social Choice
Rationality
arrows theerem
$F: \mathcal{D} \rightarrow O(X)$

A voter $d \in N$ is a dictator if society strictly prefers A over B whenever d strictly prefers A over B.

There is a $d \in N$ such that for each profile $\mathbf{R}=\left(R_{1}, \ldots, R_{d}, \ldots, R_{n}\right)$, if $A P_{d} B$, then $A P_{F(\mathbf{R})} B$
M. Morreau. Arrow's Theorem. Stanford Encyclopedia of Philosophy, 2014.

Arrow's Theorem

 Mas seme temy conomics Nashonal Choice Theory ParetoHarsany Arrow RationalityTheorem (Arrow, 1951). Suppose that there are at least three candidates and finitely many voters. Any social welfare function that satisfies universal domain, independence of irrelevant alternatives and unanimity is a dictatorship.

Arrow's Theorem

Poitics.ew Milotiophy

 Arrow Social Choice
Rationality
Arrows theocrem
D. Campbell and J. Kelly. Impossibility Theorems in the Arrovian Framework. Handbook of Social Choice and Welfare Volume 1, pgs. 35-94, 2002.
W. Gaertner. A Primer in Social Choice Theory. Oxford University Press, 2006.
J. Geanakoplos. Three Brief Proofs of Arrow's Impossibility Theorem. Economic Theory, 26, 2005.
P. Suppes. The pre-history of Kenneth Arrow's social choice and individual values. Social Choice and Welfare, 25, pgs. 319-326, 2005.

Arrow's Theorem

 Mas semen wey NashRational Choice Theory
Pareto Harsanyi Arrow Rationality

Theorem (Arrow, 1951). Suppose that there are at least three candidates and finitely many voters. Any social welfare function that satisfies universal domain, independence of irrelevant alternatives and unanimity is a dictatorship.

1	2	Society
A	C	
B	B	
C	A	

1	2	Society
A	C	B
B	B	A

1	2	Society	
A	C	B	
B	B	A	
C	C		
C	A		

1	2	Society
A	C	
C	B	
B	A	

Transitivity

1	2	Society
A	C	B
B	B	A

1	2	Society
A	C	B
C	B	A

1	2	Society
A	C	B
B	B	A

Pareto!

1	2	Society
A	C	
B	B	
C	A	

1	2	Society	
A	C	A	
C	C		
B	B	B	
C	A		

1	2	Society	
A	C	A	
C			
B	B	B	
C	A		

1	2	Society
A	B	
B	C	
C	A	

Arrow's Theorem

 Mas semen wey NashRational Choice Theory
Pareto Harsanyi Arrow Rationality

Theorem (Arrow, 1951). Suppose that there are at least three candidates and finitely many voters. Any social welfare function that satisfies universal domain, independence of irrelevant alternatives and unanimity is a dictatorship.

Weakening Unanimity

 Nash
Rational Choice
Theory ParetoHarsany Arrow Rationality
$F: \mathcal{D} \rightarrow O(X)$
Dictatorial: there is a $d \in N$ such that for all $A, B \in X$ and all profiles \mathbf{R} : if $A P_{d} B$, then $A P_{F(\mathbf{R})} B$

Inversely Dictatorial: there is a $d \in N$ such that for all $A, B \in X$ and all profiles \mathbf{R} : if $A P_{d} B$, then $B P_{F(\mathbf{R})} A$

Weakening Unanimity

 Nash
Rational Choice Theory ParetoHarsany Arrow Rationality
$F: \mathcal{D} \rightarrow O(X)$
Dictatorial: there is a $d \in N$ such that for all $A, B \in X$ and all profiles \mathbf{R} : if $A P_{d} B$, then $A P_{F(\mathbf{R})} B$

Inversely Dictatorial: there is a $d \in N$ such that for all $A, B \in X$ and all profiles \mathbf{R} : if $A P_{d} B$, then $B P_{F(\mathbf{R})} A$

Null: For all $A, B \in X$ and for all $\mathbf{R} \in \mathcal{D}: A I_{F(\mathbf{R})} B$

Weakening Unanimity

 nestem Economics Nash Rational Choice Theory ParetoHarsany Arrow Rationality$F: \mathcal{D} \rightarrow O(X)$
Dictatorial: there is a $d \in N$ such that for all $A, B \in X$ and all profiles \mathbf{R} : if $A P_{d} B$, then $A P_{F(\mathbf{R})} B$

Inversely Dictatorial: there is a $d \in N$ such that for all $A, B \in X$ and all profiles \mathbf{R} : if $A P_{d} B$, then $B P_{F(\mathbf{R})} A$

Null: For all $A, B \in X$ and for all $\mathbf{R} \in \mathcal{D}: A I_{F(\mathbf{R})} B$
Non-Imposition: For all $A, B \in X$, there is a $\mathbf{R} \in \mathcal{D}$ such that $A F(\mathbf{R}) B$

Weakening Unanimity

Theorem (Wilson) Suppose that N is a finite set. If a social welfare function satisfies universal domain, independence of irrelevant alternatives and non-imposition, then it is either null, dictatorial or inversely dictatorial.
R. Wilson. Social Choice Theory without the Pareto principle. Journal of Economic Theory, 5, pgs. 478-486, 1972.
Y. Murakami. Logic and Social Choice. Routledge, 1968.
S. Cato. Social choice without the Pareto principle: A comprehensive analysis. Social Choice and Welfare, 39, pgs. 869-889, 2012.

Arrow's Theorem

 Mas semen wey NashRational Choice Theory
Pareto Harsanyi Arrow Rationality

Theorem (Arrow, 1951). Suppose that there are at least three candidates and finitely many voters. Any social welfare function that satisfies universal domain, independence of irrelevant alternatives and unanimity is a dictatorship.

Social Choice Functions

 Mas semen wey $\underset{\text { Rrrows theorem }}{\text { Ratity }}$
$F: \mathcal{D} \rightarrow \wp(X)-\emptyset$

Resolute: For all profiles $\mathbf{R} \in \mathcal{D},|F(\mathbf{R})|=1$
Non-Imposed: For all candidates $A \in X$, there is a $\mathbf{R} \in \mathcal{D}$ such that $F(\mathbf{R})=\{A\}$.
Monotonicity: For all profiles \mathbf{R} and \mathbf{R}^{\prime}, if $A \in F(\mathbf{R})$ and for all $i \in N$, $\mathbf{N}_{\mathbf{R}}\left(A P_{i} B\right) \subseteq \mathbf{N}_{\mathbf{R}^{\prime}}\left(A P_{i}^{\prime} B\right)$ for all $B \in X-\{A\}$, then $A \in F\left(\mathbf{R}^{\prime}\right)$.

Dictator: A voter d is a dictator if for all $\mathbf{R} \in \mathcal{D}, F(\mathbf{R})=\{A\}$, where A is d^{\prime} s top choice.

Social Choice Functions

Muller-Satterthwaite Theorem. Suppose that there are more than three alternatives and finitely many voters. Every resolute social choice function $F: L(X)^{n} \rightarrow X$ that is monotonic and non-imposed is a dictatorship.
E. Muller and M.A. Satterthwaite. The Equivalence of Strong Positive Association and StrategyProofness. Journal of Economic Theory, 14(2), pgs. 412-418, 1977.

Arrow's Theorem

 Mas semen wey NashRational Choice Theory
Pareto Harsanyi Arrow Rationality

Theorem (Arrow, 1951). Suppose that there are at least three candidates and finitely many voters. Any social welfare function that satisfies universal domain, independence of irrelevant alternatives and unanimity is a dictatorship.

- Infinitely many voters.
- Domain restrictions.
- Richer ballots.

Universal Domain

 mavs theorem Geus Nash consorcestion Theory ParetoHarsanyi Arrowsocial CholiceUniversal Domain: The domain of the social welfare (choice) function is $\mathcal{D}=L(X)^{n}\left(\right.$ or $\left.O(X)^{n}\right)$

Universal Domain

Universal Domain: The domain of the social welfare (choice) function is $\mathcal{D}=L(X)^{n}\left(\right.$ or $\left.O(X)^{n}\right)$

Epistemic Rationale: "If we do not wish to require any prior knowledge of the tastes of individuals before specifying our social welfare function, that function will have to be defined for every logically possible set of individual orderings." (Arrow, 1963, pg. 24)

Domain Restrictions

 wans weme therneconomics Arrow Social
Rationality

- Single-Peaked preferences
- Sen's Value Restriction
- Assumptions about the distribution of preferences
W. Gaertner. Domain Conditions in Social Choice Theory. Cambridge University Press, 2001. Menseme heormeronomics

1	1	1
A	B	C
B	C	A
C	A	B

 Arrow Rationality

1	1	1
A	B	C
B	C	A
C	A	B

Alternatives

1	1	1
A	B	C
B	C	A
C	A	B

Politics
Game theornaws Philosophy wave neme thern Economics Nagh ename hemaide incon pereotics Arrow Rationality

 mass Game theoryours
 Arrow Social Choice
D. Black. On the rationale of group decision-making. Journal of Political Economy, 56:1, pgs. $23-$ 34, 1948.

Single-Peakedness: the preferences of group members are said to be single-peaked if the alternatives under consideration can be represented as points on a line and each of the utility functions representing preferences over these alternatives has a maximum at some point on the line and slopes away from this maximum on either side.

Single-Peakedness: the preferences of group members are said to be single-peaked if the alternatives under consideration can be represented as points on a line and each of the utility functions representing preferences over these alternatives has a maximum at some point on the line and slopes away from this maximum on either side.

Theorem. If there is an odd number of voters that display single-peaked preferences, then a Condorcet winner exists.
D. Miller. Deliberative Democracy and Social Choice. Political Studies, 40, pgs. 54-67, 1992.
C. List, R. Luskin, J. Fishkin and I. McLean. Deliberation, Single-Peakedness, and the Possibility of Meaningful Democracy: Evidence from Deliberative Polls. Journal of Politics, 75(1), pgs. 80-95, 2013.

Sen's Value Restriction

A. Sen. A Possibility Theorem on Majority Decisions. Econometrica 34, 1966, pgs. 491-499.

Sen's Theorem

 uns nemene wein
 Arrowsocial Choice

Assume n voters (n is odd).

Sen's Theorem

 was same wemocronomics Arrow Rationality

Assume n voters (n is odd).

Triplewise value-restriction: For every triple of distinct candidates A, B, C there exists an $x_{i} \in\{A, B, C\}$ and $r \in\{1,2,3\}$ such that no voter ranks x_{i} has her r th preference among A, B, C.

Sen's Theorem

 Nash Consorcets Paradox Rational Choice Theory ParetoHarsany Arrow Rationality

Assume n voters (n is odd).

Triplewise value-restriction: For every triple of distinct candidates A, B, C there exists an $x_{i} \in\{A, B, C\}$ and $r \in\{1,2,3\}$ such that no voter ranks x_{i} has her r th preference among A, B, C.

Theorem (Sen, 1966). For every profile satisfying triplewise value-restriction, pairwise majority voting generates a transitive group preference ordering.

Restrict the distribution of preferences

M. Regenwetter, B. Grofman, A.A.J. Marley and I. Tsetlin. Behavioral Social Choice. Cambridge University Press, 2006.

Proceduralist Justifications

 Nash Consorcets paraoox
Rational Choice Theory ParetoHarsany
Arrow Social Choice Theory Sen Arrowsocia Choice
"identifies a set of ideals with which any collective decision-making procedure ought to comply. [A] process of collective decision making would be more or less justifiable depending on the extent to which it satisfies them...

Proceduralist Justifications

"identifies a set of ideals with which any collective decision-making procedure ought to comply. [A] process of collective decision making would be more or less justifiable depending on the extent to which it satisfies them...What justifies a [collective] decision-making procedure is strictly a necessary property of the procedure-one entailed by the definition of the procedure alone."
J. Coleman and J. Ferejohn. Democracy and social choice. Ethics, 97(1): 6-25, 1986..

Epistemic Justifications

Epistemic Justifications

"An epistemic interpretation of voting has three main elements: (1) an independent standard of correct decisions that is, an account of justice or of the common good that is independent of current consensus and the outcome of votes; (2) a cognitive account of voting that is, the view that voting expresses beliefs about what the correct policies are according to the independent standard, not personal preferences for policies; and (3) an account of decision making as a process of the adjustment of beliefs, adjustments that are undertaken in part in light of the evidence about the correct answer that is provided by the beliefs of others. (p. 34) "
J. Cohen. An epistemic conception of democracy. Ethics, 97(1): 26-38, 1986.
"Condorcet begins with the premise that the object of government is to make decisions that are in the best interest of society. This leads naturally to the question: what voting rules are most likely to yield good outcomes?....
"Condorcet begins with the premise that the object of government is to make decisions that are in the best interest of society. This leads naturally to the question: what voting rules are most likely to yield good outcomes?....
Why should we buy the idea, though, that there really is such a thing as an objectively "best" choice? Aren't values relative, and isn't the point of voting to strike a balance between conflicting opinions, not to determine a correct one?"
H. P. Young. Optimal Voting Rules. The Journal of Economic Perspectives, 9:1, pgs. 51-64, 1995.

- Group decision problems often exhibit a combinatorial structure. For example, selecting a committee from a set of candidates or voting on a number of yes/no issues in a referendum.
- Group decision problems often exhibit a combinatorial structure. For example, selecting a committee from a set of candidates or voting on a number of yes/no issues in a referendum.
- In many group decision making problems, one of the alternatives is the correct one. Which group decision making method is best for finding the "correct" alternative?
- Group decision problems often exhibit a combinatorial structure. For example, selecting a committee from a set of candidates or voting on a number of yes/no issues in a referendum.
- In many group decision making problems, one of the alternatives is the correct one. Which group decision making method is best for finding the "correct" alternative?
- The different issues under consideration may be interconnected.
- Group decision problems often exhibit a combinatorial structure. For example, selecting a committee from a set of candidates or voting on a number of yes/no issues in a referendum.
- In many group decision making problems, one of the alternatives is the correct one. Which group decision making method is best for finding the "correct" alternative?
- The different issues under consideration may be interconnected.

Topics

 wavs wame weiceme Economics Nashtonal Choice Theory Pareto HarsanyiRational ArrowSocial Choice TheorySen $\underset{\text { Arows theorem }}{\substack{\text { Rationality }}}$

- Voting in Combinatorial Domains: Anscombe's Paradox, Multiple Elections Paradox
- Epistemic Voting: The Condorcet Jury Theorem
- Judgement Aggregation

