PHIL309P

Philosophy, Politics and Economics

Eric Pacuit
Department of Philosophy
University of Maryland
pacuit.org

 Himiveliphiosiophy
Game The May's Theorem Gaus
Nash Condorcet'sp paradox
tecesectury CO
Nash Rational Choice Theory Pareto Harsanyi
ArrowSocial Choice TheorySen
Rationality
Arrow's Theorem

Notation

 Mas semen wisw Nash condores Choice' Theory ParetoHarsany Arrowsocial Cholice- N is a finite set of voters (assume that $N=\{1,2,3, \ldots, n\})$
- C is a (typically finite) set of alternatives, or candidates
- A relation on C is a linear order if it is transitive, irreflexive, and complete (hence, acyclic), also called a ranking
- $L(X)$ is the set of all linear orders over the set X
- $O(X)$ is the set of all reflexive and transitive relations over the set X (ties are allowed)

Profiles

 Whateme wisem ECOMOMICSArowsocal Choice Treeronssen
anaik memanty
A profile for C is a function \mathbf{P} assigning to $i \in V$ a linear order \mathbf{P}_{i} on C.

Profiles

 Ms.amicher Arrow Social Choice
Rationality
arrows theocem

A profile for C is a function \mathbf{P} assigning to $i \in V$ a linear order \mathbf{P}_{i} on C.
So, $a \mathbf{P}_{i} b$ means that voter i strictly prefers candidate a to b, or a is ranked above b.

For instance, let $V=\{1,2,3,4\}$ and $C=\{a, b, c, d\}$. Then, an example of a profile is:

1	2	3	4
a	a	b	c
b	c	a	b
c	b	c	a

- A profile for the set of voters V is a sequence of (linear) orders over C, denoted $\mathbf{P}=\left(P_{1}, \ldots, P_{n}\right)$.
- Note that unlike V or C, which are sets (order of elements does not matter), \mathbf{P} is a tuple of different rankings (i.e., the order of the rankings does matter!).
- If $|C|=n$ and $|V|=m$, we call $\mathbf{P a}(n, m)$-profile.
- $L(C)^{V}$ is the set of all profiles or linear orders for n voters (similarly for $O(C)^{V}$)

Voting Method

 ArrowSocial Choice
Rationality

A voting method is a function $f: L(C)^{V} \rightarrow \wp(C) \backslash\{\varnothing\}$.

A voting method is resolute if for all profiles $\mathbf{P},|f(\mathbf{P})|=1$.

Anonymous Profiles

 Nashemences max ECOnOMICS ArrowSocial Choice TheorySen $\underset{\text { Rrows theorem }}{\text { Rationaly }}$An anonymous profile is a function $\rho: L(C) \rightarrow \mathbb{N}$, where $L(C)$ is the set of rankings of C.

Anonymous Profiles

 wash same ine no Economics Nastional Choice Theory ParetoHarsanyi Arrowsocial CholiceAn anonymous profile is a function $\rho: L(C) \rightarrow \mathbb{N}$, where $L(C)$ is the set of rankings of C.

2	5	3	5
a	a	b	c
b	c	a	b
c	b	c	a

Majoritarianism

 Mens shemeneremo Economics ArrowSocial Choice
Rationality

When there are only two candidates A and B, then all (reasonable) voting methods give the same results:

Majoritarianism

 Mas semen wey Nash condorcets Paraon Theory ParetoHarsany Arrow RationalityWhen there are only two candidates A and B, then all (reasonable) voting methods give the same results:

Majority Rule: A is ranked above (below) B if more (fewer) voters rank A above B than B above A, otherwise A and B are tied.

Majoritarianism

 Mass Game Theory Nash Condorcets ParatoxRational Choice
Theory $\underset{\substack{\text { Rrows theorem }}}{\substack{\text { Rity } \\ \text { and }}}$

When there are only two candidates A and B, then all (reasonable) voting methods give the same results:

Majority Rule: A is ranked above (below) B if more (fewer) voters rank A above B than B above A, otherwise A and B are tied.

When there are only two options, can we argue that majority rule is the best procedure?

Majoritarianism

When there are only two candidates A and B, then all (reasonable) voting methods give the same results:

Majority Rule: A is ranked above (below) B if more (fewer) voters rank A above B than B above A, otherwise A and B are tied.

When there are only two options, can we argue that majority rule is the best procedure?

Yes. We will look at two arguments: A procedural justification and an epistemic justification.

Majoritarianism

 wavs rame weicemeconomics ArrowSocial Choice
Rationality

What about when there are more than two candidates, can we still argue that majority rule is the "best" procedure?

Majoritarianism

 Mas semen wey NasheonsorcespareRational Choice Theory, ParetoHarsany
ArrowSocial Choice Theory Sen Arrowsocia Choice

What about when there are more than two candidates, can we still argue that majority rule is the "best" procedure?

Results are more mixed: Consider our previous definition of majority rule....

Majoritarianism

 Nash Condorcets Paradox
Rational Choice
Theory Arrowsocial Cholice

What about when there are more than two candidates, can we still argue that majority rule is the "best" procedure?

Results are more mixed: Consider our previous definition of majority rule....we only defined it between two options! Can we generalize for $|C|>2$?

Majority Rule

 Nshntone chore ECOMOMICS Arowsocai il hoice Arows theoremMajority Rule: If any option, a, is ranked first by over half the voters, then a is chosen as the winner)

Majority Rule

 wassemencer wisconomics NashRational Choice Theory ParetoHarsany Arrowsocia Choice

Majority Rule: If any option, a, is ranked first by over half the voters, then a is chosen as the winner)

Is this a good generalization? What problems might be run into?

Majority Rule

 Nastional Choice Theory paretorarsany Arrowsocia Choice

Majority Rule: If any option, a, is ranked first by over half the voters, then a is chosen as the winner)

Is this a good generalization? What problems might be run into?

- If might not return a winner, especially as C grows!

Majority Rule

 Nash conoractet faradoter ECO OOMICS ArrowSocial Choice TheorySen $\underset{\text { arrows theorem }}{\text { Rationa }}$

Majority Rule: If any option, a, is ranked first by over half the voters, then a is chosen as the winner)

Is this a good generalization? What problems might be run into?

- If might not return a winner, especially as C grows!
- Tyranny of the majority: A candidate with 51% of the vote may be ranked last by 49% of the voters, while another candidate is ranked 1st or 2 nd by 100% of the voters.

Positional scoring rules

 Nashemanc cheone Tho Arrow
Rationality
arrows theerem

Suppose $\left\langle s_{1}, s_{2}, \ldots, s_{m}\right\rangle$ is a vector of numbers, called a scoring vector, where for each $l=1, \ldots, m-1, s_{l} \geq s_{l+1}$.

The score of $x \in C$ given P is $\operatorname{score}(P, x)=s_{r}$ where r is the rank of x in P.
For each profile \mathbf{P} and $x \in C$, let $\operatorname{score}(\mathbf{P}, x)=\sum_{i=1}^{n} \operatorname{score}\left(\mathbf{P}_{i}, x\right)$.
A voting method f is a positional scoring rule for a scoring vector \vec{s} provided that for all $\mathbf{P} \in L(C)^{V}, f(\mathbf{P})=\operatorname{argmax}_{x \in C} \operatorname{Score}(\mathbf{P}, x)$.

Positional scoring rules

Suppose $\left\langle s_{1}, s_{2}, \ldots, s_{m}\right\rangle$ is a vector of numbers, called a scoring vector, where for each $l=1, \ldots, m-1, s_{l} \geq s_{l+1}$.

The score of $x \in C$ given P is $\operatorname{score}(P, x)=s_{r}$ where r is the rank of x in P.
For each profile \mathbf{P} and $x \in C$, let $\operatorname{score}(\mathbf{P}, x)=\sum_{i=1}^{n} \operatorname{score}\left(\mathbf{P}_{i}, x\right)$.
A voting method f is a positional scoring rule for a scoring vector \vec{s} provided that for all $\mathbf{P} \in L(C)^{V}, f(\mathbf{P})=\operatorname{argmax}_{x \in C} \operatorname{Score}(\mathbf{P}, x)$.

Borda: the positional scoring rule for $\langle n-1, n-2, \ldots, 1,0\rangle$.
Plurality: the positional scoring rule for $\langle 1,0, \ldots, 0\rangle$.

\# voters	7	5	4	3
	A	B	D	C
	B	C	B	D
	C	D	C	A
	D	A	A	B

\# voters | 7 | 5 | 4 | 3 | |
| :---: | :---: | :---: | :---: | :---: |
| | A | B | D | C |
| | B | C | B | D |
| | C | D | C | A |
| | D | A | A | B |

Plurality winners A
Plurality scores $\quad A: 7, B: 5, C: 3, D: 4$

\# voters	7	5	4	3
	A	B	D	C
	B	C	B	D
	C	D	C	A
	D	A	A	B

Plurality winners	A
Plurality scores	$A: 7, B: 5, C: 3, D: 4$
Borda winners	B
Borda scores	$A: 24, B: 37, C: 30, D: 23$

\# voters | 7 | 5 | 4 | 3 | |
| :---: | :---: | :---: | :---: | :---: |
| | A | B | D | C |
| | B | C | B | D |
| | C | D | C | A |
| | D | A | A | B |

There is no absolute majority winner. Which candidate(s) is(are) the "closest" to the majority winner?

Let's start with an example involving the voting method known as "Ranked Choice Voting," "Instant Runoff," or "Hare System."

This is widely used in Australia and is promoted in the U.S. by FairVote.org and the anti-corruption campaign RepresentUs.

Hare

 Nash
Rational Choice Theory ParetoHarsany Arrow Rationality

Iteratively remove all candidates with the fewest number of voters who rank them first, until there is a candidate who is a majority winner. If, at some stage of the removal process, all remaining candidates have the same number of voters who rank them first (so all candidates would be removed), then all remaining candidates are selected as winners.

Plurality with Runoff

Calculate the plurality score for each candidate-the number of voters who rank the candidate first. If there are 2 or more candidates with the highest plurality score, remove all other candidates and select the Plurality winners from the remaining candidates. If there is one candidate with the highest plurality score, remove all candidates except the candidates with the highest or second-highest plurality score, and select the Plurality winners from the remaining candidates.

Coombs

 Mas semen weymeronomics Rational Choice Theory ParetoHarsanyArrowSocial Choice TheorySen $\underset{\substack{\text { Rrowstionality } \\ \text { Aneorem }}}{ }$

Iteratively remove all candidates with the most number of voters who rank them last, until there is a candidate who is a majority winner. If, at some stage of the removal process, all remaining candidates have the same number voters who rank them last (so all candidates would be removed), then all remaining candidates are selected as winners.

Baldwin

Iteratively remove all candidates with the smallest Borda score, until there is a single candidate remaining. If, at some stage of the removal process, all remaining candidates have the same Borda score (so all candidates would be removed), then all remaining candidates are selected as winners.

Rather than removing candidates with the lowest Borda score, the next two methods remove all candidates who have a Borda score below the average Borda score for all candidates. Nanson iteratively removes all candidates whose Borda score is strictly smaller than the average Borda score (of the candidates remaining at that stage), until one candidate remains.

If, at some stage of the removal process, all remaining candidates have the same Borda score (so all candidates would be removed), then all remaining candidates are selected as winners.

\# voters	7	5	4	3
	A	B	D	C
	B	C	B	D
	C	D	C	A
	D	A	A	B

PluralityWRunoff winners A
Hare winners D
Coombs winners B
Nanson winners B
Baldwin winners A

Recall Condorcet's Idea

 Game Theory Downsmars Theorem Guss
Nash Consorests Paratox ECOMOMICS Nash consorcets Rational Choice Theory ParetoHarsanyi

\# voters	3	5	7	6
best	A	A	B	C
\uparrow	B	C	D	B
worst	D	B	C	D
	D	A	A	

- Candidate C should win since C beats every other candidate in head-to-head elections.

Recall Condorcet's Idea

 waven same therams Arrow Rationality

\# voters	3	5	7	6
best	A	A	B	C
\uparrow	B	C	D	B
worst	C	B	C	D
	D	A	A	

- Candidate C should win since C beats every other candidate in head-to-head elections.

Recall Condorcet's Idea

 waven same therams Arrow Rationality

\# voters	3	5	7	6
best	A	A	B	C
\uparrow	B	C	D	B
worst	C	B	C	D
w	A	A		

- Candidate C should win since C beats every other candidate in head-to-head elections.

Recall Condorcet's Idea

 waven same therams Arrow Rationality

\# voters	3	5	7	6
best	A	A	B	C
\uparrow	B	C	D	B
worst	C	B	C	D
	D	A	A	

- Candidate C should win since C beats every other candidate in head-to-head elections.

Recall Condorcet's Idea

 Arrow Rationality

\# voters	3	5	7	6
best	A	A	B	C
\uparrow	B	C	D	B
$\overbrace{\text { worst }}$	D	B	C	D
		D	A	A

- Candidate C should win since C beats every other candidate in head-to-head elections. B is ranked second

Recall Condorcet's Idea

 waven same therams Arrow Rationality

\# voters	3	5	7	6
best	A	A	B	C
\uparrow	B	C	D	B
worst	C	B	C	D
w	A	A		

- Candidate C should win since C beats every other candidate in head-to-head elections. B is ranked second

Recall Condorcet's Idea

 nef shame theornems Arrowsocial Cholice

\# voters	3	5	7	6
best	A	A	B	C
\uparrow	B	C	D	B
worst $^{\text {wors }}$	D	B	C	D
	D	A	A	

- Candidate C should win since C beats every other candidate in head-to-head elections. B is ranked second, D is ranked third, and A is ranked last.

$$
C>_{M} B>_{M} D>_{M} A
$$

The Majority Relation

 Arrow Social Choice
Rationality
arrows theocrem
Suppose that X and Y are candidates and P_{i} represents voter i 's strict preference.
$\mathbf{N}(X P Y)=\left|\left\{i \mid X P_{i} Y\right\}\right|$
"the number of voters that rank X strictly above Y "

The Majority Relation

Suppose that X and Y are candidates and P_{i} represents voter i 's strict preference.
$\mathbf{N}(X P Y)=\left|\left\{i \mid X P_{i} Y\right\}\right|$
"the number of voters that rank X strictly above $Y^{\prime \prime}$
$X>_{M} Y$ iff $\mathbf{N}(X P Y)>\mathbf{N}(Y P X)$
"a majority prefers candidate X over candidate Y "

The Majority Relation

Suppose that X and Y are candidates and P_{i} represents voter i 's strict preference.
$\mathbf{N}(X P Y)=\left|\left\{i \mid X P_{i} Y\right\}\right|$
"the number of voters that rank X strictly above Y "
$X>_{M} Y$ iff $\mathbf{N}(X P Y)>\mathbf{N}(Y P X)$
"a majority prefers candidate X over candidate Y "
X is a Condorcet winner if X beats every other candidate in an head-to-head election: there is no candidate Y such that $Y>_{M} X$

The Majority Relation

Suppose that X and Y are candidates and P_{i} represents voter i 's strict preference.
$\mathbf{N}(X P Y)=\left|\left\{i \mid X P_{i} Y\right\}\right|$
"the number of voters that rank X strictly above Y "
$X>_{M} Y$ iff $\mathbf{N}(X P Y)>\mathbf{N}(Y P X)$
"a majority prefers candidate X over candidate Y "
X is a Condorcet winner if X beats every other candidate in an head-to-head election: there is no candidate Y such that $Y>_{M} X$
X is a Condorcet loser if X loses to every other candidate in an head-to-head elections: there is no candidate Y such that, $X>_{M} Y$

The Problem

 Arrow Social Choice
Rationality
arrows theocrem
Voter 1 Voter 2 Voter 3
A C B
B
A
C
$\begin{array}{lll}C & B & A\end{array}$

The Problem

 mavs Treorem Geus Nash Condorcets ParadoxRational Choice Theory
Pareto Harsanyi Arrowsocialionality
Voter 1 Voter 2 Voter 3

A	C	B
B	A	C
C	B	A

- Does the group prefer A over B ?

The Problem

Voter 1 Voter 2 Voter 3

A	C	B
B	A	C
C	B	A

- Does the group prefer A over B ? Yes

The Problem

Voter 1	Voter 2	Voter 3
A	C	B
B	A	C
C	B	A

- Does the group prefer A over B ? Yes
- Does the group prefer B over C? Yes

The Problem

Voter 1 Voter 2 Voter 3

- Does the group prefer A over B ? Yes
- Does the group prefer B over C? Yes
- Does the group prefer A over C? No

The Problem

 Nash Consorcets Paradox ECO
Rational Choice Theory ParetoHarsanyi ArrowSocial Choice TheorySen $\underset{\text { Rrows theorem }}{\text { Ration }}$
Voter 1 Voter 2 Voter 3

A	C	B
B	A	C
C	B	A

The majority relation $>_{M}$ is not transitive!
There is a Condorcet cycle: $A>_{M} B>_{M} C>_{M} A$

How bad is this?

- Final decisions are extremely sensitive to institutional features such as who can set the agenda, arbitrary time limits place on deliberation, who is permitted to make motions, etc.

How bad is this?

- Final decisions are extremely sensitive to institutional features such as who can set the agenda, arbitrary time limits place on deliberation, who is permitted to make motions, etc.
- Is there empirical evidence that Condorcet cycles have shown up in real elections?
W. Riker. Liberalism against Populism. Waveland Press, 1982.
G. Mackie. Democracy Defended. Cambridge University Press, 2003.

How bad is this?

- Final decisions are extremely sensitive to institutional features such as who can set the agenda, arbitrary time limits place on deliberation, who is permitted to make motions, etc.
- Is there empirical evidence that Condorcet cycles have shown up in real elections?
W. Riker. Liberalism against Populism. Waveland Press, 1982.
G. Mackie. Democracy Defended. Cambridge University Press, 2003.
- How likely is a Condorcet cycle?

A voting method is Condorcet consistent if it selects the Condorcet winner if it exists.

7	5	4	3
A	B	D	C
B	C	B	D
C	D	C	A
D	A	A	B

(B)
(C)
(D)

7	5	4	3
A	B	D	C
B	C	B	D
C	D	C	A
D	A	A	B

(c)
(D)

7	5	4	3
A	B	D	C
B	C	B	D
C	D	C	A
D	A	A	B

7	5	4	3
A	B	D	C
B	C	B	D
C	D	C	A
D	A	A	B

7	5	4	3
A	B	D	C
B	C	B	D
C	D	C	A
D	A	A	B

7	5	4	3
A	B	D	C
B	C	B	D
C	D	C	A
D	A	A	B

7	5	4	3
A	B	D	C
B	C	B	D
C	D	C	A
D	A	A	B

Condorcet

 Nashtional Choice Theory Pareto Harsanyi Arrow Rationality

The Condorcet winner in a profile \mathbf{P} is a candidate $x \in C$ that is the maximum of the majority ordering, i.e., for all $y \in C$, if $x \neq y$, then $x>_{\mathrm{P}}^{M} y$. The Condorcet voting method is:
$\operatorname{Condorcet}(\mathbf{P})= \begin{cases}\{x\} & \text { if } x \text { is the Condorcet winner in } \mathbf{P} \\ C & \text { if there is no Condorcet winner. }\end{cases}$

Copeland

 Nashbencesemo ECONOMICS Arowsocil chice theor 5 Sen $\underset{\text { Rrows theorem }}{\text { Rationality }}$For each \mathbf{P} and $x \in C$, let $w l_{\mathbf{P}}(x)=|\{z \mid \operatorname{Net}(x, z)>0\}|-\left|\left\{z \mid \operatorname{Net}_{\mathbf{P}}(z, x)>0\right\}\right|$.
$\operatorname{Copeland}(\mathbf{P})=\operatorname{argmax}_{x \in \mathrm{C}}\left(w l_{\mathbf{P}}(x)\right)$.

7	5	4	3
A	B	D	C
B	C	B	D
C	D	C	A
D	A	A	B

MaxMin

 Nast conncrests magos ECOMOMISS ArrowSocial Choice TheorySen $\underset{\text { Rrows theorem }}{\text { Rationality }}$For each \mathbf{P} and $x \in C$, let $\operatorname{supp}(x, \mathbf{P})=\max \left(\left\{\mathbf{N}_{\mathbf{P}}(y, x) \mid y \in C, y \neq x\right\}\right)$.
$\operatorname{MinMax}(\mathbf{P})=\operatorname{argmin}_{x \in \mathrm{C}}(\operatorname{supp}(x, \mathbf{P}))$.

7	5	4	3
A	B	D	C
B	C	B	D
C	D	C	A
D	A	A	B

Condorcet winners A, B, C, D
Copeland winners B, C
MinMax winners B
Beatpath winners B
 Nas shemen wo conomics Nagh ename hemaide incon pereotics Arrowsocial Choice
Rationality
Arrows theerem

Voting Methods Tutorial

For n candidates and m voters, there are $n!^{m}$ profiles.

candidates	voters	number of profiles
3	3	216
3	4	1296
3	5	7776
3	6	46656
3	7	279936
3	8	1679616
4	3	13824
4	4	331776
4	5	7962624
4	6	4586471424
4	7	110075314176
4	8	1728000
5	3	24883200000
5	4	2985984000000
5	5	358318080000000
5	6	7

candidates	voters	number of profiles
3	3	216
3	4	1296
3	5	7776
3	6	46656
3	7	279936
3	8	1679616
4	3	13824
4	4	331776
4	5	7962624
4	6	191102976
4	7	4586471424
4	8	110075314176
5	3	1728000
5	4	207360000
5	5	24883200000
5	6	2985984000000
5	7	358318080000000
5	8	42998169600000000

candidates	voters	number of profiles
3	3	216
3	4	1296
3	5	7776
3	6	46656
3	7	279936
3	8	1679616
4	3	13824
4	4	331776
4	5	7962624
4	6	4586471424
4	7	110075314176
4	8	1728000
5	3	2488360000
5	4	2985984000000
5	5	358318080000000
5	6	7

Percentage of (4,3)-profiles with different outcomes

Percentage of (5,10)-profiles with different outcomes

Should we select a Condorcet winner (when one exists)?

Condorcet's Other Paradox

 Nash Consorcet's Paradot ECO OPM Rational Choice Theory

ArrowSocial Choice
Rationality

\# voters	30	1	29	10	10	1
	A	A	B	B	C	C
	B	C	A	C	A	B
	C	B	C	A	B	A

Condorcet's Other Paradox

 Menseme teen Economics| \# voters | 30 | 1 | 29 | 10 | 10 | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | A | A | B | B | C | C |
| 1 | B | C | A | C | A | B |
| 0 | C | B | C | A | B | A |

$$
\begin{aligned}
& B S(A)=2 \times 31+1 \times 39+0 \times 11=101 \\
& B S(B)=2 \times 39+1 \times 31+0 \times 11=109 \\
& B S(C)=2 \times 11+1 \times 11+0 \times 59=33
\end{aligned}
$$

$B>_{B C} A>_{B C} C$

Condorcet's Other Paradox

 Marys theorem tewe cusyNash Condorcels Paratox ECOMOMICS Nash Consorcet's Paradot ECO OPM Rational Choice Theory

ArrowSocial Choice
Rationality

\# voters	30	1	29	10	10	1
	A	A	B	B	C	C
	B	C	A	C	A	B
	C	B	C	A	B	A

$$
B>_{B C} A>_{B C} C \quad A>_{M} B>_{M} C
$$

Condorcet's Other Paradox

Politics mon tifine Echomomics Nash Consorceits Paradox ECO O OMOM
Rational Choice Theory Pareto Harsanyi

ArrowSocial Choice
Rationality

\# voters	30	1	29	10	10	1
	A	A	B	B	C	C
B	C	A	C	A	B	
C	B	C	A	B	A	

$B>_{B C} A>_{B C} C \quad A>_{M} B>_{M} C$

Condorcet's Other Paradox

 Marys theorem tewe cusyNash Condorcels Paratox ECOMOMICS Nash Consorcet's Paradot ECO OPM Rational Choice Theory

ArrowSocial Choice
Rationality

\# voters	30	1	29	10	10	1
	A	A	B	B	C	C
	B	C	A	C	A	B
	C	B	C	A	B	A

$$
B>_{B C} A>_{B C} C \quad A>_{M} B>_{M} C
$$

Condorcet's Other Paradox

\# voters	30	1	29	10	10	1
s_{2}	A	A	B	B	C	C
s_{1}	B	C	A	C	A	B
s_{0}	C	B	C	A	B	A

Condorcet's Other Paradox: No scoring rule will work...

$$
B>_{B C} A>_{B C} C \quad A>_{M} B>_{M} C
$$

Condorcet's Other Paradox

 Nash
Rational Choice Theory ParetoHarsany
ArrowSocial Choice TheorySen

| \# voters | 30 | 1 | 29 | 10 | 10 | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| s_{2} | A | A | B | B | C | C |
| s_{1} | B | C | A | C | A | B |
| s_{0} | C | B | C | A | B | A |

Condorcet's Other Paradox: No scoring rule will work...
Score $(A)=s_{2} \times 31+s_{1} \times 39+s_{0} \times 11$
Score $(B)=s_{2} \times 39+s_{1} \times 31+s_{0} \times 11$
$B>_{B C} A>_{B C} C \quad A>_{M} B>_{M} C$

Condorcet's Other Paradox

 Nash Consorcets Parraot
Rational Choice Theory ParetoHarsany
ArrowSocial Choice TheorySen

| \# voters | 30 | 1 | 29 | 10 | 10 | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| s_{2} | A | A | B | B | C | C |
| s_{1} | B | C | A | C | A | B |
| s_{0} | C | B | C | A | B | A |

Condorcet's Other Paradox: No scoring rule will work...
$\operatorname{Score}(A)=s_{2} \times 31+s_{1} \times 39+s_{0} \times 11$
Score $(B)=s_{2} \times 39+s_{1} \times 31+s_{0} \times 11$
$\operatorname{Score}(A)>\operatorname{Score}(B) \Rightarrow 31 s_{2}+39 s_{1}>39 s_{2}+31 s_{1} \Rightarrow s_{1}>s_{2}$
$B>_{B C} A>_{B C} C \quad A>_{M} B>_{M} C$

Condorcet's Other Paradox

 Ms.amicher

ArrowSocial Choice TheorySen

\# voters	30	1	29	10	10	1
s_{2}	A	A	B	B	C	C
s_{1}	B	C	A	C	A	B
s_{0}	C	B	C	A	B	A

Theorem (Fishburn 1974). For all $m \geq 3$, there is some voting situation with a Condorcet winner such that every scoring rule will have at least $m-2$ candidates with a greater score than the Condorcet winner.
P. Fishburn. Paradoxes of Voting. The American Political Science Review, 68:2, pgs. 537-546, 1974.

\# voters	30	1	29	10	10	1
	A	A	B	B	C	C
	B	C	A	C	A	B
	C	B	C	A	B	A

 ArrowSocial Choice
Rationality
Arrows theerem

$$
\begin{array}{ccccccc}
\text { \# voters } & 30 & 1 & 29 & 10 & 10 & 1 \\
\hline 2 & \mathrm{~A} & \mathrm{~A} & \mathrm{~B} & \mathrm{~B} & \mathrm{C} & \mathrm{C} \\
1 & \mathrm{~B} & \mathrm{C} & \mathrm{~A} & \mathrm{C} & \mathrm{~A} & \mathrm{~B} \\
0 & \mathrm{C} & \mathrm{~B} & \mathrm{C} & \mathrm{~A} & \mathrm{~B} & \mathrm{~A} \\
B S(A)=2 \times 31+1 \times 39+0 \times 11=101 \\
B S(B)=2 \times 39+1 \times 31+0 \times 11=109 \\
B S(C)=2 \times 11+1 \times 11+0 \times 59=33
\end{array}
$$

$$
B>_{B C} A>_{B C} C
$$

 ArrowSocial Choice
Rationality
Arrows theorem

$$
\begin{array}{lcccccc}
\text { \# voters } & 30 & 1 & 29 & 10 & 10 & 1 \\
\hline & \text { A } & \text { A } & \text { B } & \text { B } & \text { C } & \text { C } \\
& \text { B } & \text { C } & \text { A } & \text { C } & \text { A } & \text { B } \\
& \text { C } & \text { B } & \text { C } & \text { A } & \text { B } & \text { A }
\end{array}
$$

$$
B>_{B C} A>_{B C} C \quad A>_{M} B>_{M} C
$$

\# voters	30	1	29	10	10	1
	A	A	B	B	C	C
B	C	A	C	A	B	
C	B	C	A	B	A	

$$
B>_{B C} A>_{B C} C \quad A>_{M} B>_{M} C
$$

 Arrow Social Chaice
aronsitionemity

$$
\begin{array}{lcccccc}
\text { \# voters } & 30 & 1 & 29 & 10 & 10 & 1 \\
\hline & \mathrm{~A} & \mathrm{~A} & \mathrm{~B} & \mathrm{~B} & \mathrm{C} & \mathrm{C} \\
& \mathrm{~B} & \mathrm{C} & \mathrm{~A} & \mathrm{C} & \mathrm{~A} & \mathrm{~B} \\
& \mathrm{C} & \mathrm{~B} & \mathrm{C} & \mathrm{~A} & \mathrm{~B} & \mathrm{~A}
\end{array}
$$

$$
B>_{B C} A>_{B C} C \quad A>_{M} B>_{M} C
$$

Condorcet Triples

 ArrowSocial Choice
Rationality

G_{1}	G_{2}	G_{3}				
A	B	C			G_{1}	G_{2}
A	G_{3}					
B	C	A	B			
C	A	B			C	B
A	A	C				

If $G_{1}=G_{2}=G_{3}$, then this group of voters "cancel out" each other's votes

Saari's argument

 Arrowsocial Choice
Rationality
Arows theorem

\# voters	30	1	29	10	10	1
	A	A	B	B	C	C
	B	C	A	C	A	B
	C	B	C	A	B	A

Saari's argument

 ArrowSocial Choice
Rationality

\# voters	30	1	29	10	10	1
	A	A	B	B	C	C
	B	C	A	C	A	B
	C	B	C	A	B	A
10	10	10				
A	B	C				
B	C	A				
C	A	B				

Saari's argument

 , Gan wiswew Nash Consorceits Paradox ECO OOMICS
Rational Choice Theory Pareto Harsanyi ArrowSocial Choice
Rationality

\# voters	20	1	29	0	0	1
	A	A	B	B	C	C
	B	C	A	C	A	B
	C	B	C	A	B	A
10	10	10			1	1
A	B	C			A	C
B	C	A		C	B	A
C	A	B		B	A	C

Saari's argument

Politics asas hawn fume Mans cane inine Philosoph
 ArrowSocial Choice
Rationality

\# voters	20	0	28	0	0	0	
	A		B				
	B		A				
	C		C				
10	10	10		1	1	1	
A	B	C		A	C	B	
B	C	A		C	B	A	
C	A	B		B	A	C	

Is the Condorcet winner the "best" choice?

 mass Game theoryowns
 ArrowSocial Choice
Rationality

\# voters	47	47	3	3
	A	B	C	C
	C	C	A	B
	B	A	B	A

C is the Condorcet winner

Is the Condorcet winner the "best" choice?

\# voters	47	47	3	3
	A	B	C	C
	C	C	A	B
	B	A	B	A

C is the Condorcet winner; however, it seems that supporters of the main rivals A and B would rather see C win than their candidate's principal opponent, but this does not mean that there is "positive support" for C.

Further Investigation

- W. Poundstone, Gaming the Vote: Why Elections Aren't Fair (and What We Can Do About It), Hill and Wang, 2009
- EP, Voting Methods (Stanford Encyclopedia of Philosophy)
- C. List, Social Choice Theory (Stanford Encyclopedia of Philosophy)
- M. Morreau, Arrow's Theorem (Stanford Encyclopedia of Philosophy)

Further Investigation

 nes nemen wemmeronomics Arrow Rationality

- https://www.electology.org
- http://www.fairvote.org
- http://rangevoting.org
- https://www.opavote.com
- http://www.preflib.org

There are many different voting methods

Many different electoral methods: Plurality, Borda Count, Antiplurality/Veto, and k-approval; Plurality with Runoff; Single Transferable Vote (STV)/Hare; Approval Voting; Cup Rule/Voting Trees; Copeland; Banks; Slater Rule; Schwartz Rule; the Condorcet rule; Maximin/Simpson, Kemeny; Ranked Pairs/Tideman; Bucklin Method; Dodgson Method; Young's Method; Majority Judgment; Cumulative Voting; Range/Score Voting; ...

Choosing how to choose

Pragmatic considerations: Is the procedure easy to use? Is it legal? The importance of ease of use should not be underestimated: Despite its many flaws, plurality rule is, by far, the most commonly used method.

Behavioral considerations: Do the different procedures really lead to different outcomes in practice?

Information required from the voters: What type of information do the ballots convey? I.e., Choosing a single alternative, linearly rank all the candidates, report something about the "intensity" of preference.

Axiomatics: Characterize the different voting methods in terms of normative principles of group decision making.

Principles of group decision making

 Nens shemenem Economics $\underset{\text { Rrrows theorem }}{\text { Ratity }}$

Principles of group decision making

 Arrow Social Choice
Rationality
arrows theocem

- Condorcet Condition: Always choose the candidate that beats every other candidate in head-to-head elections.

Principles of group decision making

 Arrow Rationality

- Condorcet Condition: Always choose the candidate that beats every other candidate in head-to-head elections.
- Unanimity (Pareto): If everyone ranks A above B, then B should not win the election.

Principles of group decision making

 was samene weme Economics ArrowSocial Choice
Rationality

- Condorcet Condition: Always choose the candidate that beats every other candidate in head-to-head elections.
- Unanimity (Pareto): If everyone ranks A above B, then B should not win the election.
- Anonymity: The names of the voters do not matter (if two voters swap votes, then the outcome is unaffected).

Monotonicity

 Ratitionaility
Arous

A candidate receiving more "support" shouldn't maker her worse off.

Monotonicity

 Ms.amicher $\underset{\substack{\text { Rrows theorem }}}{\substack{\text { Rity } \\ \text { and }}}$

A candidate receiving more "support" shouldn't maker her worse off.

More-is-Less Paradox: If a candidate C is elected under a given a profile of rankings of the competing candidates, it is possible that, ceteris paribus, C may not be elected if some voter(s) raise C in their rankings.
P. Fishburn and S. Brams. Paradoxes of Preferential Voting. Mathematics Magazine (1983).

More-is-Less Paradox: Plurality with Runoff

 Mens.| \# voters | 6 | 5 | 4 | 2 | \# voters | 6 | 5 | 4 | 2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | A | C | B | B | | A | C | B | A |
| | B | A | C | A | | B | A | C | B |
| | C | B | A | C | | C | B | A | C |

More-is-Less Paradox: Plurality with Runoff

 uns came terer Economics| \# voters | 6 | 5 | 4 | 2 | | | | | |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | A | C | B | B | | | | | |
| B | A voters | C | A | 5 | 4 | 2 | | | |
| | | | A | C | B | A | | | |
| | C | B | A | C | | B | A | C | B |
| | | | C | B | A | C | | | |

More-is-Less Paradox: Plurality with Runoff

 uns came terer Economics| \# voters | 6 | 5 | 4 | 2 | \# voters | 6 | 5 | 4 | 2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | A | C | B | B | | A | C | B | A |
| | B | A | C | A | | B | A | C | B |
| | C | B | A | C | | C | B | A | C |

More-is-Less Paradox: Plurality with Runoff

 uns came terer Economics| \# voters | 6 | 5 | 4 | 2 |
| :--- | :--- | :--- | :--- | :--- |
| | A | C | B | B |
| | B | A | C | A |
| | C | B | A | C |

\# voters	6	5	4	2
	A	C	B	A
	B	A	C	B
	C	B	A	C

More-is-Less Paradox: Plurality with Runoff

\# voters	6	5	4	2							
	A	C	B	B	\quad	\# voters	6	5	4	2	
:---	:---	:---	:---	:---	:---						
	B	A	C	A							
C	B	A	C		A						
C	B	A									
			C	A	C						
B	B	A	C								

Winner: A

More-is-Less Paradox: Plurality with Runoff

\# voters	6	5	4	2
	A	C	B	B
	B	A	C	A
	C	B	A	C

\# voters	6	5	4	2
	A	C	B	A
	B	A	C	B
	C	B	A	C

Winner: A

\# voters	6	5	4	2
	A	C	B	B
B	A	C	A	
	C	B	A	C

Winner: A

\# voters	6	5	4	2
	A	C	B	A
	B	A	C	B
	C	B	A	C

Winner: C

More-is-Less Paradox: Plurality with Runoff

\# voters	6	5	4	2	\# voters	6	5	4	2
	A	C	B	B		A	C	B	A
	B	A	C	A		B	A	C	B
	C	B	A	C		C	B	A	C
	Winner: A					Winner: C			

Monotonicity: A candidate receiving more "support" shouldn't maker her worse off.

Monotonicity: A candidate receiving more "support" shouldn't maker her worse off.

No-Show Paradox: A voter may obtain a more preferable outcome if he decides not to participate in an election than, ceteris paribus, if he decides to participate in the election.

Monotonicity: A candidate receiving more "support" shouldn't maker her worse off.

No-Show Paradox: A voter may obtain a more preferable outcome if he decides not to participate in an election than, ceteris paribus, if he decides to participate in the election.

- Twin Paradox: A voter may obtain a less preferable outcome if his "twin" (a voter with the exact same ranking) decides to participate in the election.

Monotonicity: A candidate receiving more support shouldn't make her worse off

No-Show Paradox: A voter may obtain a more preferable outcome if he decides not to participate in an election than, ceteris paribus, if he decides to participate in the election.

- Twin Paradox: A voter may obtain a less preferable outcome if his "twin" (a voter with the exact same ranking) decides to participate in the election.
- Truncation Paradox: A voter may obtain a more preferable outcome if, ceteris paribus, he only reveals part of his ranking of the candidates.

No-Show Paradox: Plurality with Runoff

 Nash Condorcet's Paradox ECO
Rational Choice Theory Pareto Harsanyi

Arrow Rationality

\# voters | 4 | 3 | 1 | 3 | |
| ---: | :--- | :--- | :--- | :--- |
| | A | B | C | C |
| | B | C | A | B |
| | C | A | B | A |

No-Show Paradox: Plurality with Runoff

 Game Theory Downsmars Theorem Guss
Nash Consorests Paratox ECOMOMICS Nash condorcets Paradox ECO ParetoHarsanyi
Rational Choice Theory
ArrowSocial Choice TheorySen Arrowsocial Rnalice

\# voters	4	3	1	3
	A	B	C	C
B	C	A	B	
C	A	B	A	

No-Show Paradox: Plurality with Runoff

Politicsass hum tume

 ArrowSocial Choice
Rationality

\# voters	4	3	1	3
	A	B	C	C
	B	C	A	B
	C	A	B	A

Winner: C

No-Show Paradox: Plurality with Runoff

 Arrowsocial Cholice

\# voters	4	3	1	3	\# voters	2	3	1	3
	A	B	C	C		A	B	C	C
	B	C	A	B		B	C	A	B
	C	A	B	A		C	A	B	A

No-Show Paradox: Plurality with Runoff

 messimemerse ECONOMiCS ArrowSocial Choice TheorySen\# voters | 4 | 3 | 1 | 3 | |
| ---: | :--- | :--- | :--- | :--- |
| | A | B | C | C |
| | B | C | A | B |
| | C | A | B | A |

\# voters	2	3	1	3
	A	B	C	C
B	C	A	B	
C	A	B	A	

Winner: C

No-Show Paradox: Plurality with Runoff

\# voters	4	3	1	3
	A	B	C	C
	B	C	A	B
	C	A	B	A

Winner: C

\# voters	2	3	1	3
	A	B	C	C
	B	C	A	B
C	A	B	A	

Winner: B

Twin Paradox: Plurality with Runoff

 Nash Consorcets Paradox LCL
Rational Choice Theory ParetoHarsanyi Arrow Social Choice
Rationality
Arows theocem

\# voters	4	3	1	3	\# voters	2	3	1	3
	A	B	C	C		A	B	C	C
	B	C	A	B		B	C	A	B
	C	A	B	A		C	A	B	A
	Winner: C					Winner: B			

Failures of Monotonicity

 wavs ishememereme Economics Nastlonal choice Theory peretebulsany Arrow RationalityExample: Burlington, VT 2009 Mayoral Race (rangevoting.org/Burlington.html)

Failures of Monotonicity

 Mssheme whern Arrow Rationality

Example: Burlington, VT 2009 Mayoral Race (rangevoting.org/Burlington.html)
D. Felsenthal and N. Tideman. Varieties of Failure of Monotonicity and Participation under Five Voting Methods. Theory and Decision, 75, pgs. 59-77, 2013.

Failures of Monotonicity

Example: Burlington, VT 2009 Mayoral Race (rangevoting.org/Burlington.html)
D. Felsenthal and N. Tideman. Varieties of Failure of Monotonicity and Participation under Five Voting Methods. Theory and Decision, 75, pgs. 59-77, 2013.

Theorem (Moulin). If there are four or more candidates, then every Condorcet consistent voting methods is susceptible to the No-Show paradox.
H. Moulin. Condorcet's Principle Implies the No Show Paradox. Journal of Economic Theory, 45, pgs. 53-64, 1988.

Principles

 Nastional Choice Theory Pareto parsany ArrowSocial Choice
Rationality

Condorcet: Elect the Condorcet winner whenever it exists.
Monotonicity: More support should never hurt a candidate.
Participation: It should never be in a voter's best interests not to vote.
Multiple-Districts: If a candidate wins in each district, then that candidate should also win when the districts are merged.

More Principles

 uns nemene wein Nash Rational Choice Theory ParetoHarsany RationalityPareto: Never elect a candidate if another candidate is strictly preferred by all voters.

Anonymity: The outcome does not depend on the names of the voters.
Neutrality: The outcome does not depend on the names of the candidates.
Universal Domain: The voters are free to rank the candidates (or grade the candidates) in any way they want. whshemeres sum ECOMOMICS
 Arrow Social Choice
Rationality
arrows theocem

What are the relationships between these principles? Is there a procedure that satisfies all of them?

What are the relationships between these principles? Is there a procedure that satisfies all of them?

A few observations:

- Condorcet winners may not exist.
- No positional scoring method satisfies the Condorcet Principle.
- The Condorcet and Participation principles cannot be jointly satisfied.

Axiomatics

"When a set of axioms regarding social choice can all be simultaneously satisfied, there may be several possible procedures that work, among which we have to choose.
A. Sen. The Possibility of Social Choice. The American Economic Review, 89:3, pgs. 349-378, 1999 (reprint of his Nobel lecture).

Axiomatics

"When a set of axioms regarding social choice can all be simultaneously satisfied, there may be several possible procedures that work, among which we have to choose. In order to choose between different possibilities through the use of discriminating axioms, we have to introduce further axioms, until only and only one possible procedure remains.
A. Sen. The Possibility of Social Choice. The American Economic Review, 89:3, pgs. 349-378, 1999 (reprint of his Nobel lecture).

Axiomatics

"When a set of axioms regarding social choice can all be simultaneously satisfied, there may be several possible procedures that work, among which we have to choose. In order to choose between different possibilities through the use of discriminating axioms, we have to introduce further axioms, until only and only one possible procedure remains. This is something of an exercise in brinkmanship. We have to go on and on cutting alternative possibilities, moving-implicitly-towards an impossibility, but then stop just before all possibilities are eliminated, to wit, when one and only one options remains."
(pg. 354)
A. Sen. The Possibility of Social Choice. The American Economic Review, 89:3, pgs. 349-378, 1999 (reprint of his Nobel lecture).

The Social Choice Model

Notation

 Nash condorenal Choice' Theory ParetoHarsany Arrowsocial Cholice

- N is a finite set of voters (assume that $N=\{1,2,3, \ldots, n\}$)
- X is a (typically finite) set of alternatives, or candidates
- A relation on X is a linear order if it is transitive, irreflexive, and complete (hence, acyclic)
- $L(X)$ is the set of all linear orders over the set X
- $O(X)$ is the set of all reflexive and transitive relations over the set X

Notation

 Nas shemencemo Nastional Choice Theory ParetoHarsanyi ArrowSocial Choice TheorySen- A profile for the set of voters N is a sequence of (linear) orders over X, denoted $\mathbf{R}=\left(R_{1}, \ldots, R_{n}\right)$.
- $L(X)^{n}$ is the set of all profiles for n voters (similarly for $\left.O(X)^{n}\right)$
- For a profile $\mathbf{R}=\left(R_{1}, \ldots, R_{n}\right) \in O(X)^{n}$, let $\mathbf{N}_{\mathbf{R}}(A P B)=\left\{i \mid A P_{i} B\right\}$ be the set of voters that rank A above B (similarly for $\mathbf{N}_{\mathbf{R}}(A$ I $B)$ and $\mathbf{N}_{\mathbf{R}}(B P A)$)

Preference Aggregation Methods

 Arrow Rationality

Social Welfare Function: $F: \mathcal{D} \rightarrow L(X)$, where $\mathcal{D} \subseteq L(X)^{n}$

Preference Aggregation Methods

Social Welfare Function: $F: \mathcal{D} \rightarrow L(X)$, where $\mathcal{D} \subseteq L(X)^{n}$
Comments

- \mathcal{D} is the domain of the function: it is the set of all possible profiles
- Aggregation methods are decisive: every profile \mathbf{R} in the domain is associated with exactly one ordering over the candidates
- The range of the function is $L(X)$: the social ordering is assumed to be a linear order
- Tie-breaking rules are built into the definition of a preference aggregation function

Preference Aggregation Methods

 ArrowSocial Choice TheorySen $\underset{\text { Rrows theorem }}{\text { Ratity }}$

Social Welfare Function: $F: \mathcal{D} \rightarrow L(X)$, where $\mathcal{D} \subseteq L(X)^{n}$

Variants

- Social Choice Function: $F: \mathcal{D} \rightarrow \wp(X)$ - \emptyset, where $\mathcal{D} \subseteq L(X)^{n}$ and $\wp(X)$ is the set of all subsets of X.
- Allow Ties: $F: \mathcal{D} \rightarrow O(X)$ where $O(X)$ is the set of orderings (reflexive and transitive) over X
- Allow Indifference and Ties: $F: \mathcal{D} \rightarrow O(X)$ where $O(X)$ is the set of orderings (reflexive and transitive) over X and $\mathcal{D} \subseteq O(X)^{n}$

Examples

 was same wherneconomics Arrow Social Choice
Rationality
Arows theocem
$\operatorname{Maj}(\mathbf{R})=>_{M}$ where $A>_{M} B$ iff $\left|\mathbf{N}_{\mathbf{R}}(A P B)\right|>\left|\mathbf{N}_{\mathbf{R}}(B P A)\right|$
(the problem is that $>_{M}$ may not be transitive (or complete))

Examples

 Mas seme temo N Nonomics $\underset{\text { Rrrows theorem }}{\text { Ratity }}$
$\operatorname{Maj}(\mathbf{R})=>_{M}$ where $A>_{M} B$ iff $\left|\mathbf{N}_{\mathbf{R}}(A P B)\right|>\left|\mathbf{N}_{\mathbf{R}}(B P A)\right|$
(the problem is that $>_{M}$ may not be transitive (or complete))
$\operatorname{Borda}(\mathbf{R})=\geq_{B C}$ where $A \geq_{B C} B$ iff the Borda score of A is greater than the Borda score for B.
(the problem is that $\geq_{B C}$ may not be a linear order)

Characterizing Majority Rule

 Mens.amentuenArowsocai If hocice irneorysen $\underset{\text { Rrows theorem }}{\text { Ration }}$
When there are only two candidates A and B, then all voting methods give the same results

Characterizing Majority Rule

 Nash fame theorn Economics Nash Consorcets Parasox LeO ParetoHarsany ArrowSocial ChoiceRationality

When there are only two candidates A and B, then all voting methods give the same results

Majority Rule: A is ranked above (below) B if more (fewer) voters rank A above B than B above A, otherwise A and B are tied.

Characterizing Majority Rule

When there are only two candidates A and B, then all voting methods give the same results

Majority Rule: A is ranked above (below) B if more (fewer) voters rank A above B than B above A, otherwise A and B are tied.

When there are only two options, can we argue that majority rule is the "best" procedure?
K. May. A Set of Independent Necessary and Sufficient Conditions for Simple Majority Decision. Econometrica, Vol. 20 (1952).

May's Theorem: Details

Let $N=\{1,2,3, \ldots, n\}$ be the set of n voters and $X=\{A, B\}$ the set of candidates.

Social Welfare Function: $F: O(X)^{n} \rightarrow O(X)$, where $O(X)$ is the set of orderings over X
(there are only three possibilities: A P B, A I B, or B P A)

$$
F_{M a j}(\mathbf{R})=\left\{\begin{array}{ll}
A P & P
\end{array} \quad \text { if }\left|\mathbf{N}_{\mathbf{R}}\left(\begin{array}{ll}
A & P
\end{array}\right)\right|>\left|\mathbf{N}_{\mathbf{R}}\left(\begin{array}{lll}
B & P & A
\end{array}\right)\right|\right.
$$

May's Theorem: Details

Let $N=\{1,2,3, \ldots, n\}$ be the set of n voters and $X=\{A, B\}$ the set of candidates.

Social Welfare Function: $F:\{1,0,-1\}^{n} \rightarrow\{1,0,-1\}$,
where 1 means A P $B, 0$ means A I B, and -1 means $B P A$

$$
F_{M a j}(\mathbf{v})= \begin{cases}1 & \text { if }\left|\mathbf{N}_{\mathbf{v}}(1)\right|>\left|\mathbf{N}_{\mathbf{v}}(-1)\right| \\ 0 & \text { if }\left|\mathbf{N}_{\mathbf{v}}(1)\right|=\left|\mathbf{N}_{\mathbf{v}}(-1)\right| \\ -1 & \text { if }\left|\mathbf{N}_{\mathbf{v}}(-1)\right|>\left|\mathbf{N}_{\mathbf{v}}(1)\right|\end{cases}
$$

Warm-up Exercise

 Nashlenemecheme ECOnOMICS Arrow Social Choice TheorySen $\underset{\text { Rrows theorem }}{\text { Rationaly }}$Suppose that there are two voters and two candidates. How many social choice functions are there?

Warm-up Exercise

Suppose that there are two voters and two candidates. How many social choice functions are there? 19,683

- There are three possible rankings for 2 candidates.
- When there are two voters there are $3^{2}=9$ possible profiles:

$$
\{(1,1),(1,0),(1,-1),(0,1),(0,0),(0,-1),(-1,1),(-1,0),(-1,-1)\}
$$

- Since there are 9 profiles and 3 rankings, there are $3^{9}=19,683$ possible preference aggregation functions.

May's Theorem: Details

- Unanimity: unanimously supported alternatives must be the social outcome.
- Anonymity: all voters should be treated equally.
- Neutrality: all candidates should be treated equally.

May's Theorem: Details

 Nash Condorcet's Paragox ECO
Rational Choice Arrow Rationality

- Unanimity: unanimously supported alternatives must be the social outcome.
If $\mathbf{v}=\left(v_{1}, \ldots, v_{n}\right)$ with for all $i \in N, v_{i}=x$ then $F(\mathbf{v})=x$ (for $x \in\{1,0,-1\}$).
- Anonymity: all voters should be treated equally.
- Neutrality: all candidates should be treated equally.

May's Theorem: Details

- Unanimity: unanimously supported alternatives must be the social outcome.
If $\mathbf{v}=\left(v_{1}, \ldots, v_{n}\right)$ with for all $i \in N, v_{i}=x$ then $F(\mathbf{v})=x$ (for $x \in\{1,0,-1\}$).
- Anonymity: all voters should be treated equally.
$F\left(v_{1}, \ldots, v_{n}\right)=F\left(v_{\pi(1)}, v_{\pi(2)}, \ldots, v_{\pi(n)}\right)$ where $v_{i} \in\{1,0,-1\}$ and π is a permutation of the voters.
- Neutrality: all candidates should be treated equally.

May's Theorem: Details

- Unanimity: unanimously supported alternatives must be the social outcome.
If $\mathbf{v}=\left(v_{1}, \ldots, v_{n}\right)$ with for all $i \in N, v_{i}=x$ then $F(\mathbf{v})=x$ (for $x \in\{1,0,-1\}$).
- Anonymity: all voters should be treated equally.
$F\left(v_{1}, \ldots, v_{n}\right)=F\left(v_{\pi(1)}, v_{\pi(2)}, \ldots, v_{\pi(n)}\right)$ where $v_{i} \in\{1,0,-1\}$ and π is a permutation of the voters.
- Neutrality: all candidates should be treated equally.

$$
F(-\mathbf{v})=-F(\mathbf{v}) \text { where }-\mathbf{v}=\left(-v_{1}, \ldots,-v_{n}\right) .
$$

May's Theorem: Details

 Arrow Rationality

- Positive Responsiveness (Monotonicity): unidirectional shift in the voters' opinions should help the alternative toward which this shift occurs

If $F(\mathbf{v})=0$ or $F(\mathbf{v})=1$ and $\mathbf{v}<\mathbf{v}^{\prime}$, then $F\left(\mathbf{v}^{\prime}\right)=1$ where $\mathbf{v}<\mathbf{v}^{\prime}$ means for all $i \in N v_{i} \leq v_{i}^{\prime}$ and there is some $i \in N$ with $v_{i}<v_{i}^{\prime}$.

Warm-up Exercise

Suppose that there are two voters and two candidates. How many social choice functions are there that satisfy anonymity?

Anonymity: all voters should be treated equally.
$F\left(v_{1}, v_{2}, \ldots, v_{n}\right)=F\left(v_{\pi(1)}, v_{\pi(2)}, \ldots, v_{\pi(n)}\right)$ where π is a permutation of the voters.

Warm-up Exercise

Suppose that there are two voters and two candidates. How many social choice functions are there that satisfy anonymity?

Anonymity: all voters should be treated equally.
$F\left(v_{1}, v_{2}, \ldots, v_{n}\right)=F\left(v_{\pi(1)}, v_{\pi(2)}, \ldots, v_{\pi(n)}\right)$ where π is a permutation of the voters.

- Imposing anonymity reduces the number of preference aggregation functions.
- If F satisfies anonymity, then $F(1,0)=F(0,1), F(1,-1)=F(-1,1)$ and $F(-1,0)=F(0,-1)$.
- This means that there are essentially 6 elements of the domain. So, there are $3^{6}=729$ preference aggregation functions.

May's Theorem: Details

 wavs rame weiceme Economics NashRational Choice Theory ParetoHarsany Arrow Sociaionality

May's Theorem (1952) A social decision method F satisfies unanimity, neutrality, anonymity and positive responsiveness iff F is majority rule.

Proof Idea

 nes nemene wemeronomics Arrowsocia Choice

If $(1,0,-1)$ is assigned 1 or -1 then

Proof Idea

 nes nemene wemeconomics Arrow Sociationality

If $(1,0,-1)$ is assigned 1 or -1 then
\checkmark Anonymity implies $(-1,0,1)$ is assigned 1 or -1

Proof Idea

 Nashtomal Choice Theory Paratetorssany Arrowsocial Cholice

If $(1,0,-1)$ is assigned 1 or -1 then
\checkmark Anonymity implies $(-1,0,1)$ is assigned 1 or -1
\checkmark Neutrality implies $(1,0,-1)$ is assigned -1 or 1 Contradiction.

Proof Idea

 nes nemene wemeronomics Arrowsocial Cholice

If $(1,1,-1)$ is assigned 0 or -1 then

Proof Idea

 mass Game theor) wouns Nash tonarects eise thery Peretorarsany Arrow RationalityIf $(1,1,-1)$ is assigned 0 or -1 then
\checkmark Neutrality implies $(-1,-1,1)$ is assigned 0 or 1

Proof Idea

 mavs sheorem Geus Nash Condorceets Paradox ECO\OMOMS Nastional Choice Theory ParetoHarsanyi Arrowsocial ChoiceIf $(1,1,-1)$ is assigned 0 or -1 then
\checkmark Neutrality implies $(-1,-1,1)$ is assigned 0 or 1
\checkmark Anonymity implies $(1,-1,-1)$ is assigned 0 or 1

Proof Idea

If $(1,1,-1)$ is assigned 0 or -1 then
\checkmark Neutrality implies $(-1,-1,1)$ is assigned 0 or 1
\checkmark Anonymity implies $(1,-1,-1)$ is assigned 0 or 1
\checkmark Positive Responsiveness implies $(1,0,-1)$ is assigned 1

Proof Idea

 Nash Rational Choice 'Theory ParetoHarsany Arrow Rationality

If $(1,1,-1)$ is assigned 0 or -1 then
\checkmark Neutrality implies $(-1,-1,1)$ is assigned 0 or 1
\checkmark Anonymity implies $(1,-1,-1)$ is assigned 0 or 1
\checkmark Positive Responsiveness implies $(1,0,-1)$ is assigned 1
\checkmark Positive Responsiveness implies $(1,1,-1)$ is assigned 1 Contradiction.

Other characterizations

 ArrowSocial Choice TheorySen $\underset{\text { Rrows theorem }}{\text { Rationality }}$
G. Asan and R. Sanver. Another Characterization of the Majority Rule. Economics Letters, 75 (3), 409-413, 2002.
E. Maskin. Majority rule, social welfare functions and game forms. in Choice, Welfare and Development, The Clarendon Press, pgs. 100-109, 1995.
G. Woeginger. A new characterization of the majority rule. Economic Letters, 81, pgs. 89-94, 2003.

Can May's Theorem be generalized to more than 2 candidates?

Can May's Theorem be generalized to more than 2 candidates? No!

Spoiler Candidates: Plurality Rule

 Nash Condorcet's Paradox ECO OPM PaticS ArrowSocial Choice
Rationality

\# voters | 49 | 48 | 3 | |
| :---: | :---: | :---: | :---: |
| | A | B | C |
| | B | A | B |
| | C | C | A |

Winner: A

Spoiler Candidates: Plurality Rule

 ArrowSocial Choice

\# voters	49	48	3
	A	B	C
	B	A	B
	C	C	A

Winner: B

Independence of Irrelevant Alternatives: If the voters in two different electorates rank A and B in exactly the same way, then A and B should be ranked the same way in both elections.

Failure of IIA: Borda Count

 Nash Condorcet's Paradox ECO Con ParetoHarsanyi
Rational Choice Theory
ArrowSocial Choice TheorySen Arrowsocial Choice

\# voters	3	2	2
3	A	B	C
2	B	C	A
1	C	A	B
0	X	X	X

Failure of IIA: Borda Count

 man ane fon mics Nash Condorcets Paradox ECO ParetoHarsanyiRational Choice Theory
ArrowSocial Choice Theory Sen Arrowsocial Cholice

\# voters	3	2	2
3	A	B	C
2	B	C	A
1	C	A	B
0	X	X	X

$A(15)>_{B C} B(14)>_{B C} C(13)>_{B C} X(0)$

Failure of IIA: Borda Count

Politics case timmilotum

 Arrow Social Choice
Rationality
arrows theocem

\# voters	3	2	2
3	A	B	C
2	B	C	X
1	C	X	A
0	X	A	B

$$
A(15)>_{B C} B(14)>_{B C} C(13)>_{B C} X(0)
$$

Failure of IIA: Borda Count

\# voters	3	2	2
3	A	B	C
2	B	C	A
1	C	A	B
0	X	X	X

$A(15)>_{B C} B(14)>_{B C} C(13)>_{B C} X(0)$

Politics ases hum iloum

 ArrowSocial Choice
Rationality

\# voters	3	2	2
3	A	B	C
2	B	C	X
1	C	X	A
0	X	A	B

$C(13)>_{B C} B(12)>_{B C} A(11)>_{B C} X(6)$

