PHIL309P

Methods in Philosophy, Politics and Economics

Eric Pacuit
University of Maryland

Strategic Games

 Mens.amentuen Conomics $\underset{\text { Rrrows theorem }}{\text { Ratity }}$

A strategic game is a tuple $\left\langle N,\left\{A_{i}\right\}_{\in N},\left\{\geq_{i}\right\}_{\in N}\right\rangle$ where

- N is a finite set of players

Strategic Games

 Arrow Rationality

A strategic game is a tuple $\left\langle N,\left\{A_{i}\right\}_{i \in N},\left\{\geq_{i}\right\}_{i \in N}\right\rangle$ where

- N is a finite set of players
- for each $i \in N, A_{i}$ is a nonempty set of actions

Strategic Games

 uns nemene wein Nash Condorcens Choice' Theory ParetoHarsany Arrow RationalityA strategic game is a tuple $\left\langle N,\left\{A_{i}\right\}_{i \in N},\left\{\geq_{i}\right\}_{i \in N}\right\rangle$ where

- N is a finite set of players
- for each $i \in N, A_{i}$ is a nonempty set of actions
- for each $i \in N, \geq_{i}$ is a preference relation on $A=\prod_{i \in N} A_{i}$ (Often \geq_{i} are represented by utility functions $u_{i}: A \rightarrow \mathbb{R}$)

Strategic Games: Comments on Preferences

- Preferences may be over a set of consequences C. Assume $g: A \rightarrow C$ and $\left\{\geq_{i}^{*} \mid i \in N\right\}$ a set of preferences on C. Then for $a, b \in A$,

$$
a \geq_{i} b \text { iff } g(a) \geq_{i}^{*} g(b)
$$

- Consequences may be affected by exogenous random variable whose realization is not known before choosing actions. Let Ω be a set of states, then define $g: A \times \Omega \rightarrow C$. Where $g(a \mid \cdot)$ is interpreted as a lottery.
- Often \geq_{i} are represented by utility functions $u_{i}: A \rightarrow \mathbb{R}$

Strategic Games: Example

 MNsht conancerss samogot ECOMOMICS ArrowSocial Choice TheorySen

- $N=\{$ Row, Column $\}$
- $A_{\text {Row }}=\{u, d\}, A_{\text {Column }}=\{r, l\}$
- $(u, r) \geq_{\text {Row }}(d, l) \geq_{\text {Row }}(u, l) \sim_{\text {Row }}(d, r)$
$(u, r) \geq_{\text {Column }}(d, l) \geq_{\text {Column }}(u, l) \sim_{\text {Column }}(d, r)$

Strategic Games: Example

 Arrow Social Choice
Rationality
arrows theocem

- $N=\{$ Row, Column $\}$
- $A_{\text {Row }}=\{u, d\}, A_{\text {Column }}=\{r, l\}$
$-u_{\text {Row }}: A_{\text {Row }} \times A_{\text {Column }} \rightarrow\{0,1,2\}, u_{\text {Column }}: A_{\text {Row }} \times A_{\text {Column }} \rightarrow\{0,1,2\}$ with $u_{\text {Row }}(u, r)=u_{\text {Column }}(u, r)=2, u_{\text {Row }}(d, l)=u_{\text {Column }}(d, l)=2$, and $u_{x}(u, l)=u_{x}(d, r)=0$ for $x \in N$.

Some Types of Games

Cooperative/non-cooperative: in all types of strategic games we assume that players are self-interested (i.e., utility maximizers).

Cooperative/non-cooperative: in all types of strategic games we assume that players are self-interested (i.e., utility maximizers). Cooperative games allow groups of players to make binding contracts/agreements that are enforced by an outside agent.

Cooperative/non-cooperative: in all types of strategic games we assume that players are self-interested (i.e., utility maximizers). Cooperative games allow groups of players to make binding contracts/agreements that are enforced by an outside agent. Non-cooperative games also allow for players to make agreement, but they are only binding insofar as they are self-enforcing (i.e., no outside enforcers).

Pure Coordination

Politics (uwnion

ArrowSocial Choice
Rationality

> Bob
> L R

Focal Points

'primary salience': players' psychological propensities to play particular strategies by default, when there are no other reasons for choice.
"The basic intellectual premise, or working hypothesis, for rational players in this game seems to be the premise that some rule must be used if success is to exceed coincidence, and that the best rule to be found, whatever its rationalization, is consequently a rational rule."
(pg. 283)
T. Schelling. The Strategy of Conflict. Harvard University Press.

Hi-Low

Arrowsocial Rnalice
Bob
L
R

\mathbb{E}^{U}| | 3,3 | 0,0 |
| :--- | :--- | :--- |
| D | 0,0 | 1,1 |
| | | |

Pareto Dominant/Focal Points

"There are these two broad empirical facts about Hi-Lo games, people almost always choose $A[\mathrm{Hi}]$ and people with common knowledge of each other's rationality think it is obviously rational to choose A [Hi]."
(pg. 42)
M. Bacharach. Beyond Individual Choice. Princeton University Press, 2006.

See also chapter 2 of:
C.F. Camerer. Behavioral Game Theory. Princeton Princeton University Press, 2003.

Zero-sum/nonzero-sum: zero-sum games describe situations where there is a fixed amount of "goods" (i.e., utility) to be distributed amongst the players, so one player getting more means that the remaining players get less.

Zero-sum/nonzero-sum: zero-sum games describe situations where there is a fixed amount of "goods" (i.e., utility) to be distributed amongst the players, so one player getting more means that the remaining players get less. Nonzero-sum games allow for different amounts of total "goods" amongst players depending on which actions are taken.

Zero-sum/nonzero-sum: zero-sum games describe situations where there is a fixed amount of "goods" (i.e., utility) to be distributed amongst the players, so one player getting more means that the remaining players get less. Nonzero-sum games allow for different amounts of total "goods" amongst players depending on which actions are taken.

Suppose there are two players Ann and Bob dividing a cake. Suppose that Ann cuts the cake and then Bob chooses the first piece. (Suppose they only care about the size of the piece). Ann cannot cut the cake exactly evenly, so one piece is always larger than the other.

Suppose there are two players Ann and Bob dividing a cake. Suppose that Ann cuts the cake and then Bob chooses the first piece. (Suppose they only care about the size of the piece). Ann cannot cut the cake exactly evenly, so one piece is always larger than the other.

Suppose there are two players Ann and Bob dividing a cake. Suppose that Ann cuts the cake and then Bob chooses the first piece. (Suppose they only care about the size of the piece). Ann cannot cut the cake exactly evenly, so one piece is always larger than the other.

Suppose there are two players Ann and Bob dividing a cake. Suppose that Ann cuts the cake and then Bob chooses the first piece. (Suppose they only care about the size of the piece). Ann cannot cut the cake exactly evenly, so one piece is always larger than the other.

\section*{Bob
 TB
 TS | | $C B$ | 1,4 |
| :--- | :--- | :--- |
| ${ }^{4}$ | 4,1 | |
| | 2,3 | 3,2 |}

What should Ann (or Bob) do?

Bob
 TB
 TS

What should Ann (or Bob) do? Ann's best choice in Bob's worst choice (and vice versa)
In zero-sum games it is as if players explicitly want to minimize the pay-off of others, which is not true of games in general

What should Ann do?

What should Ann do? Bob best choice in Ann's worst choice

What should Ann do? maximize over each row and choose the maximum value

What should Bob do? minimize over each column and choose the maximum value

Zero-Sum Games

Von Neumann Minmax Theorem. In any finite, two-player, zero-sum game, there is always at least one minmax solution.

Matching Pennies

 mond minmeconomics Nash Consorcet'ts Paradot ECO OOMCSArrow Social Choice
Rationality

Matching Pennies

 , cme minw Economics Nash Consorcet'ts Paradot ECO OOMCS ArrowSocial Choice TheorySen

There are no equilibrium.

Mixed Strategies

\[

\]

A mixed strategy is a probability distribution over the set of pure strategies. For instance:

- $[1 / 2: H, 1 / 2: T]$
- $[1 / 3: H, 2 / 3: T]$
- ...

Mixed Extension

Mixed Extension

Mixed Extension

$$
p q-p(1-q)-(1-p) q+(1-p)(1-q),-p q+p(1-q)+(1-p) q-(1-p)(1-q)
$$

Matching Pennies

 Nash Condorcets Parabox
Rational Choice Theory Pareto Harsanyi ArrowSocial Choice
Rationality

The mixed strategy ([1/2:H,1/2:T],[1/2:H,1/2:T]) is the only equilibrium.

Theorem (von Neumann). For every two-player zero- sum game with finite strategy sets S_{1} and S_{2}, there is a number v, called the value of the game such that:

1. $v=\max _{p \in \Delta\left(S_{1}\right)} \min _{q \in \Delta\left(S_{2}\right)} U_{1}(p, q)=\min _{q \in \Delta\left(S_{2}\right)} \max _{p \in \Delta\left(S_{1}\right)} U_{1}(p, q)$
2. The set of mixed equilibria is nonempty. A mixed strategy profile (p, q) is a Nash equilibrium if and only if

$$
\begin{aligned}
& p \in \operatorname{argmax}_{p \in \Delta\left(S_{1}\right)} \min _{q \in \Delta\left(S_{2}\right)} U_{1}(p, q) \\
& q \in \operatorname{argmax}_{q \in \Delta\left(S_{2}\right)} \min _{p \in \Delta\left(S_{1}\right)} U_{1}(p, q)
\end{aligned}
$$

3. For all mixed equilibria $(p, q), U_{1}(p, q)=v$

\[

\]

Nash Equilibrium

 Nens shemenem eronomics Nash benace fempe ArrowSocial ChoiceLet $\left\langle N,\left\{A_{i}\right\}_{i \in N},\left\{\geq_{i}\right\}_{i \in N}\right\rangle$ be a strategic game
For $a_{-i} \in A_{-i}$, let

$$
B_{i}\left(a_{-i}\right)=\left\{a_{i} \in A_{i} \mid\left(a_{-i}, a_{i}\right) \geq_{i}\left(a_{-i}, a_{i}^{\prime}\right) \forall a_{i}^{\prime} \in A_{i}\right\}
$$

B_{i} is the best-response function.

Nash Equilibrium

 mass Game theoryownis Arrow Sociaionality

Let $\left\langle N,\left\{A_{i}\right\}_{i \in N},\left\{\geq_{i}\right\}_{i \in N}\right\rangle$ be a strategic game
For $a_{-i} \in A_{-i}$, let

$$
B_{i}\left(a_{-i}\right)=\left\{a_{i} \in A_{i} \mid\left(a_{-i}, a_{i}\right) \geq_{i}\left(a_{-i}, a_{i}^{\prime}\right) \forall a_{i}^{\prime} \in A_{i}\right\}
$$

B_{i} is the best-response function.
$a^{*} \in A$ is a Nash equilibrium iff $a_{i}^{*} \in B_{i}\left(a_{-i}^{*}\right)$ for all $i \in N$.

Example

Arrow Social Choice
Rationality
arrows theocrem

\[

\]

Example

Arrow Social Choice
Rationality
arrows theocerem

\[

\]

$$
N=\{r, c\} \quad A_{r}=\{U, D\} \quad A_{c}=\{L, R\}
$$

Example

 Nesemmen Nash Condorcets Paradox ECO ParetoHarsanyiRational Choice Theory
ArrowSocial Choice TheorySen

$$
\begin{array}{cc}
N=\{r, c\} \quad A_{r}=\{U, D\} & A_{c}=\{L, R\} \\
B R_{r}(L)=\{U\} & B R_{r}(R)=\{D\}
\end{array}
$$

Example

 Nesemmen Nash condorcets Paradox LCORational Choice Theory ParetoHarsanyi
ArrowSocial Choice TheorySen

\[

\]

$$
\begin{array}{cl}
N=\{r, c\} \quad A_{r}=\{U, D\} & A_{c}=\{L, R\} \\
B R_{r}(L)=\{U\} & B R_{r}(R)=\{D\} \\
B R_{c}(U)=\{L\} & B R_{c}(D)=\{R\}
\end{array}
$$

Example

	L	R
		2,1
	0,0	
	0,0	1,2

$$
\begin{array}{cl}
N=\{r, c\} \quad A_{r}=\{U, D\} & A_{c}=\{L, R\} \\
B R_{r}(L)=\{U\} & B R_{r}(R)=\{D\} \\
B R_{c}(U)=\{L\} & B R_{c}(D)=\{R\}
\end{array}
$$

(U, L) is a Nash Equilibrium $\quad(D, R)$ is a Nash Equilibrium

Zero-Sum Games

 Nash Condional Choice' Theory Pareto Harsanyi

The profile of security strategies (D, L) is a Nash equilbirium

In zero-sum games

- There exists a mixed strategy Nash equilibrium
- There may be more than one Nash equilibria
- Security strategies are always a Nash equilibrium
- Components of Nash equilibria are interchangeable: If σ and σ^{\prime} are Nash equilibria in a 2-player game, then $\left(\sigma_{1}, \sigma_{2}^{\prime}\right)$ is also a Nash equilibrium.

Battle of the Sexes

 Game Theory Downsmars Theorem Gus
Nash Consorceets Paradot ECOMOMICS Nash Condorcets Paradox ECO
Rational Choice Theory ParetoHarsanyi

ArrowSocial Choice
Rationality

\[

\]

Battle of the Sexes

$(B, B)(S, S)$, and $([2 / 3: B, 1 / 3: S],[1 / 3: B, 2 / 3: S])$ are Nash equilibria.

In an arbitrary (finite) games (that are not zero-sum)

- There exists a mixed strategy Nash equilibrium
- Security strategies are not necessarily a Nash equilibrium
- There may be more than on Nash equilibrium
- Components of Nash equilibrium are not interchangeable.
- Why should players play a Nash equilibrium?

Let $G=\left\langle N,\left\{S_{i}\right\}_{i \in N},\left\{u_{i}\right\}_{i \in N}\right\rangle$ be a finite strategic game (each S_{i} is finite and the set of players N is finite).

A strategy profile is an element $\sigma \in S=S_{1} \times \cdots \times S_{n}$
σ is a Nash equilibrium provided for all i, for all $s_{i} \in S_{i}$,

$$
u_{i}(\sigma) \geq u_{i}\left(s_{i}, \sigma_{-i}\right)
$$

