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Strategic Games

A strategic game is a tuple (N, {A;}ien, {>i}ien) Where

» N is a finite set of players
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Strategic Games

A strategic game is a tuple (N, {A;}ien, {>i}ien) Where

» N is a finite set of players
» for eachi € N, A, is a nonempty set of actions

» for eachi € N, >; is a preference relation on A = I[T;cnA;
(Often >; are represented by utility functions u; : A — R)
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» Preferences may be over a set of consequences C. Assume g: A — C and
{=7 |i € N} a set of preferences on C. Then fora,b € A,

a>; bift g(a) =7 g(b)
» Consequences may be affected by exogenous random variable whose
realization is not known before choosing actions. Let Q be a set of states,

then define g : A x Q — C. Where g(al) is interpreted as a lottery.

» Often >; are represented by utility functions u; : A - R
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Strategic Games: Example Onomlcps !

Column
r

1

Row
o <o

» N = {Row, Column}
> ARow = {u7 d}, AColumn = {ral}

» (U, 1) ZRow (d’ l) >Row (U, Z) ~Row (da r)
(u, 1’) Z Column (d, l) Z Column (u’ Z) ~Column (d’ 1’)
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Strategic Games: Example

Column
r

1
(2,2) | (0,0)

d|(0,0)|(1,1)

Row

» N = {Row, Column}
> ARow = {u» d}/ AColumn = {7’, l}
> URow * ARow X AColumn - {09 1’ 2}/ UColumn * ARow X AColumn - {Oa 19 2} Wlth

uRow(ua 7’) = uColumn(ua 1’) = 2/ uRow(da l) = uColumn(d’ l) = 2/
and u,(u,l) = u(d,r) = 0 for x € N.



Some Types of Games



Cooperative/non-cooperative: in all types of strategic games we assume that
players are self-interested (i.e., utility maximizers).

6 /48



Cooperative/non-cooperative: in all types of strategic games we assume that

players are self-interested (i.e., utility maximizers). Cooperative games allow

groups of players to make binding contracts/agreements that are enforced by
an outside agent.
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Cooperative/non-cooperative: in all types of strategic games we assume that
players are self-interested (i.e., utility maximizers). Cooperative games allow
groups of players to make binding contracts/agreements that are enforced by
an outside agent. Non-cooperative games also allow for players to make
agreement, but they are only binding insofar as they are self-enforcing (i.e., no
outside enforcers).
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Pure Coordination
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‘primary salience’”: players’ psychological propensities to play particular
strategies by default, when there are no other reasons for choice.

“The basic intellectual premise, or working hypothesis, for rational players in
this game seems to be the premise that some rule must be used if success is to
exceed coincidence, and that the best rule to be found, whatever its

rationalization, is consequently a rational rule.” (pg. 283)

T. Schelling. The Strategy of Conflict. Harvard University Press.
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Pareto Dominant/Focal Points

“There are these two broad empirical facts about Hi-Lo games,
people almost always choose A [Hi] and people with common
knowledge of each other’s rationality think it is obviously rational to
choose A [Hi].” (pg. 42)

M. Bacharach. Beyond Individual Choice. Princeton University Press, 2006.

See also chapter 2 of:
C.E Camerer. Behavioral Game Theory. Princeton Princeton University Press, 2003.
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Zero-sum/nonzero-sum: zero-sum games describe situations where there is a
tixed amount of “goods” (i.e., utility) to be distributed amongst the players,
so one player getting more means that the remaining players get less.
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players depending on which actions are taken.
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Suppose there are two players Ann and Bob dividing a cake. Suppose that
Ann cuts the cake and then Bob chooses the first piece. (Suppose they only
care about the size of the piece). Ann cannot cut the cake exactly evenly, so
one piece is always larger than the other.
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Suppose there are two players Ann and Bob dividing a cake. Suppose that
Ann cuts the cake and then Bob chooses the first piece. (Suppose they only
care about the size of the piece). Ann cannot cut the cake exactly evenly, so
one piece is always larger than the other.
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CB| 1,44,

CE| 2,3 3,2

What should Ann (or Bob) do?



Bob
TB TS

CB| 1,44,
CE| 2,3 3,2

What should Ann (or Bob) do? Ann’s best choice in Bob’s worst choice
(and vice versa)

In zero-sum games it is as if players explicitly want to minimize the
pay-off of others, which is not true of games in general

14 /48



Bob
TB TS

CB| 1,44,
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Bob
TB TS
CB 14 |4,

CE| 2,3 3,2

What should Ann do? Bob best choice in Ann’s worst choice



Bob
TB TS

CB| 14|41 1
CE|2,3(3,2]2

What should Ann do? maximize over each row and choose the maximum value

5/48



Bob
TB TS
CB'14 4,

CE| 2,332
3 1

What should Bob do? minimize over each column and choose the maximum
value
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Von Neumann Minmax Theorem. In any finite, two-player, zero-sum game,
there is always at least one minmax solution.
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Matching Pennies
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Matching Pennies

Bob
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There are no equilibrium.
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Mixed Strategies
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A mixed strategy is a probability distribution over the set of pure strategies.

For instance:

» [1/2:H,1/2: T]
» [1/3:H,2/3:T]

> cee
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Mixed Extension
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Matching Pennies

Bob
H T
H 11|11
“rl-111-1

The mixed strategy ([1/2 : H,1/2 : T1,[1/2 : H,1/2 : T]) is the only
equilibrium.



Theorem (von Neumann). For every two-player zero- sum game with finite
strategy sets S and S,, there is a number v, called the value of the game such
that:

1. v = maxyeas,) Mingeacs,) U1(p, ) = mingea(s,) maxpeacs,) Ui(p, q)
2. The set of mixed equilibria is nonempty. A mixed strategy profile (p, 9) is
a Nash equilibrium if and only if

€ argmax min U;(p,
p g pEA(Sl) QEA(SZ) 1(p q)

€ argmax min U;(p,

3. For all mixed equilibria (p,q), Ui(p,q) = v
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1 o Hume
Nash Equilibrium i ECONOMICS

Let (N, {Aj}ien, {=i}ien) be a strategic game
Fora_; € A_;, let
Bi(a_) =1{a; € Ai| (a_i,a;) =i (a_,a)) ¥V a, € A}

B, is the best-response function.
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Nash Equilibrium

Let (N, {Aj}ien, {=i}ien) be a strategic game
Fora_; € A_;, let
Bi(a_) =1{a; € Ai| (a_i,a;) =i (a_,a)) ¥V a, € A}

B, is the best-response function.

a* € Ais a Nash equilibrium iff a7 € B;(a",) for alli € N.
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Example
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Example % Economics
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N ={r,c} A, ={U,D} A.={L,R}

BR.(L) = {U} BR:(R) = {D}
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Example

L R
u 121700
D 00|12

N={r,c} A ={UD} A.={L,R}
BRA(L) = {U} BR,(R) = {D}

BR.(U) = {L} BR:(D) = {R}



Example

L R
21100
001,22

u
D

N ={r,c} A, ={U,D} A.={L,R}
BR,(L) = {U} BR/(R) = {D}
BR.(U) = {L} BR:(D) = {R}

(U, L) is a Nash Equilibrium (D, R) is a Nash Equilibrium
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Zero-Sum Games
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The profile of security strategies (D, L) is a Nash equilbirium



In zero-sum games

» There exists a mixed strategy Nash equilibrium
» There may be more than one Nash equilibria
» Security strategies are always a Nash equilibrium

» Components of Nash equilibria are interchangeable: If o and ¢’ are Nash
equilibria in a 2-player game, then (o, o) is also a Nash equilibrium.
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Battle of the Sexes
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Battle of the Sexes
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(B,B) (S5,5),and ([2/3: B,1/3: S],[1/3 : B,2/3 : S]) are Nash equilibria.
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In an arbitrary (finite) games (that are not zero-sum)

>
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There exists a mixed strategy Nash equilibrium
Security strategies are not necessarily a Nash equilibrium
There may be more than on Nash equilibrium

Components of Nash equilibrium are not interchangeable.

Why should players play a Nash equilibrium?
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Let G = (N, {Si}ien, {ui}ien) be a finite strategic game (each S; is finite and the
set of players N is finite).

A strategy profile is an element c € S =5, x--- x5,

o is a Nash equilibrium provided for all ;, for all 5; € S;,

ui(o) = u(s;, o)
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