PHIL309P

Methods in Philosophy, Politics and Economics

Eric Pacuit
University of Maryland

The Guessing Game

Guess a number between $1 \& 100$. The closest to $2 / 3$ of the average wins.
app.pacuit.io/games/avg

The Guessing Game, again

 wassemencem Arrowsocialionality

Guess a number between $1 \& 100$. The closest to $2 / 3$ of the average wins.

The Guessing Game, again

Guess a number between $1 \& 100$. The closest to $2 / 3$ of the average wins.
app.pacuit.io/games/avg

The Guessing Game

 ArrowSociaionality

Guess a number between $1 \& 100$.
The closest to $2 / 3$ of the average wins.

The Guessing Game

 Nas shemen mow Conomics Arrow Rationality

Guess a number between $1 \& 100$.
The closest to $2 / 3$ of the average wins.

What number should you guess?

The Guessing Game

 Nsshame whern Economics Arrow Rationality

Guess a number between $1 \& 100$.
The closest to $2 / 3$ of the average wins.

What number should you guess? 100

The Guessing Game

 Nsshame whern Economics Arrow Rationality

Guess a number between $1 \& 100$.
The closest to $2 / 3$ of the average wins.
What number should you guess? 100, 99

The Guessing Game

 Arrowsociannality

Guess a number between $1 \& 100$.
The closest to $2 / 3$ of the average wins.
What number should you guess? 100,9 ,.., 67

The Guessing Game

 uspreme weice Nast enana chice Theary, paretentess Arrowsocial Rationality

Guess a number between $1 \& 100$.
The closest to $2 / 3$ of the average wins.
What number should you guess? 100, 时, ..., $\%$,...,2, 1

The Guessing Game

 Nas shemen mon ECONOMiCS Arrow Rationality

Guess a number between $1 \& 100$.
The closest to $2 / 3$ of the average wins.

Traveler's Dilemma

 Nandenal choce ECOMOMICS ArrowSocial Choice TheorySen1. You and your friend write down an integer between 2 and 100 (without discussing).

Traveler's Dilemma

 Mas semen wey

1. You and your friend write down an integer between 2 and 100 (without discussing).
2. If both of you write down the same number, then both will receive that amount in dollars from the airline in compensation.

Traveler's Dilemma

 Mas semen weymeronomics ArrowSocial Choice TheorySen1. You and your friend write down an integer between 2 and 100 (without discussing).
2. If both of you write down the same number, then both will receive that amount in dollars from the airline in compensation.
3. If the numbers are different, then the airline assumes that the smaller number is the actual price of the luggage.

Traveler's Dilemma

1. You and your friend write down an integer between 2 and 100 (without discussing).
2. If both of you write down the same number, then both will receive that amount in dollars from the airline in compensation.
3. If the numbers are different, then the airline assumes that the smaller number is the actual price of the luggage.
4. The person that wrote the smaller number will receive that amount plus $\$ 2$ (as a reward), and the person that wrote the larger number will receive the smaller number minus $\$ 2$ (as a punishment).

Traveler's Dilemma

1. You and your friend write down an integer between 2 and 100 (without discussing).
2. If both of you write down the same number, then both will receive that amount in dollars from the airline in compensation.
3. If the numbers are different, then the airline assumes that the smaller number is the actual price of the luggage.
4. The person that wrote the smaller number will receive that amount plus $\$ 2$ (as a reward), and the person that wrote the larger number will receive the smaller number minus $\$ 2$ (as a punishment).
Suppose that you are randomly paired with another person from class. What number would you write down?

> app.pacuit.io/games/td

From Decisions to Games

What makes the previous decision problems different from standard decision problems?

From Decisions to Games

What makes the previous decision problems different from standard decision problems?
"[T]he fundamental insight of game theory [is] that a rational player must take into account that the players reason about each other in deciding how to play."
R. Aumann and J. Dreze. Rational Expectations in Games. American Economic Review, 98, pp. 72-86, 2008.

Red wine
White wine
Steak
Fish

From Decisions to Games

Commenting on the difference between Robinson Crusoe's maximization problem and the maximization problem faced by participants in a social economy, von Neumann and Morgenstern write:
"Every participant can determine the variables which describe his own actions but not those of the others. Nevertheless those "alien" variables cannot, from his point of view, be described by statistical assumptions.

From Decisions to Games

Commenting on the difference between Robinson Crusoe's maximization problem and the maximization problem faced by participants in a social economy, von Neumann and Morgenstern write:
"Every participant can determine the variables which describe his own actions but not those of the others. Nevertheless those "alien" variables cannot, from his point of view, be described by statistical assumptions. This is because the others are guided, just as he himself, by rational principles-whatever that may mean-and no modus procedendi can be correct which does not attempt to understand those principles and the interactions of the conflicting interests of all participants."
(vNM, pg. 11)

Game Situations

 Nashtoman Choice Theory Pareto Harsanyi $\underset{\text { Rrrows theorem }}{\text { Ratity }}$
a group of self-interested agents (players) involved in some interdependent decision problem

Game Situations

$F^{\text {Bob }} I$
 10

a group of self-interested agents (players) involved in some interdependent decision problem

Game Situations

$$
\begin{array}{cc}
F^{\mathrm{Bob}} & \\
1 & 0 \\
0 & 3
\end{array}
$$

a group of self-interested agents (players) involved in some interdependent decision problem

Game Situations

$$
\begin{array}{ccc}
& F^{B o b} I \\
F & 31 & 00 \\
I & 00 & 13
\end{array}
$$

a group of self-interested agents (players) involved in some interdependent decision problem

Game Situations

a group of self-interested agents (players) involved in some interdependent decision problem

Game Situations

a group of self-interested agents (players) involved in some interdependent decision problem

pictured above: Battle of the Sexes (i.e., French, Italian)

Just Enough Game Theory

 wens nemen wem Economics Nash conaorces Choice TheoryRational ParetoHarsanyi Arrow Racialionality

A game is a mathematical model of a strategic interaction that includes

Just Enough Game Theory

 Mens samene wem Economics Nash Consorcets ParadoxRational Choice Theory ParetoHarsanyi Arrow Socialionality

A game is a mathematical model of a strategic interaction that includes

- the group of players in the game

Just Enough Game Theory

 Mens nemene wo monomics NashRational Choice Theory ParetoHarsany Arrowsocia Choice

A game is a mathematical model of a strategic interaction that includes

- the group of players in the game
- the actions the players can take

Just Enough Game Theory

 uns sementuen Economics NashRational Choice
Theory ParetoHarsany Arrow Racia Choice

A game is a mathematical model of a strategic interaction that includes

- the group of players in the game
- the actions the players can take
- the players' interests (i.e., preferences/utilities),

Just Enough Game Theory

 Nash Rational Choice 'Theory ParetoHarsany Arrow Rationality

A game is a mathematical model of a strategic interaction that includes

- the group of players in the game
- the actions the players can take
- the players' interests (i.e., preferences/utilities),
- the "structure" of the decision problem

Just Enough Game Theory

 Nash Rational Choice 'Theory ParetoHarsany Arrow Social Chality
Rational

A game is a mathematical model of a strategic interaction that includes

- the group of players in the game
- the actions the players can take
- the players' interests (i.e., preferences/utilities),
- the "structure" of the decision problem (what information do the players have?, what order do they act in?, how many times do they repeat their interaction?, etc.)

Just Enough Game Theory

A game is a mathematical model of a strategic interaction that includes

- the group of players in the game
- the actions the players can take
- the players' interests (i.e., preferences/utilities),
- the "structure" of the decision problem (what information do the players have?, what order do they act in?, how many times do they repeat their interaction?, etc.)

It does not specify the actions that the players do take.

Rational Players

 Nas semen wey Nashonal Choice Theory ParetoHarsany RationalityArows theocem

- What distinguishes game theory from decision theory is not that the players' pay-offs depend on the outcome of some external processes (consider standard decisions under risk).

Rational Players

 Mas semen wis Nash Consorcets ParasooxRational Choice Theory ParetoHarsany
Arrow Social Choice Theory Sen Arrow Rationality

- What distinguishes game theory from decision theory is not that the players' pay-offs depend on the outcome of some external processes (consider standard decisions under risk).
- In decision theory, we treated these as stochastic/non-deterministic processes.

Rational Players

- What distinguishes game theory from decision theory is not that the players' pay-offs depend on the outcome of some external processes (consider standard decisions under risk).
- In decision theory, we treated these as stochastic/non-deterministic processes.
- However, in game theory, at least some of these processes are the actions taken by other players, which, in turn, are determined by the internal reasoning of those players.

Rational Players

- What distinguishes game theory from decision theory is not that the players' pay-offs depend on the outcome of some external processes (consider standard decisions under risk).
- In decision theory, we treated these as stochastic/non-deterministic processes.
- However, in game theory, at least some of these processes are the actions taken by other players, which, in turn, are determined by the internal reasoning of those players.
- Furthermore, the reasoning processes of other players, themselves depend on their beliefs about the reasoning processes of all the other players (including us).

Simultaneous- and Sequential-move

 Mas semen weymeronomics $\underset{\text { Rrrows theorem }}{\text { Ratity }}$

- In simultaneous-move games all players select an action at the same time, without knowing what the others will do (though they can certainly reason about what the other players should be expected to do).

Simultaneous- and Sequential-move

- In simultaneous-move games all players select an action at the same time, without knowing what the others will do (though they can certainly reason about what the other players should be expected to do). Examples: rock-paper-scissors, Battle of the Sexes, Game of chicken, voting (in theory)

Simultaneous- and Sequential-move

- In simultaneous-move games all players select an action at the same time, without knowing what the others will do (though they can certainly reason about what the other players should be expected to do). Examples: rock-paper-scissors, Battle of the Sexes, Game of chicken, voting (in theory)
- In sequential-move games all players select actions in some specified order, so different players will have different amounts of knowledge about what others have done or will do (they can still reason about what the other players should be expected to do).

Simultaneous- and Sequential-move

- In simultaneous-move games all players select an action at the same time, without knowing what the others will do (though they can certainly reason about what the other players should be expected to do). Examples: rock-paper-scissors, Battle of the Sexes, Game of chicken, voting (in theory)
- In sequential-move games all players select actions in some specified order, so different players will have different amounts of knowledge about what others have done or will do (they can still reason about what the other players should be expected to do). Examples: poker, chess, store/restaurants offering coupons/sales, voting (in practice), Chain Store Game, Ultimatum Game

(im)Perfect Information

- In Games of Perfect Information all players have complete and accurate knowledge about: each player's available actions, each player's preferences over outcomes, the structure of the game, and previous moves played (in sequential games).

(im)Perfect Information

- In Games of Perfect Information all players have complete and accurate knowledge about: each player's available actions, each player's preferences over outcomes, the structure of the game, and previous moves played (in sequential games). Examples: chess, Centipede Games (many theoretical examples)

(im)Perfect Information

- In Games of Perfect Information all players have complete and accurate knowledge about: each player's available actions, each player's preferences over outcomes, the structure of the game, and previous moves played (in sequential games). Examples: chess, Centipede Games (many theoretical examples)
- In Games of Imperfect Information all players lack some knowledge about: each player's available actions, each player's preferences over outcomes, the structure of the game, or previous moves played (in sequential games).

(im)Perfect Information

- In Games of Perfect Information all players have complete and accurate knowledge about: each player's available actions, each player's preferences over outcomes, the structure of the game, and previous moves played (in sequential games). Examples: chess, Centipede Games (many theoretical examples)
- In Games of Imperfect Information all players lack some knowledge about: each player's available actions, each player's preferences over outcomes, the structure of the game, or previous moves played (in sequential games). Examples: poker, buying/selling stocks, most real-world situations

Politics
Game theornawisi Philosophy nes nemen wem Economics
 Arrowsocial Choice
Rationality
Arows theorem

Games

 nes nemen wem Economics Arrow Social Choice
Rationality
arrows theocem

Games

 nes nemen wem Economics Arrow Social Choice
Rationality
arrows theocrem

Games

 ArrowSocial Choice
Rationality
Arrows theorem
$(3,1) \quad(0,0) \quad(0,0) \quad(1,3)$

Solution Concept

 ArrowSocial Choice TheorySen Aroustionacenty

A solution concept is a systematic description of the outcomes that may emerge in a family of games.

This is the starting point for most of game theory and includes many variants: Nash equilibrium, backwards induction, or iterated dominance of various kinds.

These are usually thought of as the embodiment of "rational behavior" in some way and used to analyze game situations.

