Methods in Philosophy, Politics and Economics: Individual and Group Decision Making

Eric Pacuit
University of Maryland
pacuit.org

Harsanyi's Theorem
Game Theory Downs

ArrowSocial Choice TheorySen
Rationality
Arrow's Theorem

Independence Axiom

Politics
mon can inernaw Philosiophy Nash Condorcet's Paradox ECO COO
Rational Choice Theory

ArrowSocial Choice TheorySen Rationality
Arrows theorem

V

Politics
Game thashyis shesems PhilOSOp Hume
 Nash conamercets Pargobe ECO POMMICS

Arrow Social Choice TheorySen
Rationality

Politics
Game thasanis shesems Philosopphy
 Nash consarcetes Parabox ECO Theory paretoHarsanyi

Arrow Social Choice
Rationality
||

Politics
Game thasanis shesems Philosopphy
 Nash consarcetes Parabox ECO Theory paretoHarsanyi

Arrow Social Choice
Rationality
||

Politics
Game theornew Philosiophy

Arrowscial Choice
Rationality

\wedge

\wedge

Politics

$$
L=\left[A_{1}: p_{1}, A_{2}: p_{2}, A_{3}: p_{3}\right]
$$

 Arrowsocial Choice
Rationality
Arows theorem

$$
L=\left[A_{1}: p_{1}, A_{2}: p_{2}, A_{3}: p_{3}\right]
$$

 versine ther

$$
L=\left[A_{1}: p_{1}, A_{2}: p_{2}, A_{3}: p_{3}\right]
$$

 Nash emeatesemed ECONOMICS ArrowSocial Choice
Rationality

$$
L=\left[A_{1}: p_{1}, A_{2}: p_{2}, A_{3}: p_{3}\right]
$$

$$
L=\left[A_{1}: p_{1}, A_{2}: p_{2}, A_{3}: p_{3}\right]
$$

 Arrowsocial Choice

$$
L=\left[A_{1}: p_{1}, A_{2}: p_{2}, A_{3}: p_{3}\right]
$$

Politics
Polticsasas ixhio tume Mes neme heormeronomics

$\left[A_{1}: p_{1}, A_{2}: p_{2}, A_{3}: p_{3}\right]$
$\left[A_{1}: p_{1}, B_{2}: p_{2}, B_{3}: p_{3}\right]$

$\left[A_{1}: p_{1}, A_{2}: p_{2}, A_{3}: p_{3}\right]$

$$
\left[A_{1}: p_{1}, B_{2}: p_{2}, B_{3}: p_{3}\right]
$$

Politics
Gamititive hillosiophy
 Rational Choice Theory Arporetetorassany

$$
\left[A_{1}: p_{1}, A_{2}: p_{2}, A_{3}: p_{3}\right]
$$

$$
\left[A_{1}: p_{1}, B_{2}: p_{2}, B_{3}: p_{3}\right]
$$

Politics
Gamititive hiow hiosiphy
 Rational Choice Theory Arporetetorassany

$$
\left[A_{1}: p_{1}, A_{2}: p_{2}, A_{3}: p_{3}\right]
$$

$$
\left[A_{1}: p_{1}, B_{2}: p_{2}, B_{3}: p_{3}\right]
$$

Politics
Gamitition Pivilotiophy
 Rational Choice Theory Aroperetotarssany

$$
\left[A_{1}: p_{1}, A_{2}: p_{2}, A_{3}: p_{3}\right]
$$

$$
\left[A_{1}: p_{1}, B_{2}: p_{2}, B_{3}: p_{3}\right]
$$

$$
\left[A_{1}: p_{1}, A_{2}: p_{2}, A_{3}: p_{3}\right]
$$

$$
\left[A_{1}: p_{1}, B_{2}: p_{2}, B_{3}: p_{3}\right]
$$

$$
\left[A_{1}: p_{1}, B_{2}: p_{2}, B_{3}: p_{3}\right] \succ / \underset{\mathrm{iff}}{\sim} / \prec\left[A_{1}: p_{1}, B_{2}: p_{2}, B_{3}: p_{3}\right]
$$

$$
\left[B_{2}: p_{2}, B_{3}: p_{3}\right] \succ / \sim / \prec\left[B_{2}: p_{2}, B_{3}: p_{3}\right]
$$

$\left[A_{1}: p_{1}, A_{2}: p_{2}, A_{3}: p_{3}\right]$

$$
\left[A_{1}: p_{1}, B_{2}: p_{2}, B_{3}: p_{3}\right]
$$

$$
\begin{aligned}
& {\left[A_{1}: p_{1}, B_{2}: p_{2}, B_{3}: p_{3}\right] \succ / \sim / \prec\left[A_{1}: p_{1}, B_{2}: p_{2}, B_{3}: p_{3}\right] } \\
& \text { iff } \\
& {\left[B_{2}: p_{2}, B_{3}: p_{3}\right] } \sim / \prec\left[B_{2}: p_{2}, B_{3}: p_{3}\right]
\end{aligned}
$$

Independence

 Mens.ime wemo conomics Arrow Social Choice
Rationality
arrows theocem

For all $L_{1}, L_{2}, L_{3} \in \mathcal{L}$ and $a \in(0,1]$,

$$
L_{1} \succ L_{2} \text { if, and only if, }\left[L_{1}: a, L_{3}:(1-a)\right] \succ\left[L_{2}: a, L_{3}:(1-a)\right] .
$$

$$
L_{1} \sim L_{2} \text { if, and only if, }\left[L_{1}: a, L_{3}:(1-a)\right] \sim\left[L_{2}: a, L_{3}:(1-a)\right] .
$$

Better Prizes

Better prizes: When two lotteries are the same except for one outcome, then the decision maker prefers the lottery with the better outcome.

Better Chances

 Mas semen wisw Arrowsocial Choice
Better Chances: A decision maker prefers a better chance for a better prize

Better Chances

$$
a \succ b
$$

$$
p>q, \text { so } p=q+r \text { and }(1-q)=(1-p)+r \text { for some } r
$$

Better Chances

$$
a \succ b
$$

$$
p>q, \text { so } p=q+r \text { and }(1-q)=(1-p)+r \text { for some } r
$$

Better Chances

Politicscasan fumion tum Mand cane hurn iew PhiloSOph
 ArrowSocial Choice
Rationality

$$
a \succ b
$$

$$
p>q \text {, so } p=q+r \text { and }(1-q)=(1-p)+r \text { for some } r
$$

Better Chances

Politics Gan tuisines Philos'ophy ways rame ther wisconomics
 Arrowsocial Rnalice

$$
a \succ b
$$

$$
p>q, \text { so } p=q+r \text { and }(1-q)=(1-p)+r \text { for some } r
$$

b

Better Chances

 Mas semen wisw Arrowsocial Choice
Better Chances: A decision maker prefers a better chance for a better prize

If $L_{1} \succeq L_{2}$, then for all $p,\left[L_{1}: 1\right] \succeq\left[L_{1}: p, L_{2}:(1-p)\right]$

If $L_{1} \succeq L_{2}$, then for all $p,\left[L_{1}: 1\right] \succeq\left[L_{1}: p, L_{2}:(1-p)\right]$

If $L_{1} \succeq L_{2}$, then for all $p,\left[L_{1}: 1\right] \succeq\left[L_{1}: p, L_{2}:(1-p)\right]$

If $L_{1} \succeq L_{2}$, then for all $p,\left[L_{1}: 1\right] \succeq\left[L_{1}: p, L_{2}:(1-p)\right]$

Describing the Outcomes

Suppose you have a kitten, which you plan to give away to either Ann or Bob. Ann and Bob both want the kitten very much. Both are deserving, and both would care for the kitten. You are sure that giving the kitten to Ann (x) is at least as good as giving the kitten to $\operatorname{Bob}(y)$ (so $x \succeq y$). But you think that would be unfair to Bob. You decide to flip a fair coin: if the coin lands heads, you will give the kitten to Bob, and if it lands tails, you will give the kitten to Ann.
(J. Drier, "Morality and Decision Theory" in Handbook of Rationality)

- x is the outcome "Ann gets the kitten"
- y is the outcome "Bob gets the kitten"

- x is the outcome "Ann gets the kitten"
- y is the outcome "Bob gets the kitten"

- x is the outcome "Ann gets the kitten"
- y is the outcome "Bob gets the kitten"

- x is the outcome "Ann gets the kitten"
- y is the outcome "Bob gets the kitten"

- x is the outcome "Ann gets the kitten, in a fair way"
- y is the outcome "Bob gets the kitten"

- x is the outcome "Ann gets the kitten"
- z is the outcome "Ann gets the outcome, fairly
- y is the outcome "Bob gets the kitten, fairly"

If all the agent cares about is who gets the kitten, then $L_{1} \succeq L_{2}$
If all the agent cares about is being fair, then $L_{1} \preceq L_{2}$

Continuity Axiom

Politics

oncs embilosophy Neme Economics Nash Condorcets Paradox LCO Pareto Harsanyi
Rational Choice Theory
ArrowSocial Choice TheorySen ArrowSocial Choice
Rationality
Arrows theocem

$$
L_{1} \succ L_{2} \succ L_{3}
$$

omicsembilosophy
 Nash Condorcets Paradox LCO Pareto Harsanyi
Rational Choice Theory
ArrowSocial Choice TheorySen ArrowSocial Choice
Rationality
Arrows theorem
L_{1}
L_{2}
L_{3} Menseme heormeronomics

$$
\begin{aligned}
& U\left(L_{1}\right)=r_{1} \\
& U\left(L_{2}\right)=r_{2} \\
& U\left(L_{3}\right)=r_{3}
\end{aligned}
$$

 Arrow Social Choice
Rationality
arrows theocem

$$
\begin{aligned}
& U\left(L_{1}\right)=r_{1} U\left(\left[L_{1}: 1\right]\right) \\
& U\left(L_{2}\right)=r_{2} \\
& U\left(L_{3}\right)=\left.r_{3}\right|_{0} U\left(\left[L_{3}: 1\right]\right)
\end{aligned}
$$

 Arrow Social Choice
Rationality
arrows theocem
 Mess hiame cemberyowis Nonchomics
 Arrow Socilitenaice
Arounsimenem
 Weftime Economics

Politics Same inione Philotiophy Mens hiame cemoryomeconomics

Politics Smme finive Philotiophy

Politics Same fitione Philotiophy mens Game theory
 ArrowSocial Choice
Rationality

Politics Camititisi wion Photiophy mass Game theoryours
 ArrowSocial Choice
Rationality
Arrows theocem

Politics Smm inione Philotiophy Mass hiamene cems momotconomics

$u: \mathcal{L} \rightarrow \mathbb{R}$ is linear provided for all $L=\left[L_{1}: p_{1}, \ldots, L_{n}: p_{n}\right] \in \mathcal{L}$,

$$
u(L)=\sum_{i=1}^{n} p_{i} \times u\left(L_{i}\right)
$$

von Neumann-Morgenstern Representation Theorem A binary relation \succeq on \mathcal{L} satisfies Preference, Compound Lotteries, Independence and Continuity if, and only if, \succeq is representable by a linear utility function $u: \mathcal{L} \rightarrow \mathbb{R}$.
$u: \mathcal{L} \rightarrow \mathbb{R}$ is linear provided for all $L=\left[L_{1}: p_{1}, \ldots, L_{n}: p_{n}\right] \in \mathcal{L}$,

$$
u(L)=\sum_{i=1}^{n} p_{i} \times u\left(L_{i}\right)
$$

von Neumann-Morgenstern Representation Theorem A binary relation \succeq on \mathcal{L} satisfies Preference, Compound Lotteries, Independence and Continuity if, and only if, \succeq is representable by a linear utility function $u: \mathcal{L} \rightarrow \mathbb{R}$.

Moreover, $u^{\prime}: \mathcal{L} \rightarrow \mathbb{R}$ represents \succeq iff there exists real numbers $c>0$ and d such that $u^{\prime}(\cdot)=c u(\cdot)+d$. (" u is unique up to linear transformations.") Nas shemen mo Rational choote Theory peratethisisn Arrow Social Choice
Rationality
arrows theocem
Von Neumann-Morgenstern Theorem. If an agent satisfies the previous axioms, then the agent's ordinal utility function can be turned into cardinal utility function.

Von Neumann-Morgenstern Theorem. If an agent satisfies the previous axioms, then the agent's ordinal utility function can be turned into cardinal utility function.

- Utility is unique only up to linear transformations. So, it still does not make sense to add two different agents cardinal utility functions.

Von Neumann-Morgenstern Theorem. If an agent satisfies the previous axioms, then the agent's ordinal utility function can be turned into cardinal utility function.

- Utility is unique only up to linear transformations. So, it still does not make sense to add two different agents cardinal utility functions.
- Issue with continuity: $\$ 1 \succ 1$ cent \succ death, but who would accept a lottery which is p for $\$ 1$ and $(1-p)$ for death??

Von Neumann-Morgenstern Theorem. If an agent satisfies the previous axioms, then the agent's ordinal utility function can be turned into cardinal utility function.

- Utility is unique only up to linear transformations. So, it still does not make sense to add two different agents cardinal utility functions.
- Issue with continuity: $\$ 1 \succ 1$ cent \succ death, but who would accept a lottery which is p for $\$ 1$ and $(1-p)$ for death??
- Important issues about how to identify correct descriptions of the outcomes and options.

The Two Envelop Paradox

Suppose that you have a choice between two envelops, each containing some money. A trustworthy informant tells you that one of the envelops contains exactly twice as much as the other, but not which is which. Since this is all you know, you pick an envelop at random. Just before you open the envelop, you are given the opportunity to switch envelops. Should you swap?

The Two Envelop Paradox

Suppose that you have a choice between two envelops, each containing some money. A trustworthy informant tells you that one of the envelops contains exactly twice as much as the other, but not which is which. Since this is all you know, you pick an envelop at random. Just before you open the envelop, you are given the opportunity to switch envelops. Should you swap?

Yes: Suppose the chosen envelop has $\$ x$. The other envelop has either $\frac{1}{2} \cdot x$ dollars or $2 \cdot x$ dollars. Each is equally likely, so the expected utility of switching is

$$
\frac{1}{2} \cdot \frac{1}{2} \cdot x+\frac{1}{2} \cdot 2 \cdot x=1.25 \cdot x
$$

Objections

- No action guidance. Rational decision makers do not prefer an act because its expected utility is favorable, but can only be described as if they were acting from this principle.

Objections

 wans same weinw Economics ArrowSocial Choice TheorySen Aroustioneemaity

- No action guidance. Rational decision makers do not prefer an act because its expected utility is favorable, but can only be described as if they were acting from this principle.
- Utility without chance. It seems rather odd from a linguistic point of view to say that the meaning of utility has something to do with preferences over lotteries.

Objections

- No action guidance. Rational decision makers do not prefer an act because its expected utility is favorable, but can only be described as if they were acting from this principle.
- Utility without chance. It seems rather odd from a linguistic point of view to say that the meaning of utility has something to do with preferences over lotteries.
- The axioms are too strong. Do rational decisions have to obey these axioms?

