Methods in Philosophy, Politics and Economics: Individual and Group Decision Making

Eric Pacuit University of Maryland

 $u : \mathcal{L} \to \mathbb{R}$ is linear provided for all $L = [L_1 : p_1, \ldots, L_n : p_n] \in \mathcal{L}$,

$$u(L) = \sum_{i=1}^{n} p_i \times u(L_i)$$

von Neumann-Morgenstern Representation Theorem A binary relation \succeq on \mathcal{L} satisfies Preference, Compound Lotteries, Independence and Continuity if, and only if, \succeq is representable by a linear utility function $u : \mathcal{L} \to \mathbb{R}$.

 $u : \mathcal{L} \to \mathbb{R}$ is linear provided for all $L = [L_1 : p_1, \ldots, L_n : p_n] \in \mathcal{L}$,

$$u(L) = \sum_{i=1}^{n} p_i \times u(L_i)$$

von Neumann-Morgenstern Representation Theorem A binary relation \succeq on \mathcal{L} satisfies Preference, Compound Lotteries, Independence and Continuity if, and only if, \succeq is representable by a linear utility function $u : \mathcal{L} \to \mathbb{R}$.

Moreover, $u' : \mathcal{L} \to \mathbb{R}$ represents \succeq iff there exists real numbers c > 0 and d such that $u'(\cdot) = cu(\cdot) + d$. ("u is unique up to linear transformations.")

• Utility is unique only *up to linear transformations*.

- Utility is unique only *up to linear transformations*.
- Issue with continuity: \$1 ≻ 1 cent ≻ death, but who would accept a lottery which is *p* for \$1 and (1 − *p*) for death??

- Utility is unique only *up to linear transformations*.
- Issue with continuity: \$1 ≻ 1 cent ≻ death, but who would accept a lottery which is *p* for \$1 and (1 − *p*) for death??
- Important issues about how to identify correct descriptions of the outcomes and options.

Objections

 No action guidance. Rational decision makers do not prefer an act *because* its expected utility is favorable, but can only be described as *if* they were acting from this principle. Objections

- No action guidance. Rational decision makers do not prefer an act *because* its expected utility is favorable, but can only be described as *if* they were acting from this principle.
- Utility without chance. It seems rather odd from a linguistic point of view to say that the *meaning* of utility has something to do with preferences over lotteries.

Objections

- No action guidance. Rational decision makers do not prefer an act *because* its expected utility is favorable, but can only be described as *if* they were acting from this principle.
- Utility without chance. It seems rather odd from a linguistic point of view to say that the *meaning* of utility has something to do with preferences over lotteries.
- The axioms are too strong. Do rational decisions *have* to obey these axioms?

		Red (1)	White (89)	Blue (10)
S_1	Α	1M	1M	1M
	В	0	1M	5M

		Red (1)	White (89)	Blue (10)
S_2	С	1M	0	1M
	D	0	0	5M

		Red (1)	White (89)	Blue (10)
S_1	A	1 <i>M</i>	1 <i>M</i>	1 <i>M</i>
	В	0	1M	5M
S_2	С	1M	0	1M
	D	0	0	5 <i>M</i>

	Red (1)	White (89)	Blue (10)
Α	1M	1M	1M
В	0	1M	5 <i>M</i>
С	1M	0	1M
D	0	0	5M
	A B C D	Red (1) A 1M B 0 C 1M D 0	Red (1) White (89) A 1M B 0 C 1M O 0 D 0

 $A \succeq B$ iff $C \succeq D$

Independence

Independence For all $L_1, L_2, L_3 \in \mathcal{L}$ and $a \in (0, 1]$,

 $L_1 \succ L_2$ if, and only if, $[L_1 : a, L_3 : (1-a)] \succ [L_2 : a, L_3 : (1-a)]$.

 $L_1 \sim L_2$ if, and only if, $[L_1 : a, L_3 : (1 - a)] \sim [L_2 : a, L_3 : (1 - a)].$

We should **not** conclude either

We should **not** conclude either

(a) The axioms of cardinal utility fail to adequately capture our understanding of rational choice, or

We should **not** conclude either

(a) The axioms of cardinal utility fail to adequately capture our understanding of rational choice, or

(b) those who choose A in S_1 and D is S_2 are irrational.

We should **not** conclude either

(a) The axioms of cardinal utility fail to adequately capture our understanding of rational choice, or

(b) those who choose A in S_1 and D is S_2 are irrational.

Rather, people's utility functions (*their rankings over outcomes*) are often far more complicated than the monetary bets would indicate....

L. Buchak. Risk and Rationality. Oxford University Press, 2013.

Ellsberg Paradox

	30	60	
Lotteries	Blue	Yellow	Green
L_1	1M	0	0
L_2	0	1M	0

Ellsberg Paradox

	30	60	
Lotteries	Blue	Yellow	Green
L_3	1M	0	1M
L_4	0	1M	1M

Ellsberg Paradox

	30	60	
Lotteries	Blue	Yellow	Green
L_1	1M	0	0
L_2	0	1M	0
L_3	1M	0	1M
L_4	0	1M	1M

$$L_1 \succeq L_2$$
 iff $L_3 \succeq L_4$

Ambiguity Aversion

I. Gilboa and M. Marinacci. *Ambiguity and the Bayesian Paradigm*. Advances in Economics and Econometrics: Theory and Applications, Tenth World Congress of the Econometric Society. D. Acemoglu, M. Arellano, and E. Dekel (Eds.). New York: Cambridge University Press, 2013.

Flipping a fair coin vs. flipping a coin of unknown bias: "The probability is 50-50"...

Flipping a fair coin vs. flipping a coin of unknown bias: "The probability is 50-50"...

- Imprecise probabilities
- Non-additive probabilities
- ► Qualitative probability