Methods in Philosophy, Politics and Economics: Individual and Group Decision Making

Eric Pacuit
University of Maryland
pacuit.org

Harsanyi's Theorem
Game Theory Downs

ArrowSocial Choice TheorySen
Rationality
Arrow's Theorem
$u: \mathcal{L} \rightarrow \mathbb{R}$ is linear provided for all $L=\left[L_{1}: p_{1}, \ldots, L_{n}: p_{n}\right] \in \mathcal{L}$,

$$
u(L)=\sum_{i=1}^{n} p_{i} \times u\left(L_{i}\right)
$$

von Neumann-Morgenstern Representation Theorem A binary relation \succeq on \mathcal{L} satisfies Preference, Compound Lotteries, Independence and Continuity if, and only if, \succeq is representable by a linear utility function $u: \mathcal{L} \rightarrow \mathbb{R}$.
$u: \mathcal{L} \rightarrow \mathbb{R}$ is linear provided for all $L=\left[L_{1}: p_{1}, \ldots, L_{n}: p_{n}\right] \in \mathcal{L}$,

$$
u(L)=\sum_{i=1}^{n} p_{i} \times u\left(L_{i}\right)
$$

von Neumann-Morgenstern Representation Theorem A binary relation \succeq on \mathcal{L} satisfies Preference, Compound Lotteries, Independence and Continuity if, and only if, \succeq is representable by a linear utility function $u: \mathcal{L} \rightarrow \mathbb{R}$.

Moreover, $u^{\prime}: \mathcal{L} \rightarrow \mathbb{R}$ represents \succeq iff there exists real numbers $c>0$ and d such that $u^{\prime}(\cdot)=c u(\cdot)+d$. (" u is unique up to linear transformations.")

Von Neumann-Morgenstern Theorem. If an agent satisfies the previous axioms, then the agent's ordinal utility function can be turned into cardinal utility function.

Von Neumann-Morgenstern Theorem. If an agent satisfies the previous axioms, then the agent's ordinal utility function can be turned into cardinal utility function.

- Utility is unique only up to linear transformations.

Von Neumann-Morgenstern Theorem. If an agent satisfies the previous axioms, then the agent's ordinal utility function can be turned into cardinal utility function.

- Utility is unique only up to linear transformations.
- Issue with continuity: $\$ 1 \succ 1$ cent \succ death, but who would accept a lottery which is p for $\$ 1$ and $(1-p)$ for death??

Von Neumann-Morgenstern Theorem. If an agent satisfies the previous axioms, then the agent's ordinal utility function can be turned into cardinal utility function.

- Utility is unique only up to linear transformations.
- Issue with continuity: $\$ 1 \succ 1$ cent \succ death, but who would accept a lottery which is p for $\$ 1$ and $(1-p)$ for death??
- Important issues about how to identify correct descriptions of the outcomes and options.

Objections

- No action guidance. Rational decision makers do not prefer an act because its expected utility is favorable, but can only be described as if they were acting from this principle.

Objections

 wans same weinw Economics ArrowSocial Choice TheorySen Aroustioneemaity

- No action guidance. Rational decision makers do not prefer an act because its expected utility is favorable, but can only be described as if they were acting from this principle.
- Utility without chance. It seems rather odd from a linguistic point of view to say that the meaning of utility has something to do with preferences over lotteries.

Objections

- No action guidance. Rational decision makers do not prefer an act because its expected utility is favorable, but can only be described as if they were acting from this principle.
- Utility without chance. It seems rather odd from a linguistic point of view to say that the meaning of utility has something to do with preferences over lotteries.
- The axioms are too strong. Do rational decisions have to obey these axioms?

Allais Paradox

 wans rame ther Arrowsocial Rnalice

		$\operatorname{Red}(1)$	White (89)	Blue (10)
S_{1}	A	$1 M$	$1 M$	$1 M$
	B	0	$1 M$	$5 M$

Allais Paradox

 wans rame ther Arrow Sationality

		Red (1)	White (89)	Blue (10)
S_{2}	C	$1 M$	0	$1 M$
	D	0	0	$5 M$

Allais Paradox

 Whename frome Economics Nash Consorcets Paradox ELCO ParetoHarsanyiRational Choice Theory Arrow Rationality

		Red (1)	White (89)	Blue (10)
S_{1}	A	$1 M$	$1 M$	$1 M$
	B	0	$1 M$	$5 M$
S_{2}	C	$1 M$	0	$1 M$
	D	0	0	$5 M$

$\left.\begin{array}{lll}{[1 M: 0.01,} & 1 M: 0.89, & 1 M: 0.01 \\ {[0: 0.01,} & 1 M: 0.89, & 5 M: 0.01\end{array}\right]$
$\left.\begin{array}{lll}{[1 M: 0.01,} & 0: 0.89, & 1 M: 0.01 \\ {[0: 0.01,} & 0: 0.89, & 5 M: 0.01\end{array}\right]$

$\left.\begin{array}{lll}{[1 M: 0.01,} & 1 M: 0.89, & 1 M: 0.01 \\ {[0: 0.01,} & 1 M: 0.89, & 5 M: 0.01\end{array}\right]$

$\left.\begin{array}{lll}{[1 M: 0.01,} & 0: 0.89, & 1 M: 0.01 \\ {[0: 0.01,} & 0: 0.89, & 5 M: 0.01\end{array}\right]$

		$\operatorname{Red}(1)$	White (89)	Blue (10)
S_{1}	A	$1 M$	$1 M$	$1 M$
	B	0	$1 M$	$5 M$
S_{2}	C	$1 M$	0	$1 M$
	D	0	0	$5 M$

$$
A \succeq B \text { iff } C \succeq D
$$

Independence

 Mens.ime wemo conomics Arrow Social Choice
Rationality
arrows theocem

Independence For all $L_{1}, L_{2}, L_{3} \in \mathcal{L}$ and $a \in(0,1]$,

$$
L_{1} \succ L_{2} \text { if, and only if, }\left[L_{1}: a, L_{3}:(1-a)\right] \succ\left[L_{2}: a, L_{3}:(1-a)\right] .
$$

$$
L_{1} \sim L_{2} \text { if, and only if, }\left[L_{1}: a, L_{3}:(1-a)\right] \sim\left[L_{2}: a, L_{3}:(1-a)\right] .
$$

Allais Paradox

We should not conclude either

Allais Paradox

We should not conclude either
(a) The axioms of cardinal utility fail to adequately capture our understanding of rational choice, or

Allais Paradox

 wns. NasheonsorcespareRational Choice Theory, ParetoHarsany Arrow Racial Chality

We should not conclude either
(a) The axioms of cardinal utility fail to adequately capture our understanding of rational choice, or
(b) those who choose A in S_{1} and D is S_{2} are irrational.

Allais Paradox

 Mas seme temo M Nonomics Nash Consorcets parasooxRational Choice Theory ParetoHarsany
Arrow Social Choice Theory Sen Arrow Racial Chality

We should not conclude either
(a) The axioms of cardinal utility fail to adequately capture our understanding of rational choice, or
(b) those who choose A in S_{1} and D is S_{2} are irrational.

Rather, people's utility functions (their rankings over outcomes) are often far more complicated than the monetary bets would indicate....
L. Buchak. Risk and Rationality. Oxford University Press, 2013.

Ellsberg Paradox

 ways rame ther wiconomics ArrowSocial Choice
Rationality

	30		60	
	Lotteries	Blue	Yellow	Green
L_{1}	$1 M$	0	0	
L_{2}	0	$1 M$	0	

Ellsberg Paradox

 Arrowsocial Rnalice

	30		60	
Lotteries	Blue	Yellow	Green	
L_{3}	$1 M$	0	$1 M$	
L_{4}	0	$1 M$	$1 M$	

Ellsberg Paradox

 Arrowsocial Choice

	30			60	
Lotteries	Blue	Yellow	Green		
L_{1}	$1 M$	0	0		
L_{2}	0		$1 M$	0	
L_{3}	$1 M$	0	$1 M$		
L_{4}	0	$1 M$	$1 M$		

$$
L_{1} \succeq L_{2} \text { iff } L_{3} \succeq L_{4}
$$

Ambiguity Aversion

 Nsshame whern Economics Arrow Social Choice
Rationality
Arrows theocrem
I. Gilboa and M. Marinacci. Ambiguity and the Bayesian Paradigm. Advances in Economics and Econometrics: Theory and Applications, Tenth World Congress of the Econometric Society. D. Acemoglu, M. Arellano, and E. Dekel (Eds.). New York: Cambridge University Press, 2013.

Flipping a fair coin vs. flipping a coin of unknown bias: "The probability is 50-50"...

Flipping a fair coin vs. flipping a coin of unknown bias: "The probability is 50-50"...

- Imprecise probabilities
- Non-additive probabilities
- Qualitative probability

