
2 The decision matrix

Before youmake a decision you have somehow to determine what to decide

about. Or, to put it differently, you have to specify what the relevant acts,

states and outcomes are. Suppose, for instance, that you are thinking about

taking out fire insurance on your home. Perhaps it costs $100 to take out

insurance on a house worth $100,000, and you ask: Is it worth it? Before you

decide, you have to get the formalisation of the decision problem right. In

this case, it seems that you face a decision problemwith two acts, two states,

and four outcomes. It is helpful to visualise this information in a decision

matrix; see Table 2.1.

To model one�s decision problem in a formal representation is essential

in decision theory, since decision rules are only defined relative to such

formalisations. For example, it makes no sense to say that the principle of

maximising expected value recommends one act rather than another

unless there is a formal listing of the available acts, the possible states of

the world and the corresponding outcomes. However, instead of visual-

ising information in a decision matrix it is sometimes more convenient to

use a decision tree. The decision tree in Figure 2.1 is equivalent to the

matrix in Table 2.1.

The square represents a choice node, and the circles represent chance nodes.

At the choice node the decision maker decides whether to go up or down in

the tree. If there are more than two acts to choose from, one simply adds

more lines. At the chance nodes nature decideswhich line to follow, and the

rightmost boxes represent the possible outcomes. Decision trees are often

used for representing sequential decisions, i.e. decisions that are divided

into several separate steps. (Example: In a restaurant, you can either order

all three courses before you start to eat, or divide the decision-making

process into three separate decisions taken at three points in time. If you

opt for the latter approach, you face a sequential decision problem.) To
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represent a sequential decision problem in a tree, one simply adds new

choice and chance nodes to the right of the existing leafs.

Many decision theorists distinguish only between decision problems and

a corresponding decision matrix or tree. However, it is worth emphasising

that we are actually dealing with three levels of abstraction:

1. The decision problem

2. A formalisation of the decision problem

3. A visualisation of the formalisation

A decision problem is constituted by the entities of the world that

prompt the decision maker to make a choice, or are otherwise relevant to

that choice. By definition, a formalisation of a decision problem is made up

of information about the decision to be made, irrespective of how that

information is visualised. Formalisations thus comprise information about

acts, states and outcomes, and sometimes also information about probabil-

ities. Of course, one and the same decision problem can be formalised in

Table 2.1

Fire No fire

Take out insurance No house and $100,000 House and $0

No insurance No house and $100 House and $100

Take out insurance

No insurance

No house and $100

Fire
No house and $100,000

House and $100

No fire

No fire

House and $0 

Fire

Figure 2.1
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different ways, not all of which are likely to be equally good. For example,

some decision problems can be formalised either as decisions under risk or

as decisions under ignorance, but if probabilities are known it is surely

preferable to choose the former type of formalisation (since one would

otherwise overlook relevant information).

Naturally, any given set of information can be visualised in different

ways. We have already demonstrated this by drawing a matrix and a tree

visualising the same formalisation. Table 2.2 is another example of how the

same information could be presented, which is more suitable to computers.

In Table 2.2 information is stored in a vector, i.e. in an ordered list of

mathematical objects. The vector is comprised of three new vectors, the

first of which represents acts. The second vector represents states, and the

third represents outcomes defined by those acts and states.

From a theoretical perspective, the problem of how to formalise decision

problems is arguably more interesting than questions about how to visualise

a given formalisation. Once it has been decided what pieces of information

ought to be taken into account, it hardly matters for the decision theorist

whether this information is visualised in a matrix, a tree or a vector.

2.1 States

The basic building blocks of a decision problem are states, outcomes

and acts. Let us discuss each concept in turn, starting with states. What is

a state? Intuitively, a state is a part of the world that is not an outcome or an

act (that can be performed by the agent in the present decision situation;

Table 2.2

[

[a1 = take out insurance,

a2 = do not];

[s1 = fire,

s2 = no fire];

[(a1, s1) = No house and $100,000,

(a1, s2) = House and $0,

(a2, s1) = No house and $100,

(a2, s2) = House and $100]

]
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acts performed by others can presumably be thought of as states). It is

difficult to come up with a more precise definition without raising deep

metaphysical questions that fall well beyond the scope of this book.

That said, not all states are relevant to decision making. For many deci-

sions it is completely irrelevant whether the number of atoms in the uni-

verse is odd or even, for instance. Only states that may affect the decision

maker�s preference among acts need to be taken into account, such as: The

republican candidate wins the election, or The interest rate exceeds five per cent next

year, or My partner loves me, or Goldbach�s conjecture is true. For each of these

states, we can easily imagine an act whose outcome depends on the state in

question. The example of Goldbach�s conjecture (a famous mathematical

hypothesis) indicates that even necessary truthsmay be relevant in decision

making, e.g. if the decision maker has placed a bet on whether this hypoth-

esis is true or not.

Some states, or at least some ways of partitioning states, are clearly

illegitimate. In order to understand why, imagine that you are offered a

choice between two bets, which pay $100 and $200 respectively, depending

on whether the Democrat or the Republican candidate will win the next

presidential election (Table 2.3). Now, it wouldmake little sense to consider

the states I choose the right bet and I do not.

This formalisation gives the false impression that you will definitively

be better off if you choose to bet on the Republican candidate. The reason

why this is false, and why the formalisation is illegitimate, is that the state

I choose the right bet is causally dependent of the act you choose. Whether the

state will occur depends on which act is chosen.

The problem of causal dependence can be addressed in two ways. The

first is to allow the decision theorist to include only states that are causally

independent of the acts in the formalisation; this is the option that we shall

pursue here (with exception for Chapter 9). The second option is to avoid the

notion of states altogether. That approach works particularly well if one

Table 2.3

I choose the right bet I do not

Bet on Democrat $100 $0

Bet on Republican $200 $0
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happens to know the probability of the outcomes. Suppose, for instance,

that the probability is 0.6 that you win $100 if you bet on the Democrat, and

0.3 that you win $200 if you bet on the Republican.

Arguably, the formalisation in Table 2.4 is impeccable. That said, omit-

ting the states makes little sense in other decision problems, such as deci-

sions under ignorance. If you do not know anything about the probability

that your housewill burn down and you are offered fire insurance for free, it

certainly makes sense to accept the offer. Nomatter what happens, you will

be at least as well off if you accept free insurance than if you do not, and you

will be better off if there is a fire. (This line of reasoning has a fancy name:

the dominance principle. See Chapter 3.) However, this conclusion only follows

if we attach outcomes to states. The pair of examples in Table 2.5(a) and

2.5(b) illustrates the difference between including and omitting a set of

states.

In Table 2.5(a), act A is clearly better than act B. However, in Table 2.5(b)

all states have been omitted and the outcomes have therefore been listed

in arbitrary order. Here, we fail to see that one option is actually better than

the other. This is why it is a bad idea not to include states in a formalisation.

Let us now consider a slightly different kind of problem, having to do

with how preferences depend on which state is in fact the true state.

Suppose that you have been severely injured in a traffic accident and that

Table 2.5(b)

Act A $50 $80

Act B $80 $30

Table 2.4

Bet on Democrat $100 (0.6) $0 (0.4)

Bet on Republican $200 (0.3) $0 (0.7)

Table 2.5(a)

State 1 State 2

Act A $50 $80

Act B $30 $80
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as a result you will have to undergo a risky and life-threatening operation.

For some reason, never mind why, you are offered a choice between a

bet in which you win $100 if the operation is successful and you survive,

and nothing if the operation fails and you die, and a bet in which you win

nothing if the operation is successful and you survive, and $100 if the

operation fails and you die (Table 2.6).

Let us suppose that both states are equally probable. Then, it is natural

to argue that the decision maker should regard both bets as equally

attractive. However, most people would prefer the bet in which one

wins $100 if one survives the operation, no matter how improbable that

state is. If you die, money does not matter to you any more. This indicates

that the formalisation is underspecified. To make the formalisation

acceptable we would have to add to the outcome the fact that the deci-

sion maker will die if the operation fails. Then, it would clearly transpire

why the first bet is better than the second. To put it in a more sophisti-

cated way, to which we shall return in Chapter 7, states should be chosen

such that the value of the outcomes under all states is independent of

whether the state occurs or not.

2.2 Outcomes

Rational decision makers are not primarily concerned with states or acts.

What ultimately matters is the outcome of the choice process. Acts are mere

instruments for reaching good outcomes, and states are devices needed for

applying these instruments. However, in order to figure out which instru-

ment to use (i.e. which act to choose given a set of states), outcomesmust be

ranked in one way or another, from the worst to the best. Exactly how this

should be done is an important topic of debate in decision theory, a topic

which we shall examine in more detail in Chapter 5. In the present section

we shall merely explain the difference between the various kinds of scales

that are used for comparing outcomes.

Table 2.6

You survive You die

Take first bet $100 $0

Take second bet $0 $100
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Let us return to the issue of whether or not one should insure a house

worth $100,000 at a rate of $100 per annum. Imagine that Jane has made a

sincere effort to analyse her attitudes towards safety and money, and that

she felt that the four possible outcomes should be ranked as follows, from

the best to the worst.

1. House and $100 is better than

2. House and $0 is better than

3. No house and $100,000 is better than

4. No house and $100.

The first outcome, �House and $100�, can be thought of as a possible

world that is exactly similar to the three others, except for the condition of

the house and amount of money in that world. Outcomes are in that sense

comprehensive – they includemuchmore thanwe actually need tomention in

a decision matrix. Naturally, the ranking of outcomes is to a large extent

subjective. Other decision makers may disagree with Jane and feel that

the outcomes ought to be ranked differently. For each decision maker, the

ranking is acceptable only if it reflects his or her attitudes towards the

outcomes. It seems fairly uncontroversial to suppose that people sometimes

have different attitudes, but the ranking depicted above does, we assume,

accurately reflect Jane�s attitudes.

In order to measure the value of an outcome, as it is perceived by the

decisionmaker, it is convenient to assign numbers to outcomes. In decision

theory, numbers referring to comparative evaluations of value are com-

monly called utilities. However, the notion of utility has many different

technical meanings, which should be kept separate. Therefore, to avoid

unnecessary confusion we shall temporarily stick to the rather vague term

value, until the concept of utility has been properly introduced in Chapter 5.

Value can be measured on two fundamentally different kinds of scales,

viz. ordinal scales and cardinal scales. Consider the set of numbers in

Table 2.7, assigned by Jane to the outcomes of her decision problem.

Table 2.7

Fire No fire

Take out insurance 1 4

Do not −100 10
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If Jane assigns a higher number to one outcome than another, she judges

the first outcome to be better than the second. However, if the scale she uses

is an ordinal scale, nothing more than that follows. In particular, nothing

can be concluded about how much better one outcome is in relation to

another. The numbers merely reflect the qualitative ranking of outcomes.

No quantitative information about the �distance� in value is reflected by the

scale. Look at Scales A–C in Table 2.8; they could be used for representing

exactly the same ordinal ranking.

The transformations of the original scale into scales A, B or C preserves

the order between the outcomes. This proves that all four scales are equiv-

alent. Hence, it does not matter which set of numbers one uses.

Mathematicians express this point by saying that ordinal scales are invariant

up to positive monotone transformations. That a transformation of a scale is

invariant under some sort of changemeans that the ranking of the objects is

preserved after this type of change. In the case of an ordinal scale, the

change is describable by some function f such that

f ðxÞ � f ðyÞ if and only if x � y: (1)

In this expression, x and y are two arbitrary values of some initial scale,

e.g. the values corresponding to the best and second best outcomes on the

original scale above, and f is some mathematical function. It can be easily

verified that the transformation of the initial scale into scale D in Table 2.9

does not satisfy condition (1), because if x = 10 and y = 4, then f(x) = 8, and

f(y) = 9. Of course, it is false that 8 ≥ 9 if and only if 10 ≥ 4. It can also be shown

in analogous ways that scales E and F are not permissible ordinal trans-

formations of the original scale.

As pointed out above, ordinal scales are usually contrasted with cardinal

scales. Cardinal scales embodymore information than ordinal scales. There

are two different kinds of cardinal scales, viz. interval scales and ratio scales.

Table 2.8

Original scale Scale A Scale B Scale C

Best outcome 10 4 100 777

Second best 4 3 98 −378

Third best 1 2 97 −504

Worst outcome −100 1 92 −777
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To start with, we focus on interval scales. Unlike ordinal scales, interval

scales accurately reflect the difference between the objects beingmeasured.

Let us suppose, for illustrative purposes, that scale F in the example above is

an interval scale. It would then be correct to conclude that the difference in

value between the best and the second best outcome is exactly the same as

the distance in value between the second best and the third best outcome.

Furthermore, the difference between the best and the worst outcome is

twice that between the best and the second best outcome. However, scale E

cannot be a permissible transformation of F, because in F the distance

between the third best and the worst outcome is zero, whereas the corre-

sponding difference in E is strictly greater than zero.

To illustrate what kind of information is represented in an interval scale,

consider the two most frequently used scales for measuring temperature,

i.e. the Centigrade (C) and Fahrenheit (F) scales, respectively. Both scales

accurately reflect differences in temperature, and any temperature meas-

ured on one scale can easily be transformed into a number on the other

scale. The formula for transforming Centigrade to Fahrenheit is:

F ¼ 1:8 � Cþ 32 (2)

By solving this equation for C, we get:

C ¼ ðF� 32Þ=1:8 (3)

Note that (2) and (3) are straight lines – had the graphs been curved, a

difference of, say, one unit on the x-axis will not always produce the same

difference on the y-axis. As an illustration of how the Fahrenheit scale can

be transformed into the centigrade scale, consider Table 2.10. It shows the

temperatures in a number of cities on a sunny day a few years ago.

When looking at Table 2.10, a common error is to conclude that it was

twice as warm in Tokyo as in New York, since 64 units Fahrenheit is twice as

Table 2.9

Scale D Scale E Scale F

Best outcome 8 −60 100

Second best 9 −50 90

Third best 6 −40 80

Worst outcome 7 0 80
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much as 32 units Fahrenheit. In order to see why that conclusion is incor-

rect, note that 64°F corresponds to 17.8°C and 32°F to 0°C. Now, 17.8°C is

of course not twice as much as 0°C. Had it been twice as warm in Tokyo as

in New York, it would certainly have been twice as warm according to every

scale. Interval scales accurately reflect differences, but not ratios. Expressed

in mathematical terminology, interval scales are invariant up to positive

linear transformations. This means that any interval scale can be transformed

into another by multiplying each entry by a positive number and adding a

constant, without losing or gaining any information about the objects being

measured. For example, if the value of some outcome is 3 according to scale

X, and Y = 10 ·X+ 5, then the value of the same outcome would be 35 if

measured on scale Y. Obviously, scale Y is obtained from X by a positive

linear transformation.

Unlike interval scales, ratio scales accurately reflect ratios. Mass, length and

time are all examples of entities that can be measured on ratio scales. For

example, 20 lb=9kg, and this is twice as much as 10 lb=4.5kg. Furthermore,

two weeks is twice as much as one, and 14 days is of course twice as much as

7 days. Formally put, a ratio scale U can be accurately transformed into an

equivalent ratio scale V bymultiplying U by a positive constant k. Consider, for

instance, the series of numbers in Table 2.11, which denote the values of four

different outcomes as measured on five different scales, G–K.

Scale G and I are equivalent ratio scales, because G=5 · I. Furthermore,

the first four scales, G–J, are equivalent interval scales. For example, scale H

can be obtained from G by the formula G=10 ·H+10, and J =0.1 ·G – 3.

However, there is no equation of the form V = k · U + m that transforms G

into K. Hence, since K is not a positive linear transformation of G, it does not

reflect the same differences in value, nor the same ratios.

Table 2.10

City Degrees Fahrenheit Degrees Centigrade

Los Angeles 82 27.8

Tokyo 64 17.8

Paris 62 16.7

Cambridge (UK) 46 7.8

New York 32 0

Stockholm −4 −20
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It is helpful to summarise the technical properties of the two kinds of

cardinal scales discussed here in two mathematical conditions. To start

with, a function f that takes an argument x and returns a real number as

its value is an interval scale if and only if condition (1) on page 24 holds and

for every other function f 0 that satisfies (1) there are some positive constants

k and m such that:

f 0 xð Þ ¼ k � f xð Þ þm (4)

Condition (4) states what transformations of an interval scale are permis-

sible: As we have shown above, every transformation that can bemapped by

an upward sloping straight line is permissible. Furthermore, a function f

that takes an argument x and returns a real number as its value is a ratio

scale if and only if condition (1) holds and for every other function f 0 that

satisfies (1) there is some positive constant k such that:

f 0 xð Þ ¼ k � f xð Þ (5)

This condition is even more simple that the previous one: A pair of ratio

scales are equivalent if and only if each can be transformed into the other

bymultiplying all values by some positive constant. (Of course, the constant

we use for transforming f into f 0 is not the same as that we use for trans-

forming f 0 into f.)

2.3 Acts

Imagine that your best friend Leonard is about to cook a large omelette.

He has already broken five eggs into the omelette, and plans to add a sixth.

However, before breaking the last egg into the omelette, he suddenly starts

to worry that it might be rotten. After examining the egg carefully, he

decides to take a chance and break the last egg into the omelette.

Table 2.11

Scale G Scale H Scale I Scale J Scale K

Best outcome 40 410 8 1 5

Second best 30 310 6 0 3

Third best 20 210 4 −1 2

Worst 10 110 2 −2 1
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The act of adding the sixth egg can be conceived of as a function that

takes either the first state (The sixth egg is rotten) or the second (The sixth egg is

not rotten) as its argument. If the first state happens to be the true state of the

world, i.e. if it is inserted into the function, then it will return the outcome

No omelette, and if the second state happens to be the true state, the value of

the function will be Six egg omelette. (See Table 2.12.) This definition of acts

can be trivially generalised to cover cases with more than two states and

outcomes: an act is a function from a set of states to a set of outcomes.

Did you find this definition too abstract? If so, consider some other

function that you aremore familiar with, say f(x) = 3x + 8. For each argument

x, the function returns a value f(x). Acts are, according to the suggestion

above and originally proposed by Leonard Savage, also functions. However,

instead of taking numbers as their arguments they take states, and instead

of returning other numbers they return outcomes. From a mathematical

Box 2.1 Three types of scales

In this chapter we have discussed three different types of scales. Their

main characteristics can be summarised as follows.

1. Ordinal scale: Qualitative comparison of objects allowed; no

information about differences or ratios. Example:

The jury of a song contest award points to the par-

ticipants. On this scale, 10 points is more than 5.

2. Cardinal scales

(a) Interval scale Quantitative comparison of objects; accurately

reflects differences between objects. Example: The

Centigrade and Fahrenheit scales for temperature

measurement are the most well-established exam-

ples. The difference between 10°C and 5°C equals

that between 5°C and 0°C, but the difference

between 10°C and 5°C does not equal that between

10°F and 5°F.

(b) Ratio scale Quantitative comparison of objects; accurately

reflects ratios between objects. Example: Height,

mass, time, etc. 10kg is twice as much as 5kg, and

10 lb is also twice as much as 5 lb. But 10kg is not

twice as much as 5 lb.
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point of view there is nothing odd about this; a function is commonly

defined as any device that takes one object as its argument and returns

exactly one other object. Savage�s definition fulfils this criterion. (Note that

it would be equally appropriate to consider states and acts as primitive

concepts. Outcomes could be conceived of as ordered pairs of acts and

states. For example, the outcome No omelette is the ordered pair comprising

of the act Add sixth egg and the state The sixth egg is rotten. States can be

defined in similar ways, in terms of acts and outcomes.)

Decision theory is primarily concerned with particular acts, rather than

generic acts. A generic act, such as sailing, walking or swimming can be

instantiated by different agents at different time intervals. Hence,

Columbus� first voyage to America and James Cook�s trip to the southern

hemisphere are both instantiations of the same generic act, viz. sailing.

Particular acts, on the other hand, are always carried out by specific agents

at specific time intervals, and hence Columbus� and Cook�s voyages were

different particular acts. Savage�s definition is a characterisation of partic-

ular acts.

It is usually assumed that the acts considered by a decision maker

are alternative acts. This requirement guarantees that a rational decision

maker has to choose only one act. But what does it mean to say that some

acts constitute a set of alternatives? According to an influential proposal,

the set A is an alternative-set if and only if every member of A is a particular

act, A has at least two different members, and the members of A are agent-

identical, time-identical, performable, incompatible in pairs and jointly

exhaustive. At first glance, these conditions may appear as fairly sensible

and uncontroversial. However, as pointed out by Bergström (1966), they do

not guarantee that every act is a member of only one alternative-set. Some

particular acts are members of several non-identical alternative-sets.

Suppose, for instance, that I am thinking about going to the cinema (act

a1) or not going to the cinema (a2), and that {a1, a2} is an alternative-set. Then

I realise that a1 can be performed in different ways. I can, for instance, buy

Table 2.12

The sixth egg is rotten The sixth egg is not rotten

Add sixth egg No omelette Six egg omelette

Do not add sixth egg Five egg omelette Five egg omelette
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popcorn at the cinema (a3) or buy chocolate (a4). Now, also {a1 & a3, a1 & a4,

a2} is an alternative-set. Of course, a1 & a3 and a1 & a4 are different particular

acts, so both of them cannot be identical to a1. Moreover, a1 & a3 can also be

performed in different ways. I can buy a small basket of popcorn (a5) or a

large basket (a6), and therefore {a1 & a3 & a5, a1 & a3 & a6, a1 & a4, a2} also

constitutes an alternative-set, and so on and so forth. So what are the

alternatives to a2? Is it {a1}, or {a1 & a3, a1 & a4, a2}, or {a1 & a3 & a5, a1 & a3
& a6, a1 & a4, a2}? Note that nothing excludes that the outcome of a2 is better

than the outcome of a1 & a3, while the outcome of a1 & a3 & a6 might be

better than that of a2. This obviously causes problems for decision makers

seeking to achieve as good outcomes as possible.

The problem of defining an alternative-set has been extensively dis-

cussed in the literature. Bergström proposed a somewhat complicated sol-

ution of the problem, which has been contested by others. We shall not

explain it here. However, an interesting implication of Bergström�s pro-

posal is that the problem of finding an alternative-set is partly a normative

problem. This is because we cannot formalise a decision problem until we

know which normative principle to apply to the resolution of the problem.

What your alternatives are depends partly on what your normative princi-

ple tells you to seek to achieve.

2.4 Rival formalisations

In the preceding sections, we have briefly noted that one cannot take for

granted that there exists just one unique best formalisation of each decision

problem. The decision maker may sometimes be confronted with rival

formalisations of one and the same decision problem. Rival formalisations

arise if two ormore formalisations are equally reasonable and strictly better

than all alternative formalisations.

Obviously, rival formalisations are troublesome if an act is judged to be

rational in one optimal formalisation of a decision problem, but non-

rational in another optimal formalisation of the same decision problem.

In such cases one may legitimately ask whether the act in question should

be performed or not. What should a rational decision maker do? The scope

of this problem is illustrated by the fact that, theoretically, there might be

cases in which all acts that are rational in one optimal formalisation are

non-rational in another rival formalisation of the same decision problem,
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whereas all acts that are rational according to the latter formalisation are

not rational according to the former.

To give convincing examples of rival formalisations is difficult, mainly

because it can always be questioned whether the suggested formalisations

are equally reasonable. In what follows we shall outline a hypothetical

example that some people may find convincing, although others may dis-

agree. Therefore, in Box 2.2 we also offer a more stringent and technical

argument that our example actually is an instance of two equally reason-

able but different formalisations.

Imagine that you are a paparazzi photographer and that rumour has

it that actress Julia Roberts will show up in either New York (NY), Los

Angeles (LA) or Paris (P). Nothing is known about the probability of these

states of the world. You have to decide if you should stay in America or

catch a plane to Paris. If you stay and actress Julia Roberts shows up in

Paris you get $0; otherwise you get your photos, which you will be able to

sell for $10,000. If you catch a plane to Paris and Julia Roberts shows up

in Paris your net gain after having paid for the ticket is $5,000, and if she

shows up in America you for some reason, never mind why, get $6,000.

Your initial representation of the decision problem is visualised in

Table 2.13.

Since nothing is known about the probabilities of the states in Table 2.13,

you decide itmakes sense to regard them as equally probable, i.e. you decide

to assign probability 1/3 to each state. Consider the decision matrix in

Table 2.14.

Table 2.13

P LA NY

Stay $0 $10k $10k

Go to Paris $5k $6k $6k

Table 2.14

P (1/3) LA (1/3) NY (1/3)

Stay $0 $10k $10k

Go to Paris $5k $6k $6k
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The two rightmost columns are exactly parallel. Therefore, they can be

merged into a single (disjunctive) column, by adding the probabilities of the

two rightmost columns together (Table 2.15).

However, now suppose that you instead start with Table 2.13 and first

merge the two repetitious states into a single state. You would then obtain

the decision matrix in Table 2.16.

Now, since you know nothing about the probabilities of the two states,

you decide to regard them as equally probable, i.e. you assign a probability

of 1/2 to each state. This yields the formal representation in Table 2.17,

which is clearly different from the one suggested above in Table 2.15.

Which formalisation is best, 2.15 or 2.17? It seems question begging to

claim that one of them must be better than the other – so perhaps they are

equally reasonable? If they are, we have an example of rival formalisations.

Note that the principle of maximising expected value recommends dif-

ferent acts in the twomatrices. According to Table 2.15 you should stay, but

2.17 suggests you should go to Paris. Arguably, this example shows that rival

formalisationsmust be taken seriously by decision theorists, although there

is at present no agreement in the literature on how this phenomenon ought

to be dealt with.

Table 2.15

P (1/3) LA or NY (2/3)

Stay $0 $10k

Go to Paris $5k $6k

Table 2.16

P LA or NY

Stay $0 $10k

Go to Paris $5k $6k

Table 2.17

P (1/2) LA or NY (1/2)

Stay $0 $10k

Go to Paris $5k $6k
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Box 2.2 Why rival representations are possible

The examples illustrated in Tables 2.15 and 2.17 do not prove that rival

formalisations are possible. One may always question the claim that the

two formalisations are equally reasonable. Therefore, in order to give a

more comprehensive argument for thinking that the formalisations are

equally reasonable, we shall introduce some technical concepts. To begin

with, we need to distinguish between two classes of decision rules, viz.

transformative and effective decision rules. A decision rule is effective if and

only if it singles out some set of recommended acts, whereas it is trans-

formative if and only if it modifies the formalisation of a given decision

problem. Examples of effective decision rules include the principle of

maximising expected utility and the dominance principle, mentioned in

Chapter 1. Transformative decision rules do not directly recommend any

particular act or set of acts. Instead, they transform a given formalisation

of a decision problem into another by adding, deleting or modifying

information in the initial formalisation. More precisely, transformative

decision rules can alter the set of alternatives or the set of states of the

world taken into consideration, modify the probabilities assigned to the

states of the world, or modify the values assigned to the corresponding

outcomes. For an example of a transformative decision rule, consider the

rule saying that if there is no reason to believe that one state of the world

is more probable than another then the decision maker should trans-

form the initial formalisation of the decision problem into one in which

every state is assigned equal probability. This transformative rule is

called the principle of insufficient reason.

We assume that all significant aspects of a decision problem can be

represented in a triplet π= 〈A, S,O〉, whereA is a non-empty set of (relevant)

alternative acts, S is a non-empty set of states of the world, and O is a set of

outcomes. Let us call such a triplet a formal decision problem. A transforma-

tive decision rule is defined as a function t that transforms one formal

decisionproblem π into another π0, i.e. t is a transformative decision rule in

a set of formal decision problems Π if and only if t is a function such that

for all π ∊ Π, it holds that t(π) ∊ Π. If t and u form a pair of transformative

decision rules, we can construct a new composite rule (t � u) such that

(t � u)(π) =u(t(π)). In this framework the question, �How should the decision

maker formalise a decision problem?� can be restated as: �What sequence

of transformative rules (t � u �…) should a rational decision maker apply

to an initial formal decision problem π?�.
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Let � be a relation on Π such that π � π0 if and only if the formal

representation π is at least as reasonable as π0. (If π and π0 are equally

reasonable we write π ∼ π0.) We shall not go into detail here about what

makes one formal representation more reasonable than another, but it

should be obvious that some representations are better than others.

Now, we shall prove that if the technical condition stated below holds

for �, then two different sequences of a given set of transformative

decision rules, (t � u) and (u � t), will always yield formalisations that are

equally reasonable.

Order-independence (OI): ðu � tÞðpÞ � t pð Þ � ðt � tÞðpÞ

The left-hand inequality, (u � t)(π)� t(π), states that a transformative rule

u should not, metaphorically expressed, throw a spanner in the works

carried out by another rule t. Hence, the formalisation obtained by first

applying u and then t has to be at least as good as the formalisation

obtained by only applying t. The right-hand inequality, t(π) � (t � t)(π),
says that nothing can be gained by immediately repeating a rule. This

puts a substantial constraint on transformative rules; only �maximally

efficient� rules, that directly improve the formal representation as much

as possible, are allowed by the OI-condition. Now consider the following

theorem.

Theorem 2.1 Let the OI-condition hold for all π ∊ Π. Then, (u º t)(π) ∼

(t º u)(π) for all u and t.

Proof We prove Theorem 2.1 by making a series of substitutions:

(1) ðu � t � uÞðpÞ � ðt � uÞðpÞ Substitute t � u for t in OI

(2) ðu � t � u � tÞðpÞ � ðt � uÞðpÞ From (1) and OI, substitute t(π) for π

(3) ðu � tÞðpÞ � ðt � uÞðpÞ Right-hand side of OI

(4) ðt � u � tÞðpÞ � ðu � tÞðpÞ Substitute u � t for t and u for t in OI

(5) ðt � u � t � uÞðpÞ � ðu � tÞðpÞ From (4) and OI, substitute t for u and u

for t in OI, then substitute u(π) for π

(6) ðt � uÞðpÞ � ðu � tÞðpÞ Right-hand side of OI

(7) ðt � uÞðpÞ � ðu � tÞðpÞ From (3) and (6) &

We shall now illustrate how this technical result can be applied to the

paparazzi example.We use the following pair of transformative decision
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Exercises

2.1 If you play roulette in Las Vegas and bet on a single number, the

probability of winning is 1/38: There are 38 equally probable outcomes

of the game, viz. 1–36, 0 and 00. If the ball lands on the number you have

chosen the croupier will pay you 35 times the amount betted, and

return the bet.

(a) Formalise and visualise the decision problem in a decision matrix.

(b) Formalise and visualise the decision problem in a decision tree.

(c) How much money can you expect to lose, on average, for every

dollar you bet?

2.2 Formalise the following decision problem, known as Pascal�s wager:

God either exists or He doesn�t. …. It is abundantly fair to conceive, that

there is at least 50% chance that the Christian Creator God does in fact exist.

Therefore, since we stand to gain eternity, and thus infinity, the wise and

safe choice is to live as though God does exist. If we are right, we gain

everything, and lose nothing. If we are wrong, we gain nothing and lose

rules, and we assume without further ado that both rules satisfy the

OI-condition.

The principle of insufficient reason (ir): If π is a formal decision problem

in which the probabilities of the states are unknown, then it may be transformed

into a formal decision problem π0 in which equal probabilities are assigned to all

states.

Merger of states (ms): If two or more states yield identical outcomes under all

acts, then these repetitious states should be collapsed into one, and if the

probabilities of the two states are known they should be added.

It can now be easily verified that Table 2.15 can be obtained from 2.13 by

first applying the ir rule and then the ms rule. Furthermore, 2.17 can be

obtained from 2.13 by first applying the ms rule and then the ir rule.

Because of Theorem 2.1 we know that (ir � ms)(π) ~ (ms � ir)(π). Hence,

anyone who thinks that the two transformative rules we use satisfy the

OI-condition is logically committed to the view that the two formalisa-

tions, 2.15 and 2.17, are equally reasonable (and at least as good as 2.13).

However, although equally reasonable, 2.15 and 2.17 are of course very

different – the expected utility principle even recommends different acts!
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nothing. Therefore, based on simplemathematics, only a fool would choose

to live a Godless life. Since you must choose, let us see which interests you

least. You have nothing to lose. Let us estimate these two chances. If you

gain, you gain all; if you lose, you lose nothing. Wager, then, without

hesitation that He is. (Pascal 1660: §233)

2.3 (a) Is Pascal�s argument convincing? (b) Is it really necessary for Pascal to

assume that, �there is at least 50% chance that the Christian Creator God

does in fact exist�? What if the probability is much lower?

2.4 Congratulations! You have won a free holiday in a city of your choice:

London, New Delhi or Tokyo. You have been to London before, and you

know that the city is okay, but expensive. New Delhi would be very

exciting, unless you get a stomach infection; then it would be terrible.

Tokyo would be almost as exciting, given that it is not too cold; then the

trip would be rather boring.

(a) Formalise and visualise the decision problem in a decision matrix.

(b) Formalise and visualise the decision problem in a decision tree.

(c) Represent the five possible outcomes in an ordinal scale.

2.5 A friend offers you to invest all your savings, $100,000, in his dot com

company. You find it very hard to understand the business plan he

presents to you, but your friend tells you that your $100,000 will

�certainly� be worth at least $10M within two years. Naturally, your

friendmay be right, but hemay also bewrong – you feel that you cannot

estimate the probabilities for this. Consider the decision matrix below.

What is wrong with this formalisation?

Friend is right Friend is wrong

Invest $10M $0

Do not $100,000 $100,000

2.6 Visualise the following vector (which is written on a single line, to

save space) in a decision matrix: [[a1, a2, a3]; [s1, s2]; [(a1, s1) = p, (a1,

s2) = q, (a2, s1) = r, (a2, s2) = s, (a3, s1) = t, (a3, s2) = u]].

2.7 Explain the difference between (a) ordinal and cardinal scales, and (b)

interval scales and ratio scales.

2.8 Your rich aunt died some time ago. In her will she stipulated that

you shall receive a painting of your choice from her collection of

impressionist art. The aesthetical values of her four paintings are, as
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