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Ordinal Utility Theory

A utility function on a set X is a function u : X→ R

Fact. Suppose that X is finite and � is a complete and transitive ordering over
X, then there is a utility function u : X→ R that represents �
(i.e., x � y iff u(x) ≥ u(y))

Utility is defined in terms of preference (so it is an error to say that the agent
prefers x to y because she assigns a higher utility to x than to y).
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Important

All three of the utility functions represent the preference x � y � z

Item u1 u2 u3

x 3 10 1000
y 2 5 99
z 1 0 1

x � y � z is represented by both (3, 2, 1) and (1000, 999, 1), so one cannot say
that y is “closer” to x than to z.
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Lotteries

Suppose that X is a set of outcomes.

A (simple) lottery over X is denoted [x1 : p1, x2 : p2, . . . , xn : pn] where for
i = 1, . . . ,n, xi ∈ X and pi ∈ [0, 1], and

∑
i pi = 1.

Let L be the set of (simple) lotteries over X. We identify elements x ∈ X with
the lottery [x : 1].
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∑
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x1 x2
· · · xn−1 xn
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Expected monetary value

Suppose that the outcomes of a lottery are monetary values. So,
L = [x1 : p1, x2 : p2, . . . , xn : pn], where each xi is an amount of money. Then,

EV(L) =
∑

i

pi × xi

E.g., if L = [$100 : 0.55, $50 : 0.25, $0 : 0.20], then

EV(L) = 0.55 ∗ 100 + 0.25 ∗ 50 + 0.2 ∗ 0 = 80
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Problems with using monetary payoffs

I Overly Restrictive: We care about more things than money.

I The St. Petersburg Paradox: Consider the following wager: I will flip a
fair coin until it comes up heads; if the first time it comes up heads is the
nth toss, then I will pay you 2n. What’s the most you’d be willing to pay
for this wager? What is its expected monetary value?

I Valuing Money: Doesn’t the value of a wager depend on more than
merely how much it’s expected to pay out? (I.e., your total fortune, how
much you personally care about money, etc.)

I Risk-aversion: Is it irrational to prefer a sure-thing $x to a wager whose
expected payout is $x?
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We should move away from “monetary payouts” to “utility”.
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Expected Utility

Suppose that X = {x1, . . . , xn} and u : X→ R is a utility function on X.

This can be extended to an expected utility function EU : L(X)→ R where

EU([x1 : p1, . . . , xn : pn]) = p1 × u(x1) + · · ·+ pn × u(xn)

=
∑n

i=1 pi × u(xi)
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Suppose that Ann is faced with the choice between lotteries L1 and L2 where:

L1 = [o1 : 0, o3 : 0.25, o3 : 0.75] L2 = [o1 : 0.2, o2 : 0, o3 : 0.8]

Can expected utility theory tell us how Ann should rank L1 and L2?

No!

Suppose that Ann is also faced with the choice between lotteries L3 and L4

where:

L3 = [o1 : 0.8, o2 : 0, o3 : 0.2] L4 = [o1 : 0, o2 : 1, o3 : 0]

If we know that Ann ranks L1 over L2 (e.g., L1 � L2), can we conclude
anything about how Ann ranks L3 and L4? Yes: Ann must rank L4 over L3

(e.g., L4 � L3).
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Cardinal Utility Theory

u : X→ R

Which comparisons are meaningful?

1. u(x) and u(y)? (ordinal utility)

2. u(x)− u(y) and u(a)− u(b)?
3. u(x) and 2 ∗ u(z)?
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Ordinal vs. Cardinal Utility
Ordinal scale: Qualitative comparisons of objects allowed, no information
about differences or ratios.

Cardinal scales:

Interval scale: Quantitative comparisons of objects, accurately reflects
differences between objects.

E.g., the difference between 75◦F and 70◦F is the same as the difference
between 30◦F and 25◦F However, 70◦F (= 21.11◦C) is not twice as hot as
35◦F (= 1.67◦C).

Ratio scale: Quantitative comparisons of objects, accurately reflects
ratios between objects. E.g., 10lb (= 4.53592kg) is twice as much as 5lb
(= 2.26796kg).
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Cardinal Utility Theory

x � y � z is represented by both (3, 2, 1) and (1000, 999, 1), so we cannot say y
whether is “closer” to x than to z.

Key idea: Ordinal preferences over lotteries allows us to infer a cardinal
(interval) scale (with some additional axioms).

John von Neumann and Oskar Morgenstern. The Theory of Games and Economic Behavior.
Princeton University Press, 1944.
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A Choice

R

B

W

S

Take or Gamble?

B

R S

Take Gamble

0.5 0.5

[1 : B] ∼ [p : R, 1− p : S]
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A Choice

R
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S
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B

R S
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p 1− p

1 ∗ u(B) = p ∗ u(R) + (1− p) ∗ u(S)
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Lotteries

Suppose that X = {x1, . . . , xn} is a set of outcomes. A lottery over X is a tuple
[x1 : p1, x2 : p2, . . . , xn : pn] where

∑
i pi = 1.
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· · · xn−1 xn

p1 p2 pn−1 pn

Let L be the set of lotteries. Suppose that �⊆ L× L is a preference ordering
on L.
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Reduction of Compound Lotteries

Reduction of Compound Lotteries: If the prize of a lottery is another lottery,
then this can be reduced to a simple lottery over prizes.

This eliminates utility from the thrill of gambling and so the only ultimate
concern is the prizes.
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a

b c

p 1− p

q 1− q

∼

a b c

p (1− p)q (1− p)(1− q)
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Continuity

Continuity For all L1,L2,L3 ∈ L, if L1 � L2 � L3,
then there exists a ∈ (0, 1)
such that [L1 : a, L3 : (1− a)] ∼ L2
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Independence

Independence For all L1,L2,L3 ∈ L and a ∈ (0, 1],

L1 � L2 if, and only if, [L1 : a, L3 : (1− a)] � [L2 : a, L3 : (1− a)].

L1 ∼ L2 if, and only if, [L1 : a, L3 : (1− a)] ∼ [L2 : a, L3 : (1− a)].
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Axioms
Preference � is transitive and complete

Compound Lotteries The decision maker is indifferent between every
compound lottery and the corresponding
simple lottery.

Independence For all L1,L2,L3 ∈ L and a ∈ (0, 1], L1 � L2

if, and only if,
[L1 : a, L3 : (1− a)] � [L2 : a, L3 : (1− a)].

Continuity For all L1,L2,L3 ∈ L and a ∈ (0, 1],
if L1 � L2 � L3, then there exists a ∈ (0, 1)
such that [L1 : a, L3 : (1− a)] ∼ L2
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u : L → < is linear provided for all L = [L1 : p1, . . . ,Ln : pn] ∈ L,

u(L) =
n∑

i=1

piu(Li)

von Neumann-Morgenstern Representation Theorem A binary relation �
on L satisfies Preference, Compound Lotteries, Independence and Continuity
if, and only if, � is representable by a linear utility function u : L → <.

Moreover, u′ : L → < represents � iff there exists real numbers c > 0 and d
such that u′(·) = cu(·) + d. (“u is unique up to linear transformations.”)
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