PHIL309P

Methods in Philosophy, Politics and Economics

Eric Pacuit University of Maryland

A **utility function** on a set *X* is a function $u : X \to \mathbb{R}$

A **utility function** on a set *X* is a function $u : X \to \mathbb{R}$

Fact. Suppose that *X* is finite and \succeq is a complete and transitive ordering over *X*, then there is a utility function $u : X \to \Re$ that represents \succeq

(i.e., $x \succeq y$ iff $u(x) \ge u(y)$)

A **utility function** on a set *X* is a function $u : X \to \mathbb{R}$

Fact. Suppose that *X* is finite and \succeq is a complete and transitive ordering over *X*, then there is a utility function $u : X \to \Re$ that represents \succeq (i.e., $x \succeq y$ iff $u(x) \ge u(y)$)

Utility is *defined* in terms of preference (so it is an error to say that the agent prefers *x* to *y because* she assigns a higher utility to *x* than to *y*).

Important

All three of the utility functions represent the preference $x \succ y \succ z$

Item	u_1	u_2	u_3
x	3	10	1000
y	2	5	99
Z	1	0	1

 $x \succ y \succ z$ is represented by both (3, 2, 1) and (1000, 999, 1), so one cannot say that *y* is "closer" to *x* than to *z*.

Suppose that *X* is a set of outcomes.

A (simple) lottery over *X* is denoted $[x_1 : p_1, x_2 : p_2, ..., x_n : p_n]$ where for $i = 1, ..., n, x_i \in X$ and $p_i \in [0, 1]$, and $\sum_i p_i = 1$.

Let \mathcal{L} be the set of (simple) lotteries over X. We identify elements $x \in X$ with the lottery [x : 1].

Suppose that $X = \{x_1, ..., x_n\}$ is a set of outcomes. A **lottery** over X is a tuple $[x_1 : p_1, x_2 : p_2, ..., x_n : p_n]$ where $\sum_i p_i = 1$.

Suppose that $X = \{x_1, ..., x_n\}$ is a set of outcomes. A **lottery** over X is a tuple $[x_1 : p_1, x_2 : p_2, ..., x_n : p_n]$ where $\sum_i p_i = 1$.

Let \mathcal{L} be the set of lotteries.

Expected monetary value

Suppose that the outcomes of a lottery are monetary values. So, $L = [x_1 : p_1, x_2 : p_2, ..., x_n : p_n]$, where each x_i is an amount of money. Then,

$$EV(L) = \sum_{i} p_i \times x_i$$

Expected monetary value

Suppose that the outcomes of a lottery are monetary values. So, $L = [x_1 : p_1, x_2 : p_2, ..., x_n : p_n]$, where each x_i is an amount of money. Then,

$$EV(L) = \sum_{i} p_i \times x_i$$

E.g., if L = [\$100 : 0.55, \$50 : 0.25, \$0 : 0.20], then

EV(L) = 0.55 * 100 + 0.25 * 50 + 0.2 * 0 = 80

• Overly Restrictive: We care about more things than money.

- Overly Restrictive: We care about more things than money.
- The St. Petersburg Paradox: Consider the following wager: I will flip a fair coin until it comes up heads; if the first time it comes up heads is the nth toss, then I will pay you 2ⁿ. What's the most you'd be willing to pay for this wager? What is its expected monetary value?

- Overly Restrictive: We care about more things than money.
- The St. Petersburg Paradox: Consider the following wager: I will flip a fair coin until it comes up heads; if the first time it comes up heads is the nth toss, then I will pay you 2ⁿ. What's the most you'd be willing to pay for this wager? What is its expected monetary value?
- Valuing Money: Doesn't the value of a wager depend on more than merely how much it's expected to pay out? (I.e., your total fortune, how much you personally care about money, etc.)

- Overly Restrictive: We care about more things than money.
- The St. Petersburg Paradox: Consider the following wager: I will flip a fair coin until it comes up heads; if the first time it comes up heads is the nth toss, then I will pay you 2ⁿ. What's the most you'd be willing to pay for this wager? What is its expected monetary value?
- Valuing Money: Doesn't the value of a wager depend on more than merely how much it's expected to pay out? (I.e., your total fortune, how much you personally care about money, etc.)
- Risk-aversion: Is it irrational to prefer a sure-thing \$x to a wager whose expected payout is \$x?

We should move away from "monetary payouts" to "utility".

Expected Utility

Suppose that $X = \{x_1, ..., x_n\}$ and $u : X \to \mathbb{R}$ is a utility function on *X*.

This can be extended to an expected utility function $EU : \mathcal{L}(X) \to \mathbb{R}$ where

$$EU([x_1:p_1,\ldots,x_n:p_n]) = p_1 \times u(x_1) + \cdots + p_n \times u(x_n)$$
$$= \sum_{i=1}^n p_i \times u(x_i)$$

$$L_1 = [o_1:0, o_3:0.25, o_3:0.75]$$
 $L_2 = [o_1:0.2, o_2:0, o_3:0.8]$

Can expected utility theory tell us how Ann should rank L_1 and L_2 ?

$$L_1 = [o_1:0, o_3:0.25, o_3:0.75]$$
 $L_2 = [o_1:0.2, o_2:0, o_3:0.8]$

Can expected utility theory tell us how Ann should rank L_1 and L_2 ? No!

Suppose that Ann is also faced with the choice between lotteries L_3 and L_4 where:

$$L_3 = [o_1: 0.8, o_2: 0, o_3: 0.2]$$
 $L_4 = [o_1: 0, o_2: 1, o_3: 0]$

$$L_1 = [o_1:0, o_3:0.25, o_3:0.75]$$
 $L_2 = [o_1:0.2, o_2:0, o_3:0.8]$

Can expected utility theory tell us how Ann should rank L_1 and L_2 ? No!

Suppose that Ann is also faced with the choice between lotteries L_3 and L_4 where:

$$L_3 = [o_1: 0.8, o_2: 0, o_3: 0.2]$$
 $L_4 = [o_1: 0, o_2: 1, o_3: 0]$

If we know that Ann ranks L_1 over L_2 (e.g., $L_1 \succ L_2$), can we conclude anything about how Ann ranks L_3 and L_4 ?

$$L_1 = [o_1:0, o_3:0.25, o_3:0.75]$$
 $L_2 = [o_1:0.2, o_2:0, o_3:0.8]$

Can expected utility theory tell us how Ann should rank L_1 and L_2 ? No!

Suppose that Ann is also faced with the choice between lotteries L_3 and L_4 where:

$$L_3 = [o_1: 0.8, o_2: 0, o_3: 0.2]$$
 $L_4 = [o_1: 0, o_2: 1, o_3: 0]$

If we know that Ann ranks L_1 over L_2 (e.g., $L_1 \succ L_2$), can we conclude anything about how Ann ranks L_3 and L_4 ? Yes: Ann must rank L_4 over L_3 (e.g., $L_4 \succ L_3$).

$u: X \to \mathbb{R}$

Which comparisons are meaningful?

1. u(x) and u(y)? (ordinal utility)

$$u: X \to \mathbb{R}$$

Which comparisons are meaningful?

$$u: X \to \mathbb{R}$$

Which comparisons are meaningful?

Ordinal vs. Cardinal Utility

Ordinal scale: Qualitative comparisons of objects allowed, no information about differences or ratios.

Ordinal vs. Cardinal Utility

Ordinal scale: Qualitative comparisons of objects allowed, no information about differences or ratios.

Cardinal scales:

Interval scale: Quantitative comparisons of objects, accurately reflects differences between objects.

E.g., the difference between 75°F and 70°F is the same as the difference between 30°F and 25°F However, 70°F (= 21.11° C) is **not** twice as hot as 35°F (= 1.67° C).

Ordinal vs. Cardinal Utility

Ordinal scale: Qualitative comparisons of objects allowed, no information about differences or ratios.

Cardinal scales:

Interval scale: Quantitative comparisons of objects, accurately reflects differences between objects.

E.g., the difference between 75°F and 70°F is the same as the difference between 30°F and 25°F However, 70°F (= 21.11° C) is **not** twice as hot as 35°F (= 1.67° C).

Ratio scale: Quantitative comparisons of objects, accurately reflects ratios between objects. E.g., 10lb (= 4.53592kg) is twice as much as 5lb (= 2.26796kg).

 $x \succ y \succ z$ is represented by both (3, 2, 1) and (1000, 999, 1), so we cannot say y whether is "closer" to x than to z.

$x \succ y \succ z$ is represented by both (3, 2, 1) and (1000, 999, 1), so we cannot say y whether is "closer" to x than to z.

Key idea: Ordinal preferences over *lotteries* allows us to infer a cardinal (interval) scale (with some additional axioms).

John von Neumann and Oskar Morgenstern. *The Theory of Games and Economic Behavior*. Princeton University Press, 1944.

R B W S

Take or Gamble? R Take Gamble В В W S

Take or Gamble? R Take Gamble В В W S0.5 0.5 R S

Take or Gamble? R Take Gamble В В W S $p \ 1 - p$ R S

$$[1:B] \sim [p:R, 1-p:S]$$

$$1 * u(B) = p * u(R) + (1 - p) * u(S)$$

Take or Gamble? R Take Gamble В В W S $p \ 1 - p$ R S

$$u(B) = p * 1 + (1 - p) * 0 = p$$

Suppose that $X = \{x_1, ..., x_n\}$ is a set of outcomes. A **lottery** over *X* is a tuple $[x_1 : p_1, x_2 : p_2, ..., x_n : p_n]$ where $\sum_i p_i = 1$.

Suppose that $X = \{x_1, ..., x_n\}$ is a set of outcomes. A **lottery** over *X* is a tuple $[x_1 : p_1, x_2 : p_2, ..., x_n : p_n]$ where $\sum_i p_i = 1$.

Let \mathcal{L} be the set of lotteries. Suppose that $\succeq \subseteq \mathcal{L} \times \mathcal{L}$ is a preference ordering on \mathcal{L} .

Reduction of Compound Lotteries

Reduction of Compound Lotteries: If the prize of a lottery is another lottery, then this can be reduced to a simple lottery over prizes.

Reduction of Compound Lotteries

Reduction of Compound Lotteries: If the prize of a lottery is another lottery, then this can be reduced to a simple lottery over prizes.

This eliminates utility from the thrill of gambling and so the only ultimate concern is the prizes.

Continuity

Continuity For all $L_1, L_2, L_3 \in \mathcal{L}$, if $L_1 \succ L_2 \succ L_3$, then there exists $a \in (0, 1)$ such that $[L_1 : a, L_3 : (1 - a)] \sim L_2$

Independence

Independence For all $L_1, L_2, L_3 \in \mathcal{L}$ and $a \in (0, 1]$,

$$L_1 \succ L_2$$
 if, and only if, $[L_1 : a, L_3 : (1-a)] \succ [L_2 : a, L_3 : (1-a)]$.

Independence

Independence For all $L_1, L_2, L_3 \in \mathcal{L}$ and $a \in (0, 1]$,

 $L_1 \succ L_2$ if, and only if, $[L_1 : a, L_3 : (1-a)] \succ [L_2 : a, L_3 : (1-a)]$.

 $L_1 \sim L_2$ if, and only if, $[L_1 : a, L_3 : (1-a)] \sim [L_2 : a, L_3 : (1-a)]$.

Preference

 \succeq is transitive and complete

Compound Lotteries The decision maker is indifferent between every compound lottery and the *corresponding* simple lottery.

Independence

For all $L_1, L_2, L_3 \in \mathcal{L}$ and $a \in (0, 1], L_1 \succ L_2$ if, and only if, $[L_1 : a, L_3 : (1 - a)] \succ [L_2 : a, L_3 : (1 - a)].$

Continuity

For all $L_1, L_2, L_3 \in \mathcal{L}$ and $a \in (0, 1]$, if $L_1 \succ L_2 \succ L_3$, then there exists $a \in (0, 1)$ such that $[L_1 : a, L_3 : (1 - a)] \sim L_2$ $u: \mathcal{L} \to \Re$ is linear provided for all $L = [L_1: p_1, \ldots, L_n: p_n] \in \mathcal{L}$,

$$u(L) = \sum_{i=1}^{n} p_i u(L_i)$$

von Neumann-Morgenstern Representation Theorem A binary relation \succeq on \mathcal{L} satisfies Preference, Compound Lotteries, Independence and Continuity if, and only if, \succeq is representable by a linear utility function $u : \mathcal{L} \to \Re$.

Moreover, $u' : \mathcal{L} \to \Re$ represents \succeq iff there exists real numbers c > 0 and d such that $u'(\cdot) = cu(\cdot) + d$. ("u is unique up to linear transformations.")