PHIL309P

Methods in Philosophy, Politics and Economics

Eric Pacuit
University of Maryland

Ordinal Utility Theory

 Nens shemen wem Economics Arrowsocial Choice

A utility function on a set X is a function $u: X \rightarrow \mathbb{R}$

Ordinal Utility Theory

 Mas semen wey Arrowsocial Cholice

A utility function on a set X is a function $u: X \rightarrow \mathbb{R}$

Fact. Suppose that X is finite and \succeq is a complete and transitive ordering over X, then there is a utility function $u: X \rightarrow \mathfrak{R}$ that represents \succeq (i.e., $x \succeq y$ iff $u(x) \geq u(y)$)

Ordinal Utility Theory

 Mas seme temo Nash Consorcets paraoosRational Choice Theory ParetoHarsany Arrow Rationality

A utility function on a set X is a function $u: X \rightarrow \mathbb{R}$

Fact. Suppose that X is finite and \succeq is a complete and transitive ordering over X, then there is a utility function $u: X \rightarrow \mathfrak{R}$ that represents \succeq
(i.e., $x \succeq y$ iff $u(x) \geq u(y)$)

Utility is defined in terms of preference (so it is an error to say that the agent prefers x to y because she assigns a higher utility to x than to y).

Important

All three of the utility functions represent the preference $x \succ y \succ z$

Item	u_{1}	u_{2}	u_{3}
x	3	10	1000
y	2	5	99
z	1	0	1

$x \succ y \succ z$ is represented by both $(3,2,1)$ and $(1000,999,1)$, so one cannot say that y is "closer" to x than to z.

Lotteries

 was same wemo Nanomics Arrow Rationality

Suppose that X is a set of outcomes.

A (simple) lottery over X is denoted $\left[x_{1}: p_{1}, x_{2}: p_{2}, \ldots, x_{n}: p_{n}\right]$ where for $i=1, \ldots, n, x_{i} \in X$ and $p_{i} \in[0,1]$, and $\sum_{i} p_{i}=1$.

Let \mathcal{L} be the set of (simple) lotteries over X. We identify elements $x \in X$ with the lottery $[x: 1]$.

Lotteries

 wavs rame therneconomics Nastlenal choce Thicory pereterussan Arrow Social ChoiceRationality
arrows theocrem

Suppose that $X=\left\{x_{1}, \ldots, x_{n}\right\}$ is a set of outcomes. A lottery over X is a tuple $\left[x_{1}: p_{1}, x_{2}: p_{2}, \ldots, x_{n}: p_{n}\right]$ where $\sum_{i} p_{i}=1$.

Lotteries

Suppose that $X=\left\{x_{1}, \ldots, x_{n}\right\}$ is a set of outcomes. A lottery over X is a tuple $\left[x_{1}: p_{1}, x_{2}: p_{2}, \ldots, x_{n}: p_{n}\right]$ where $\sum_{i} p_{i}=1$.

Let \mathcal{L} be the set of lotteries.

Expected monetary value

Suppose that the outcomes of a lottery are monetary values. So, $L=\left[x_{1}: p_{1}, x_{2}: p_{2}, \ldots, x_{n}: p_{n}\right]$, where each x_{i} is an amount of money. Then,

$$
E V(L)=\sum_{i} p_{i} \times x_{i}
$$

Expected monetary value

 Arrowsocial Cholice

Suppose that the outcomes of a lottery are monetary values. So, $L=\left[x_{1}: p_{1}, x_{2}: p_{2}, \ldots, x_{n}: p_{n}\right]$, where each x_{i} is an amount of money. Then,

$$
E V(L)=\sum_{i} p_{i} \times x_{i}
$$

E.g., if $L=[\$ 100: 0.55, \$ 50: 0.25, \$ 0: 0.20]$, then

$$
E V(L)=0.55 * 100+0.25 * 50+0.2 * 0=80
$$

Problems with using monetary payoffs

 wans same weine Economics NashRational Choice
Theory ParetoHarsanyi Arrow
Rations theonality

- Overly Restrictive: We care about more things than money.

Problems with using monetary payoffs

- Overly Restrictive: We care about more things than money.
- The St. Petersburg Paradox: Consider the following wager: I will flip a fair coin until it comes up heads; if the first time it comes up heads is the $n^{\text {th }}$ toss, then I will pay you 2^{n}. What's the most you'd be willing to pay for this wager? What is its expected monetary value?

Problems with using monetary payoffs

- Overly Restrictive: We care about more things than money.
- The St. Petersburg Paradox: Consider the following wager: I will flip a fair coin until it comes up heads; if the first time it comes up heads is the $n^{\text {th }}$ toss, then I will pay you 2^{n}. What's the most you'd be willing to pay for this wager? What is its expected monetary value?
- Valuing Money: Doesn't the value of a wager depend on more than merely how much it's expected to pay out? (I.e., your total fortune, how much you personally care about money, etc.)

Problems with using monetary payoffs

- Overly Restrictive: We care about more things than money.
- The St. Petersburg Paradox: Consider the following wager: I will flip a fair coin until it comes up heads; if the first time it comes up heads is the $n^{\text {th }}$ toss, then I will pay you 2^{n}. What's the most you'd be willing to pay for this wager? What is its expected monetary value?
- Valuing Money: Doesn't the value of a wager depend on more than merely how much it's expected to pay out? (I.e., your total fortune, how much you personally care about money, etc.)
- Risk-aversion: Is it irrational to prefer a sure-thing $\$ x$ to a wager whose expected payout is $\$ x$?

We should move away from "monetary payouts" to "utility".

Expected Utility

 Mas seme temo conomics $\underset{\text { Rrrows theorem }}{\text { Ratity }}$

Suppose that $X=\left\{x_{1}, \ldots, x_{n}\right\}$ and $u: X \rightarrow \mathbb{R}$ is a utility function on X.

This can be extended to an expected utility function $E U: \mathcal{L}(X) \rightarrow \mathbb{R}$ where

$$
\begin{aligned}
E U\left(\left[x_{1}: p_{1}, \ldots, x_{n}: p_{n}\right]\right) & =p_{1} \times u\left(x_{1}\right)+\cdots+p_{n} \times u\left(x_{n}\right) \\
& =\sum_{i=1}^{n} p_{i} \times u\left(x_{i}\right)
\end{aligned}
$$

Suppose that Ann is faced with the choice between lotteries L_{1} and L_{2} where:

$$
L_{1}=\left[o_{1}: 0, o_{3}: 0.25, o_{3}: 0.75\right] \quad L_{2}=\left[o_{1}: 0.2, o_{2}: 0, o_{3}: 0.8\right]
$$

Can expected utility theory tell us how Ann should rank L_{1} and L_{2} ?

Suppose that Ann is faced with the choice between lotteries L_{1} and L_{2} where:

$$
L_{1}=\left[o_{1}: 0, o_{3}: 0.25, o_{3}: 0.75\right] \quad L_{2}=\left[o_{1}: 0.2, o_{2}: 0, o_{3}: 0.8\right]
$$

Can expected utility theory tell us how Ann should rank L_{1} and L_{2} ? No!
Suppose that Ann is also faced with the choice between lotteries L_{3} and L_{4} where:

$$
L_{3}=\left[o_{1}: 0.8, o_{2}: 0, o_{3}: 0.2\right] \quad L_{4}=\left[o_{1}: 0, o_{2}: 1, o_{3}: 0\right]
$$

Suppose that Ann is faced with the choice between lotteries L_{1} and L_{2} where:

$$
L_{1}=\left[o_{1}: 0, o_{3}: 0.25, o_{3}: 0.75\right] \quad L_{2}=\left[o_{1}: 0.2, o_{2}: 0, o_{3}: 0.8\right]
$$

Can expected utility theory tell us how Ann should rank L_{1} and L_{2} ? No!
Suppose that Ann is also faced with the choice between lotteries L_{3} and L_{4} where:

$$
L_{3}=\left[o_{1}: 0.8, o_{2}: 0, o_{3}: 0.2\right] \quad L_{4}=\left[o_{1}: 0, o_{2}: 1, o_{3}: 0\right]
$$

If we know that Ann ranks L_{1} over L_{2} (e.g., $L_{1} \succ L_{2}$), can we conclude anything about how Ann ranks L_{3} and L_{4} ?

Suppose that Ann is faced with the choice between lotteries L_{1} and L_{2} where:

$$
L_{1}=\left[o_{1}: 0, o_{3}: 0.25, o_{3}: 0.75\right] \quad L_{2}=\left[o_{1}: 0.2, o_{2}: 0, o_{3}: 0.8\right]
$$

Can expected utility theory tell us how Ann should rank L_{1} and L_{2} ? No!
Suppose that Ann is also faced with the choice between lotteries L_{3} and L_{4} where:

$$
L_{3}=\left[o_{1}: 0.8, o_{2}: 0, o_{3}: 0.2\right] \quad L_{4}=\left[o_{1}: 0, o_{2}: 1, o_{3}: 0\right]
$$

If we know that Ann ranks L_{1} over L_{2} (e.g., $L_{1} \succ L_{2}$), can we conclude anything about how Ann ranks L_{3} and L_{4} ? Yes: Ann must rank L_{4} over L_{3} (e.g., $L_{4} \succ L_{3}$).

Cardinal Utility Theory

 Nash Consorcet's Paradot ECO Thars Arrow Social Choice
Rationality

$$
u: X \rightarrow \mathbb{R}
$$

Which comparisons are meaningful?

1. $u(x)$ and $u(y)$? (ordinal utility)

Cardinal Utility Theory

 Arrow Rationality

$$
u: X \rightarrow \mathbb{R}
$$

Which comparisons are meaningful?

1. $u(x)$ and $u(y)$? (ordinal utility)
2. $u(x)-u(y)$ and $u(a)-u(b)$?

Cardinal Utility Theory

 Nash Condorcets Parapox Theory ParetoHarsany
Rational Choice
ArrowSocial Choice TheorySen Arrow Sociationality

$$
u: X \rightarrow \mathbb{R}
$$

Which comparisons are meaningful?

1. $u(x)$ and $u(y)$? (ordinal utility)
2. $u(x)-u(y)$ and $u(a)-u(b)$?
3. $u(x)$ and $2 * u(z)$?

Ordinal vs. Cardinal Utility

Politicsasas. Mhilotume Nens shemenem eronomics
 Arrowsocial Choice
Rationality
Arrows theocem
Ordinal scale: Qualitative comparisons of objects allowed, no information about differences or ratios.

Ordinal vs. Cardinal Utility

Ordinal scale: Qualitative comparisons of objects allowed, no information about differences or ratios.

Cardinal scales:

Interval scale: Quantitative comparisons of objects, accurately reflects differences between objects.
E.g., the difference between $75^{\circ} \mathrm{F}$ and $70^{\circ} \mathrm{F}$ is the same as the difference between $30^{\circ} \mathrm{F}$ and $25^{\circ} \mathrm{F}$ However, $70^{\circ} \mathrm{F}\left(=21.11^{\circ} \mathrm{C}\right)$ is not twice as hot as $35^{\circ} \mathrm{F}\left(=1.67^{\circ} \mathrm{C}\right)$.

Ordinal vs. Cardinal Utility

Ordinal scale: Qualitative comparisons of objects allowed, no information about differences or ratios.

Cardinal scales:

Interval scale: Quantitative comparisons of objects, accurately reflects differences between objects.
E.g., the difference between $75^{\circ} \mathrm{F}$ and $70^{\circ} \mathrm{F}$ is the same as the difference between $30^{\circ} \mathrm{F}$ and $25^{\circ} \mathrm{F}$ However, $70^{\circ} \mathrm{F}\left(=21.11^{\circ} \mathrm{C}\right)$ is not twice as hot as $35^{\circ} \mathrm{F}\left(=1.67^{\circ} \mathrm{C}\right)$.

Ratio scale: Quantitative comparisons of objects, accurately reflects ratios between objects. E.g., 10 lb ($=4.53592 \mathrm{~kg}$) is twice as much as 5 lb ($=2.26796 \mathrm{~kg}$).

Cardinal Utility Theory

 mens.amenem Economics Arrowsocial Choice
Ratrows theosemality
$x \succ y \succ z$ is represented by both $(3,2,1)$ and $(1000,999,1)$, so we cannot say y whether is "closer" to x than to z.

Cardinal Utility Theory

 Ms.anician Nash Consorcets ParadoxRational Choice Theory ParetoHarsany
ArrowSocial Choice TheorySen Arrow Rationality
$x \succ y \succ z$ is represented by both $(3,2,1)$ and $(1000,999,1)$, so we cannot say y whether is "closer" to x than to z.

Key idea: Ordinal preferences over lotteries allows us to infer a cardinal (interval) scale (with some additional axioms).

John von Neumann and Oskar Morgenstern. The Theory of Games and Economic Behavior. Princeton University Press, 1944.

A Choice

Politics ases iswmitume

 ArrowSocia
Rationalice

A Choice

 Nas shemen mow Conomics
$\underset{\text { Rrrows theorem }}{\text { Ratity }}$

S

A Choice

$\underset{\text { Rrrows theorem }}{\text { Ratity }}$

R
 B
 W
 S

A Choice

Arrow Social Choice
Rationality
arrows theocem

R
 B
 W
 S

A Choice

PoliticS aws humionume

 Arrow Social Choice
Rationality
arrows theerem

R
B
W S

$$
[1: B] \sim[p: R, 1-p: S]
$$

A Choice

Politicsass imwe fume

 Arrow Social Choice
Rationality
arrows theerem

$1 * u(B)=p * u(R)+(1-p) * u(S)$

A Choice

 Arrow Social Choice
Rationality
arrows theerem

R
B
W
S

$$
u(B)=p * 1+(1-p) * 0=p
$$

Lotteries

 wans same weinw Economics Arrow Social Choice
Rationality
arrows theocem
Suppose that $X=\left\{x_{1}, \ldots, x_{n}\right\}$ is a set of outcomes. A lottery over X is a tuple $\left[x_{1}: p_{1}, x_{2}: p_{2}, \ldots, x_{n}: p_{n}\right]$ where $\sum_{i} p_{i}=1$.

Lotteries

Suppose that $X=\left\{x_{1}, \ldots, x_{n}\right\}$ is a set of outcomes. A lottery over X is a tuple $\left[x_{1}: p_{1}, x_{2}: p_{2}, \ldots, x_{n}: p_{n}\right]$ where $\sum_{i} p_{i}=1$.

Let \mathcal{L} be the set of lotteries. Suppose that $\succeq \subseteq \mathcal{L} \times \mathcal{L}$ is a preference ordering on \mathcal{L}.

Reduction of Compound Lotteries

 whens.ine wemmeconomics Nashional chooe Theory Arrow Racia ChoiceReduction of Compound Lotteries: If the prize of a lottery is another lottery, then this can be reduced to a simple lottery over prizes.

Reduction of Compound Lotteries

 Nash
Rational Choice Theory ParetoHarsany Arrow Rationality

Reduction of Compound Lotteries: If the prize of a lottery is another lottery, then this can be reduced to a simple lottery over prizes.

This eliminates utility from the thrill of gambling and so the only ultimate concern is the prizes.

Continuity

 Nash conanarestseme Rational Choice Theory Pareto Harsanyi Arrow Sationality

Continuity For all $L_{1}, L_{2}, L_{3} \in \mathcal{L}$, if $L_{1} \succ L_{2} \succ L_{3}$, then there exists $a \in(0,1)$ such that $\left[L_{1}: a, L_{3}:(1-a)\right] \sim L_{2}$

Independence

 Mens came weer Economics $\underset{\text { Rrrows theorem }}{\text { Ratity }}$

Independence \quad For all $L_{1}, L_{2}, L_{3} \in \mathcal{L}$ and $a \in(0,1]$,

$$
L_{1} \succ L_{2} \text { if, and only if, }\left[L_{1}: a, L_{3}:(1-a)\right] \succ\left[L_{2}: a, L_{3}:(1-a)\right] .
$$

Independence

 Arrow Social Choice
Rationality
arrows theocem

Independence For all $L_{1}, L_{2}, L_{3} \in \mathcal{L}$ and $a \in(0,1]$,

$$
L_{1} \succ L_{2} \text { if, and only if, }\left[L_{1}: a, L_{3}:(1-a)\right] \succ\left[L_{2}: a, L_{3}:(1-a)\right] .
$$

$$
L_{1} \sim L_{2} \text { if, and only if, }\left[L_{1}: a, L_{3}:(1-a)\right] \sim\left[L_{2}: a, L_{3}:(1-a)\right] .
$$

Axioms

 was seme weorner womics ArrowSocial Choice TheorySen

Preference

Independence

Continuity

Compound Lotteries The decision maker is indifferent between every compound lottery and the corresponding simple lottery.
\succeq is transitive and complete

For all $L_{1}, L_{2}, L_{3} \in \mathcal{L}$ and $a \in(0,1], L_{1} \succ L_{2}$ if, and only if,
$\left[L_{1}: a, L_{3}:(1-a)\right] \succ\left[L_{2}: a, L_{3}:(1-a)\right]$.
For all $L_{1}, L_{2}, L_{3} \in \mathcal{L}$ and $a \in(0,1]$, if $L_{1} \succ L_{2} \succ L_{3}$, then there exists $a \in(0,1)$ such that $\left[L_{1}: a, L_{3}:(1-a)\right] \sim L_{2}$
$u: \mathcal{L} \rightarrow \Re$ is linear provided for all $L=\left[L_{1}: p_{1}, \ldots, L_{n}: p_{n}\right] \in \mathcal{L}$,

$$
u(L)=\sum_{i=1}^{n} p_{i} u\left(L_{i}\right)
$$

von Neumann-Morgenstern Representation Theorem A binary relation \succeq on \mathcal{L} satisfies Preference, Compound Lotteries, Independence and Continuity if, and only if, \succeq is representable by a linear utility function $u: \mathcal{L} \rightarrow \Re$. Moreover, $u^{\prime}: \mathcal{L} \rightarrow \Re$ represents \succeq iff there exists real numbers $c>0$ and d such that $u^{\prime}(\cdot)=c u(\cdot)+d$. (" u is unique up to linear transformations.")

