PHIL309P

Methods in Philosophy, Politics and Economics

Eric Pacuit
University of Maryland

- Beliefs: How should we represent the decision makers beliefs about the decision problems (e.g., the available outcomes, menu items, consequences of actions, etc.). What makes a belief rational or reasonable?
- Preferences: How should we represent the decision maker's preferences about the available choices? What makes a preference rational or reasonable?

Preferences

 Mas semen wey NashRational Choice Theory ParetoHarsany Arrow Rationality

Preferring or choosing x is different that "liking" x or "having a taste for x ": one can prefer x to y but dislike both options

Preferences are always understood as comparative: "preference" is more like "bigger" than "big"

Concepts of preference

 wass sememememeconomics Nastleana chice theory perefeotesany Arrow Rationality1. Enjoyment comparison: I prefer red wine to white wine means that I enjoy red wine more than white wine

Concepts of preference

 Mas semen wey Arrow Rationality

1. Enjoyment comparison: I prefer red wine to white wine means that I enjoy red wine more than white wine
2. Comparative evaluation: I prefer candidate A over candidate B means " I judge A to be superior to $B^{\prime \prime}$. This can be partial (ranking with respect to some criterion) or total (with respect to every relevant consideration).

Concepts of preference

1. Enjoyment comparison: I prefer red wine to white wine means that I enjoy red wine more than white wine
2. Comparative evaluation: I prefer candidate A over candidate B means " I judge A to be superior to $B^{\prime \prime}$. This can be partial (ranking with respect to some criterion) or total (with respect to every relevant consideration).
3. Favoring: Affirmative action calls for racial/gender preferences in hiring.

Concepts of preference

1. Enjoyment comparison: I prefer red wine to white wine means that I enjoy red wine more than white wine
2. Comparative evaluation: I prefer candidate A over candidate B means "I judge A to be superior to $B^{\prime \prime}$. This can be partial (ranking with respect to some criterion) or total (with respect to every relevant consideration).
3. Favoring: Affirmative action calls for racial/gender preferences in hiring.
4. Choice ranking: In a restaurant, when asked "do you prefer red wine or white wine", the waiter wants to know which option I choose.

Concepts of preference

1. Enjoyment comparison: I prefer red wine to white wine means that I enjoy red wine more than white wine
2. Comparative evaluation: I prefer candidate A over candidate B means " I judge A to be superior to $B^{\prime \prime}$. This can be partial (ranking with respect to some criterion) or total (with respect to every relevant consideration).
3. Favoring: Affirmative action calls for racial/gender preferences in hiring.
4. Choice ranking: In a restaurant, when asked "do you prefer red wine or white wine", the waiter wants to know which option I choose.

Partial/Total/Overal Comparisons

 Nashemen weme Elonomics Nagh ename hemaide incon pereotics Arrowsocia Choice
Partial/Total/Overal Comparisons

 Mas semen weymenomics National crowe Theory peretorszany Arrow Racia Choice1. Lauren drank water rather than wine with dinner, despite preferring to drink wine, because she promised her husband she would stay sober.

Partial/Total/Overal Comparisons

1. Lauren drank water rather than wine with dinner, despite preferring to drink wine, because she promised her husband she would stay sober.
2. Lauren drank water with dinner because she preferred to do so. But for the promise she made her husband to stay sober, she would have preferred to drink wine rather than water with dinner.

Game Hatshyws shesems MhilOUSOphy
 Nash conanal Choice Theory Pareto Harsanyi Arrow Sationality

Preferences will be understood as mental rankings of alternatives "all things considered".

Mathematically describing preferences

Mathematical background: Relations

 wash sheme wesme Economics Nasc emeace feyay ArrowSocial ChoiceRationality

Suppose that X is a set. A relation on X is a set of ordered pairs from X : $R \subseteq X \times X$.

Mathematical background: Relations

 Nens shemen wem Economics Arrow Rationality

Suppose that X is a set. A relation on X is a set of ordered pairs from X : $R \subseteq X \times X$.
E.g., $X=\{a, b, c, d\}, R=\{(a, a),(b, a),(c, d),(a, c),(d, d)\}$

Mathematical background: Relations

 Arrow Rationality

Suppose that X is a set. A relation on X is a set of ordered pairs from X : $R \subseteq X \times X$.
E.g., $X=\{a, b, c, d\}, R=\{(a, a),(b, a),(c, d),(a, c),(d, d)\}$

Mathematical background: Relations

 Nash Condorcets Parresox
Rational Choice Theory ParetoHarsany
ArrowS Social Choice Theory Sen Arrow Rationality

Suppose that X is a set. A relation on X is a set of ordered pairs from X : $R \subseteq X \times X$.
E.g., $X=\{a, b, c, d\}, R=\{(a, a),(b, a),(c, d),(a, c),(d, d)\}$

$$
b R a
$$

Mathematical background: Relations

 Nash Condorcets Parresox
Rational Choice Theory ParetoHarsany
ArrowSocial Choice Theory Sen Arrow Rationality

Suppose that X is a set. A relation on X is a set of ordered pairs from X : $R \subseteq X \times X$.
E.g., $X=\{a, b, c, d\}, R=\{(a, a),(b, a),(c, d),(a, c),(d, d)\}$

a R a
$b R a$

$d R d$

Mathematical background: Relations

 Nash Condorcets Parrasox Theory ParetoHarsany
Rational Choice
ArrowSocial Choice TheorySen Arrow Rationality

Suppose that X is a set. A relation on X is a set of ordered pairs from X : $R \subseteq X \times X$.
E.g., $X=\{a, b, c, d\}, R=\{(a, a),(b, a),(c, d),(a, c),(d, d)\}$

$$
\begin{aligned}
& a R a \\
& b R a \\
& c R d \\
& a R c \\
& d R d
\end{aligned}
$$

Mathematical background: Relations

 Game Theory DownsMars Theorem Gexs
Nash Consorcefts Paratoon ECOMOMICS Nash Condorcets Parasoox
Rational Choice Theory P ParetoHarsany Arrow Sociaionality

Suppose that X is a set and $R \subseteq X \times X$ is a relation.
Reflexive relation: for all $x \in X, x R x$

Mathematical background: Relations

 mass Game theoryouns Nash Condorcets ParasooxRational Choice Theory ParetoHarsany
ArrowSocial Choice TheorySen $\underset{\text { Rrrows theorem }}{\text { Ratity }}$

Suppose that X is a set and $R \subseteq X \times X$ is a relation.
Reflexive relation: for all $x \in X, x R x$
E.g., $X=\{a, b, c, d\}$

\section*{Mathematical background: Relations} wavs nemenemerneconomics | Nash Consorcets Parasoox |
| :--- |
| Rational Choice Theory ParetoHarsany | Arrowsocial Cholice

Suppose that X is a set and $R \subseteq X \times X$ is a relation.
Complete relation: for all $x, y \in X$, either $x R y$ or $y R x$

Mathematical background: Relations

 mass Game theoryours Nash Condorcet't ParadooxRational Choice Theory ParetoHarsany
Arrow Social Choice Theory Sen $\underset{\text { Rrrows theorem }}{\text { Ratity }}$

Suppose that X is a set and $R \subseteq X \times X$ is a relation.
Complete relation: for all $x, y \in X$, either $x R y$ or $y R x$
E.g., $X=\{a, b, c, d\}$

Mathematical background: Relations

 mass Game cheoryours Nash Consorcet't ParadoxRational Choice Theory ParetoHarsany
Arrow Social Choice Theory Sen Arrowsocial Cholice

Suppose that X is a set and $R \subseteq X \times X$ is a relation.
Complete relation: for all $x, y \in X$, either $x R y$ or $y R x$
E.g., $X=\{a, b, c, d\}$

Mathematical background: Relations

 Nash Condorcets Paradoox
Rational Choice Theory ParetoHarsany
ArrowSocial Choice TheorySen $\underset{\text { Rrrows theocem }}{\text { Ratity }}$

Suppose that X is a set and $R \subseteq X \times X$ is a relation.
Complete relation: for all $x, y \in X$, either $x R y$ or $y R x$
E.g., $X=\{a, b, c, d\}$

Mathematical background: Relations

 Nash Condorcet't Paradoox
Rational Choice Theory ParetoHarsany
ArrowSocial Choice TheorySen $\underset{\text { Rrrows theorem }}{\text { Ratity }}$

Suppose that X is a set and $R \subseteq X \times X$ is a relation.
Complete relation: for all $x, y \in X$, either $x R y$ or $y R x$
E.g., $X=\{a, b, c, d\}$

Mathematical background: Relations

 Nash
Rational Choice
ArrowSocial Choice ParetoHarsany $\underset{\text { Rrrows theorem }}{\text { Ratity }}$

Suppose that X is a set and $R \subseteq X \times X$ is a relation.
Complete relation: for all $x, y \in X$, either $x R y$ or $y R x$
E.g., $X=\{a, b, c, d\}$

Mathematical background: Relations

 nes seme inery conomics Nash Condorcets ParresoxRational Choice Theory ParetoHarsany $\underset{\text { Rrrows theocem }}{\text { Ratity }}$

Suppose that X is a set and $R \subseteq X \times X$ is a relation.
Transitive relation: for all $x, y, z \in X$, if $x R y$ and $y R z$, then $x R z$

Mathematical background: Relations

 Nash Condorcet't Paradoox
Rational Choice Theory ParetoHarsany
Pat $\underset{\text { Rrrows theorem }}{\text { Ratity }}$

Suppose that X is a set and $R \subseteq X \times X$ is a relation.
Transitive relation: for all $x, y, z \in X$, if $x R y$ and $y R z$, then $x R z$
E.g., $X=\{a, b, c, d\}$

Mathematical background: Relations

 Nash
Rational Choice
Theory ParetoHarsany $\underset{\text { Rrrows theorem }}{\text { Ratity }}$

Suppose that X is a set and $R \subseteq X \times X$ is a relation.
Transitive relation: for all $x, y, z \in X$, if $x R y$ and $y R z$, then $x R z$
E.g., $X=\{a, b, c, d\}$

Mathematical background: Relations

 Nash
Rational Choice
Theory ParetoHarsany $\underset{\text { Rrrows theorem }}{\text { Ratity }}$

Suppose that X is a set and $R \subseteq X \times X$ is a relation.
Transitive relation: for all $x, y, z \in X$, if $x R y$ and $y R z$, then $x R z$
E.g., $X=\{a, b, c, d\}$

Mathematical background: Relations

 Nash Condorcets Parrosox
Rational Choice Theory ParetoHarsany $\underset{\text { Rrrows theocem }}{\text { Ratity }}$

Suppose that X is a set and $R \subseteq X \times X$ is a relation.
Transitive relation: for all $x, y, z \in X$, if $x R y$ and $y R z$, then $x R z$
E.g., $X=\{a, b, c, d\}$

Mathematical background: Relations

 Nash Condorcets Parrosox
Rational Choice Theory ParetoHarsany $\underset{\text { Rrrows theocem }}{\text { Ratity }}$

Suppose that X is a set and $R \subseteq X \times X$ is a relation.
Transitive relation: for all $x, y, z \in X$, if $x R y$ and $y R z$, then $x R z$
E.g., $X=\{a, b, c, d\}$

Mathematical background: Relations

 Mens.ime ween Economics ArrowSocial Choice Paretoryarsan $\underset{\text { Rrows theorem }}{\text { Rationaly }}$Suppose that X is a set and $R \subseteq X \times X$ is a relation.
Transitive relation: for all $x, y, z \in X$, if $x R y$ and $y R z$, then $x R z$
E.g., $X=\{a, b, c, d\}$

Representing Preferences

 Arrow Social Choice
Rationality
arrows theocem

Let X be a set of options/outcomes. A decision maker's preference over X is represented by a relation $\succeq \subseteq X \times X$.

Representing Preferences

 Nasheonan Choice Theory Pareto Harsanyi Arrow Sationality

Given $x, y \in X$, there are four possibilities:

Representing Preferences

 waveneme weormeconomics Arrow Rationality

Given $x, y \in X$, there are four possibilities:

1. $x \succeq y$ and $y \nsucceq x$: The decision maker ranks x above y (the decision maker strictly prefers x to y).

Representing Preferences

 Nathemana chiodet tha $\underset{\text { Rrrows theorem }}{\text { Ratity }}$
Given $x, y \in X$, there are four possibilities:

1. $x \succeq y$ and $y \nsucceq x$: The decision maker ranks x above y (the decision maker strictly prefers x to y).
2. $y \succeq x$ and $x \nsucceq y$: The decision maker ranks y above x (the decision maker strictly prefers y to x).

Representing Preferences

 $\underset{\text { Rrrows theorem }}{\text { Ratity }}$
Given $x, y \in X$, there are four possibilities:

1. $x \succeq y$ and $y \nsucceq x$: The decision maker ranks x above y (the decision maker strictly prefers x to y).
2. $y \succeq x$ and $x \nsucceq y$: The decision maker ranks y above x (the decision maker strictly prefers y to x).
3. $x \succeq y$ and $y \succeq x$: The agent is indifferent between x and y.

Representing Preferences

 Ms.amicher Arrow Rationality

Given $x, y \in X$, there are four possibilities:

1. $x \succeq y$ and $y \nsucceq x$: The decision maker ranks x above y (the decision maker strictly prefers x to y).
2. $y \succeq x$ and $x \nsucceq y$: The decision maker ranks y above x (the decision maker strictly prefers y to x).
3. $x \succeq y$ and $y \succeq x$: The agent is indifferent between x and y.
4. $x \nsucceq y$ and $y \nsucceq x$: The agent cannot compare x and y

Representing Preferences

 Ms.amicher Nash Arrow RationalityGiven $x, y \in X$, there are four possibilities:

1. $x \succeq y$ and $y \nsucceq x$: The decision maker ranks x above y (the decision maker strictly prefers x to y).
2. $y \succeq x$ and $x \nsucceq y$: The decision maker ranks y above x (the decision maker strictly prefers y to x).
3. $x \succeq y$ and $y \succeq x$: The agent is indifferent between x and y.
4. $x \nsucceq y$ and $y \nsucceq x$: The agent cannot compare x and y

Representing Preferences

 wens nemen wem Economics NashRational Choice Theory ParetoHarsany Arrow Rationality

Suppose that \succeq is a relation on X (called the weak preference). Then, define the following:

- Strict preference: $x \succ y$ iff $x \succeq y$ and $y \nsucceq x$
- Indifference: $x \sim y$ iff $x \succeq y$ and $y \succeq x$
- Non-comparability $x N y$ iff $x \nsucceq y$ and $y \nsucceq x$

Representing Preferences

 Nash Rational Choice 'Theory ParetoHarsany Arrow Rationality

Suppose that \succeq is a relation on X (called the weak preference). Then, define the following:

- Strict preference: $x \succ y$ iff $x \succeq y$ and $y \nsucceq x$
- Indifference: $x \sim y$ iff $x \succeq y$ and $y \succeq x$
- Non-comparability $x N y$ iff $x \nsucceq y$ and $y \nsucceq x$

What properties should weak/strict preference, indifference, non-comparability satisfy?

Rational preferences

 waveneme weormeconomics Arrow Rationality

A relation $\succeq \subseteq X \times X$ is a rational preference relation (for a decision maker) provided that

1. \succeq is complete (and hence reflexive)
2. \succeq is transitive

- What is the relationship between choice and preference?
- What makes a preference rational?
- Should a decision maker's preference be complete and transitive?
- Are people's preferences complete and transitive?

Choices

 ArrowSocial Choice TheorySen $\underset{\text { Rrows theorem }}{\text { Rationaly }}$

It is important to distinguish between mere behavior on the one hand and "action" or "choice" on the other.

Choices

 Mas seme temo M Nonomics Nash Consorcets Paradox LCO Pareto Harsany Arrowsocia ChoiceIt is important to distinguish between mere behavior on the one hand and "action" or "choice" on the other.

Decisions are between beliefs and desires on the one hand and actions on the other. Whateme wisem ECOMOMICS ArowSocil chice theor owain
Aroustionality
and

Should preferences be identified with choices? wave neme thern Economics Nash benate feyme ArrowSocial Choice TheorySen ${ }_{\text {Rrows }}$ Rationality

Should preferences be identified with choices?

The verb "to prefer" can either mean "to choose" or "to like better," and these two senses are frequently confused in economic literature. That fact that an individual chooses A rather than B is far from conclusive evidence that he likes A better. But whether he likes A better or not should be completely irrelevant to the theory of price.
(Little, 1949).

Preferences and Choices

 Arrowsocia Choice

Preferences are closely related to choices: preferences may cause and to help to explain choices; preferences may be invoked to justify choices, in fortuitous circumstances, we can use preference data to make predictions about choice. But to identify the two would be a mistake.

Preferences and Choices

 wens nemen wem Economics Nash condores Choice Theory ParetoHarsanyi Arrow Rationality- We have preferences over vastly more states of affairs than we can ever hope (or dread) to be in the position to choose.

Preferences and Choices

Can't we stipulate a concept of preference that is only loosely based on our ordinary concept?

Preferences and Choices

 maysNash corem
Nowrews Nash Consorcets saraod
Rational Choice' Theory ParetoHarsany Ratron
Arrows theocem
Can't we stipulate a concept of preference that is only loosely based on our ordinary concept?
-What about counter-preferential choice?

Preferences and Choices

 Nash Consorcets parasoox
Rational Choice Theory ParetoHarsany Arrow
Rations theonality
Can't we stipulate a concept of preference that is only loosely based on our ordinary concept?

- What about counter-preferential choice?
- Preferences must be stable over a reasonable amount of time in a way that (observed) choices aren't (needed to predict and explain choices).

Preferences and Choices

Can't we stipulate a concept of preference that is only loosely based on our ordinary concept?

- What about counter-preferential choice?
- Preferences must be stable over a reasonable amount of time in a way that (observed) choices aren't (needed to predict and explain choices).
- Beliefs and expectations over future states of affairs are needed in addition to preferences in order to explain choices. To banish preferences understood as mental rankings because they are unobservable or subjective would mean that beliefs and expectations would have to be banished as well.

 Arrow Sociai Choice
Rationality

Revealed Preference Theory

 Rational Choice Theory ParetoHarsany Rationality

Standard economics focuses on revealed preference because economic data comes in this form. Economic data can-at best-reveal what the agent wants (or has chosen) in a particular situation. Such data do not enable the economist to distinguish between what the agent intended to choose and what he ended up choosing; what he chose and what he ought to have chosen.
(Gul and Pesendorfer, 2008)

Given some choices of a decision maker, in what circumtances can we understand those choices as being made by a rational decision maker?

Sen's α Condition

ArrowSocial Choice
Rationality

R : red wine

W : white wine
L: lemonade

Sen's α Condition

 waveneme weormeconomics ArrowSocial Choice
Rationality

R : red wine

W : white wine
L: lemonade

Sen's α Condition

 wish rame hienvems

ArrowSocial Choice
Rationality

R : red wine
 W : white wine

Sen's α Condition

 waven rame thery ArrowSocial Choice
Rationality

R : red wine

W : white wine

Sen's α Condition

R : red wine
W : white wine
L: lemonade

R : red wine

W: white wine

Sen's α Condition

R : red wine
W : white wine
L : lemonade
R : red wine
W : white wine

If the world champion is American, then she must be a US champion too.

Observations of actual choices will only partially constrain preference attribution. That someone chooses red wine when white wine is available does not allow one to conclude that the choice of an white wine was ruled out by her preferences, only that her preferences ruled the red wine in.

Sen's β Condition

 waven rame teor Economics ArrowSocial Choice
Rationality

R : red wine

W : white wine

R : red wine

W : white wine

Sen's β Condition

 ArrowSocial Choice
Rationality

R : red wine

W: white wine
L: lemonade

Sen's β Condition

R : red wine

W: white wine
L: lemonade

Sen's β Condition

R : red wine

W : white wine

L: lemonade

If some American is a world champion, then all champions of America must be world champions.

Revealed Preference Theory

 Mas semen weymeronomics Nash Consorcets paraoosRational Choice Theory ParetoHarsany
Arrow Social Choice Theory Sen Arrow Sacia Choice

A decision maker's choices over a set of alternatives X are rationalizable iff there is a (rational) preference relation on X such that the decision maker's choices maximize the preference relation.

Revealed Preference Theory

A decision maker's choices over a set of alternatives X are rationalizable iff there is a (rational) preference relation on X such that the decision maker's choices maximize the preference relation.

Revelation Theorem. A decision maker's choices satisfy Sen's α and β if and only if the decision maker's choices are rationalizable.

Choice Functions

 Nes semene mo conomics $\underset{\text { Rrrows theorem }}{\text { Ratity }}$

Suppose X is a set of options. And consider $B \subseteq X$ as a choice problem. A choice function is any function where $C(B) \subseteq B$. B is sometimes called a menu and $C(B)$ the set of "rational" or "desired" choices.

Choice Functions

 Mas seme temo M Nonomics Arrow Rationality

Suppose X is a set of options. And consider $B \subseteq X$ as a choice problem. A choice function is any function where $C(B) \subseteq B$. B is sometimes called a menu and $C(B)$ the set of "rational" or "desired" choices.

A relation R on X rationalizes a choice function C if for all B $C(B)=\{x \in B \mid$ for all $y \in B \quad x R y\}$.

Choice Functions

 Mas semen wey ArrowSocial Choice TheorySen

Suppose X is a set of options. And consider $B \subseteq X$ as a choice problem. A choice function is any function where $C(B) \subseteq B$. B is sometimes called a menu and $C(B)$ the set of "rational" or "desired" choices.

A relation R on X rationalizes a choice function C if for all B $C(B)=\{x \in B \mid$ for all $y \in B x R y\}$.

Sen's α : If $x \in C(A)$ and $B \subseteq A$ and $x \in B$ then $x \in C(B)$

Choice Functions

 Mas semen wey ArrowSocial Choice
Rationality

Suppose X is a set of options. And consider $B \subseteq X$ as a choice problem. A choice function is any function where $C(B) \subseteq B$. B is sometimes called a menu and $C(B)$ the set of "rational" or "desired" choices.

A relation R on X rationalizes a choice function C if for all B $C(B)=\{x \in B \mid$ for all $y \in B x R y\}$.

Sen's α : If $x \in C(A)$ and $B \subseteq A$ and $x \in B$ then $x \in C(B)$
Sen's β : If $x, y \in C(A), A \subseteq B$ and $y \in C(B)$ then $x \in C(B)$. waven weme teon Economics Nash Condorcets Parasox Rational Choice' Theory ParetoHarsany ArrowSocial Choice
Rationality

Invoking someone's preferences will suffice to explain why some choices were not made (i.e. in terms of rational impermissibility) but not typically why some particular choice was made. To take up the slack, explanations must draw on factors other than preference: psychological one such as the framing of the choice problem or the saliency of particular options, or sociological ones such as the existence of norms or conventions governing choices of the relevant kind.

Ordinal Utility Theory

Utility Function

 mass chame ceses fugh ECOMOMICS Nasational choice Theory, paretortarssny Arrowsocial CholiceA utility function on a set X is a function $u: X \rightarrow \mathbb{R}$

Utility Function

 uns nemene wemmenomics Nash CondorcesRational Choice Theory ParetoHarsany Arrowsocial Cholice

A utility function on a set X is a function $u: X \rightarrow \mathbb{R}$

A preference ordering is represented by a utility function iff x is (weakly) preferred to y provided $u(x) \geq u(y)$

Utility Function

 wans rame ther Nash Rational Choice Theory Pareto Harsany Arrow Social ChoiceRationality

A utility function on a set X is a function $u: X \rightarrow \mathbb{R}$

A preference ordering is represented by a utility function iff x is (weakly) preferred to y provided $u(x) \geq u(y)$

What properties does such a preference ordering have?

Ordinal Utility Theory

 uns nemene wo conomics Arrowsocia Choice

Fact. Suppose that X is finite and \succeq is a complete and transitive ordering over X, then there is a utility function $u: X \rightarrow \mathfrak{R}$ that represents \succeq (i.e., $x \succeq y$ iff $u(x) \geq u(y)$)

Ordinal Utility Theory

 Mas seme temo conomics Nash Consorcets parasooxRational Choice Theory ParetoHarsany
Arrow Social Choice Theory Sen $\underset{\text { Rrrows theorem }}{\text { Ratity }}$

Fact. Suppose that X is finite and \succeq is a complete and transitive ordering over X, then there is a utility function $u: X \rightarrow \mathfrak{R}$ that represents \succeq (i.e., $x \succeq y$ iff $u(x) \geq u(y)$)

Utility is defined in terms of preference (so it is an error to say that the agent prefers x to y because she assigns a higher utility to x than to y).

Important

All three of the utility functions represent the preference $x \succ y \succ z$

Item	u_{1}	u_{2}	u_{3}
x	3	10	1000
y	2	5	99
z	1	0	1

$x \succ y \succ z$ is represented by both $(3,2,1)$ and $(1000,999,1)$, so one cannot say that y is "closer" to x than to z.

$$
X=\{M, C, P, L\}
$$

$$
X=\{M, C, P, L\}
$$

$M \subset P L$

$M P L$

C PL
$M \subset P$
$M \subset L$

M P

M L

C P

C L

L

$$
X=\{M, C, P, L\}
$$

$M \subset P L$

$\boldsymbol{C}^{P L}$

M C P
$M C L$

$$
X=\{M, C, P, L\}
$$

$$
\begin{gathered}
\succeq=\{(M, C),(C, M),(M, P),(M, L),(C, P),(C, L),(P, L), \\
(M, M),(P, P),(C, C),(L, L)\}
\end{gathered}
$$

$$
X=\{M, C, P, L\}
$$

$$
\begin{gathered}
\succeq=\{(M, C),(C, M),(M, P),(M, L),(C, P),(C, L),(P, L), \\
(M, M),(P, P),(C, C),(L, L)\}
\end{gathered}
$$

$$
X=\{M, C, P, L\}
$$

$$
\begin{gathered}
\succeq=\{(M, C),(C, M),(M, P),(M, L),(C, P),(C, L),(P, L), \\
(M, M),(P, P),(C, C),(L, L)\}
\end{gathered}
$$

$$
X=\{M, C, P, L\}
$$

$$
\begin{gathered}
\succeq=\{(M, C),(C, M),(M, P),(M, L),(C, P),(C, L),(P, L), \\
(M, M),(P, P),(C, C),(L, L)\}
\end{gathered}
$$

$$
X=\{M, C, P, L\}
$$

$$
X=\{M, C, P, L\}
$$

$$
X=\{M, C, P, L\}
$$

$M C P L$

(C) $P L$

Maximizing

A. Sen. Maximization and the Act of Choice. Econometrica, Vol. 65, No. 4, 1997, 745-779.
"The formulation of maximizing behavior in economics has often parallels the modeling of maximization in physics an related disciplines.

Maximizing

A. Sen. Maximization and the Act of Choice. Econometrica, Vol. 65, No. 4, 1997, 745-779.
"The formulation of maximizing behavior in economics has often parallels the modeling of maximization in physics an related disciplines. But maximizing behavior differs from nonvolitional maximization because of the fundamental relevance of the choice act, which has to be placed in a central position in analyzing maximizing behavior.

Maximizing

"The formulation of maximizing behavior in economics has often parallels the modeling of maximization in physics an related disciplines. But maximizing behavior differs from nonvolitional maximization because of the fundamental relevance of the choice act, which has to be placed in a central position in analyzing maximizing behavior. A person's preferences over comprehensive outcomes (including the choice process) have to be distinguished form the conditional preferences over culmination outcomes given the act of choice."

Maximizing

 Mas semen wey Arrow Sacia Choice

You arrive at a garden party and can readily identify the most comfortable chair. You would be delighted if an imperious host were to assign you that chair. However, if the matter is left to your own choice, you may refuse to rush to it.

Maximizing

 Nash
Rational Choice
Theory ParetoHarsany Arrowsocia Choice

You arrive at a garden party and can readily identify the most comfortable chair. You would be delighted if an imperious host were to assign you that chair. However, if the matter is left to your own choice, you may refuse to rush to it. You select a "less preferred" chair.

Maximizing

 uns nemene wemmenomics NashRational Choice
Theory ParetoHarsany Arrow Sacia Choice

You arrive at a garden party and can readily identify the most comfortable chair. You would be delighted if an imperious host were to assign you that chair. However, if the matter is left to your own choice, you may refuse to rush to it. You select a "less preferred" chair. Are you still a maximizer?

You arrive at a garden party and can readily identify the most comfortable chair. You would be delighted if an imperious host were to assign you that chair. However, if the matter is left to your own choice, you may refuse to rush to it. You select a "less preferred" chair. Are you still a maximizer? Quite possibly you are, since your preference ranking for choice behavior may well be defined over "comprehensive outcomes", including choice processes (in particular, who does the choosing) as well as the outcomes at culmination (the distribution of chairs).

