PHIL309P

Methods in Philosophy, Politics and Economics

Eric Pacuit
University of Maryland

Representing Preferences

 wens nemen wem Economics Nash Consorcets paraooRational Choice Theory ParetoHarsany Arrowsocial Cholice

Suppose that \succeq is a relation on X (called the weak preference). Then, define the following:

- Strict preference: $x \succ y$ iff $x \succeq y$ and $y \nsucceq x$
- Indifference: $x \sim y$ iff $x \succeq y$ and $y \succeq x$
- Non-comparability $x N y$ iff $x \nsucceq y$ and $y \nsucceq x$

Representing Preferences

 Nash Rational Choice Theory ParetoHarsany Arrowsocial Rality

Suppose that \succeq is a relation on X (called the weak preference). Then, define the following:

- Strict preference: $x \succ y$ iff $x \succeq y$ and $y \nsucceq x$
- Indifference: $x \sim y$ iff $x \succeq y$ and $y \succeq x$
- Non-comparability $x N y$ iff $x \nsucceq y$ and $y \nsucceq x$

What properties should weak/strict preference, indifference, non-comparability satisfy?

Assumptions / Axioms of Preference Relations enwimiviliowohy
 ArrowSocial Choice TheorySen
 Arrow Social Cholice Rations theorem
 Hausman (ch. 2) identifies four assumptions or axioms that underlie of conception/use of preference relations (ordinal utility theory).

Cole Rational Choice Theory ParetoHarsanyi ArrowSocial Choice TheorySen Arrow Social Choice Rationality Arows therem

Hausman (ch. 2) identifies four assumptions or axioms that underlie of conception/use of preference relations (ordinal utility theory). Two of these are formal constraints on preference relations:

- Transitivity
- Completeness

Hausman (ch. 2) identifies four assumptions or axioms that underlie of conception/use of preference relations (ordinal utility theory). Two of these are formal constraints on preference relations:

- Transitivity
- Completeness

The other two are more substantive and often implicit within economic models:

- Agents choose in accordance with their preferences (choice determination)
- Agents' preferences do not change over different choice contexts (context independence)
 ArrowSocial Choice TheorySen
- What is the relationship between choice and preference?
- Should a decision maker's preference be complete and transitive?
- Are people's preferences complete and transitive?

Preferences and Choices

Preferences are closely related to choices: preferences may cause and to help to explain choices; preferences may be invoked to justify choices, in fortuitous circumstances, we can use preference data to make predictions about choice. But to identify the two would be a mistake.

Preferences and Choices

 wavenceme wein Economics ArrowSocial Choice
Rationality

- We have preferences over vastly more states of affairs than we can ever hope (or dread) to be in the position to choose.

Preferences and Choices

 ArrowSocial Choice TheorySen $\underset{\text { Rrows theorem }}{\text { Rationality }}$- We have preferences over vastly more states of affairs than we can ever hope (or dread) to be in the position to choose.
- What about counter-preferential choice?

Preferences and Choices

 Nash conal Choice Theory ParetoHarsany
Rational Che Arrowsocial Cholice

- We have preferences over vastly more states of affairs than we can ever hope (or dread) to be in the position to choose.
- What about counter-preferential choice?
- Preferences must be stable over a reasonable amount of time in a way that (observed) choices aren't (needed to predict and explain choices).

Game tasamys rinesem Philos Hump
 Nash Conacretet Pasabox ECO Pational Choice Thery Pareto Harsanyi ArrowSocial Choice
Rationality

Revealed Preference Theory

 Nashemences max ECOnOMICS Rational Choice Theory ParetoHarsany RationalityStandard economics focuses on revealed preference because economic data comes in this form. Economic data can-at best-reveal what the agent wants (or has chosen) in a particular situation. Such data do not enable the economist to distinguish between what the agent intended to choose and what he ended up choosing; what he chose and what he ought to have chosen.
(Gul and Pesendorfer, 2008)

Given some choices of a decision maker, in what circumtances can we understand those choices as being made by a rational decision maker?

Sen's α Condition

 wans rame ther

ArrowSocial Choice
Rationality

R : red wine

W : white wine
L: lemonade

Sen's α Condition

 waveneme weormeconomics ArrowSocial Choice
Rationality

R : red wine

W : white wine
L: lemonade

Sen's α Condition

 wish rame hienvems

ArrowSocial Choice
Rationality

R : red wine

W : white wine

Sen's α Condition

 waven rame thery ArrowSocial Choice
Rationality

R : red wine

W : white wine

Sen's α Condition

R : red wine
W : white wine
L: lemonade

R : red wine

W: white wine

Sen's α Condition

R : red wine
W : white wine
L : lemonade
R : red wine
W : white wine

If the world champion is American, then she must be a US champion too.

Sen's β Condition

 ArrowSocial Choice
Rationality

R : red wine

W : white wine

R : red wine

W : white wine

Sen's β Condition

 ArrowSocial Choice
Rationality

R : red wine

W: white wine
L: lemonade

Sen's β Condition

R : red wine

W: white wine
L: lemonade

Sen's β Condition

R : red wine

W: white wine

L: lemonade

If some American is a world champion, then all champions of America must be world champions.

Revealed Preference Theory

 Mas semen weymeronomics Nash Consorcets paraoosRational Choice Theory ParetoHarsany
Arrow Social Choice Theory Sen Arrow Sacia Choice

A decision maker's choices over a set of alternatives X are rationalizable iff there is a (rational) preference relation on X such that the decision maker's choices maximize the preference relation.

Revealed Preference Theory

A decision maker's choices over a set of alternatives X are rationalizable iff there is a (rational) preference relation on X such that the decision maker's choices maximize the preference relation.

Revelation Theorem. A decision maker's choices satisfy Sen's α and β if and only if the decision maker's choices are rationalizable.

Choice Functions

 $\underset{\text { Rrrows theorem }}{\text { Ratity }}$

Suppose X is a set of options. And consider $B \subseteq X$ as a choice problem. A choice function is any function where $C(B) \subseteq B$. B is sometimes called a menu and $C(B)$ the set of "rational" or "desired" choices.

Choice Functions

 Arrow Rationality

Suppose X is a set of options. And consider $B \subseteq X$ as a choice problem. A choice function is any function where $C(B) \subseteq B$. B is sometimes called a menu and $C(B)$ the set of "rational" or "desired" choices.

A relation R on X rationalizes a choice function C if for all B $C(B)=\{x \in B \mid$ for all $y \in B x R y\}$.

Choice Functions

 Mas semen wey ArrowSocial Choice TheorySen

Suppose X is a set of options. And consider $B \subseteq X$ as a choice problem. A choice function is any function where $C(B) \subseteq B$. B is sometimes called a menu and $C(B)$ the set of "rational" or "desired" choices.

A relation R on X rationalizes a choice function C if for all B $C(B)=\{x \in B \mid$ for all $y \in B x R y\}$.

Sen's α : If $x \in C(A)$ and $B \subseteq A$ and $x \in B$ then $x \in C(B)$

Choice Functions

 Mas semen wey Arrow Rationality

Suppose X is a set of options. And consider $B \subseteq X$ as a choice problem. A choice function is any function where $C(B) \subseteq B$. B is sometimes called a menu and $C(B)$ the set of "rational" or "desired" choices.

A relation R on X rationalizes a choice function C if for all B $C(B)=\{x \in B \mid$ for all $y \in B x R y\}$.

Sen's α : If $x \in C(A)$ and $B \subseteq A$ and $x \in B$ then $x \in C(B)$
Sen's β : If $x, y \in C(A), A \subseteq B$ and $y \in C(B)$ then $x \in C(B)$. wash wimemememenomics ArrowSocial Choice TheorySen

- What is the relationship between choice and preference?
- Should a decision maker's preference be complete and transitive?
- Are people's preferences complete and transitive? Neshemenerem Economics
 Arrowsocial Choice
- Acyclic Preferences: Money-pump argument
- Completeness: Incommensurable options

Transitivity

 nes nemen wem Economics Arrow Rationality
Arow steereen

For all $x, y, z \in X$, if $x \succsim y$ and $y \succsim z$, then $x \succsim z$.

Transitivity

 Mas semen wey NashRational Choice Theory ParetoHarsany $\underset{\text { Arows theovem }}{\text { Rationality }}$

For all $x, y, z \in X$, if $x \succsim y$ and $y \succsim z$, then $x \succsim z$.

Indifference: For all $x, y, z \in X$, if $x \sim y$ and $y \sim z$, then $x \sim z$.

- For example, you may be indifferent between a curry with x amount of cayenne pepper, and a curry with x plus one particle of cayenne pepper for any amount x. But you are not indifferent between a curry with no cayenne pepper and one with 1 lbs . of it !

Transitivity

 Mas semen weymenomics Nash condorcets ParasoxRational Choice Theory, ParetoHarsany
ArrowSocial Choice Theory Sen $\underset{\text { Arows theovem }}{\text { Rationality }}$

For all $x, y, z \in X$, if $x \succsim y$ and $y \succsim z$, then $x \succsim z$.

Indifference: For all $x, y, z \in X$, if $x \sim y$ and $y \sim z$, then $x \sim z$.

- For example, you may be indifferent between a curry with x amount of cayenne pepper, and a curry with x plus one particle of cayenne pepper for any amount x. But you are not indifferent between a curry with no cayenne pepper and one with 1 lbs . of it !

Strict preference: For all $x, y, z \in X$, if $x \succ y$ and $y \succ z$, then $x \succ z$.

 Arrow Rationality

Indifference is not transitive: $x_{1} \sim x_{2} \sim \cdots \sim x_{n}$, yet $x_{1} \succ x_{n}$ Mens nemene wem Economics
 Arrow Rationality

Indifference is not transitive: $x_{1} \sim x_{2} \sim \cdots \sim x_{n}$, yet $x_{1} \succ x_{n}$

Cycle: $x_{1} \succ x_{2} \cdots \succ x_{n}$, yet $x_{n} \succ x_{1}$

Cyclic Preferences

I do not think we can clearly say what should convince us that a man at a given time (without change of mind) preferred a to b, b to c and c to a. The reason for our difficulty is that we cannot make good sense of an attribution of preference except against a background of coherent attitudes...My point is that if we are intelligibly to attribute attitudes and beliefs, or usefully to describe motions as behaviour, then we are committed to finding, in the pattern of behaviour, belief, and desire, a large degree of rationality and consistency.
(Davidson 1974: p. 237)
D. Davidson. 'Philosophy as psychology'. In S. C. Brown (ed.), Philosophy of Psychology, 1974. Reprinted in his Essays on Actions and Events. Oxford: OUP 2001: pp. 229244.

Money-Pump Argument

 Mens nemene wo conomics $\underset{\text { Rrrows theorem }}{\text { Ratity }}$

(M)

Money-Pump Argument

 Mens.ime ween Economics $\underset{\text { Rrrows theorem }}{\text { Ratity }}$

$$
(M) \Longrightarrow(C,-1)
$$

Money-Pump Argument

 Arrow Social Choice
Rationality
arrows theocrem

$$
(M) \Longrightarrow(C,-1) \Longrightarrow(P,-2)
$$

Money-Pump Argument

 wans meme thernecronomics Arrowsocial
Rationality
Arrows theocem

$$
(M) \Longrightarrow(C,-1) \Longrightarrow(P,-2) \Longrightarrow(M,-3)
$$

Money-Pump Argument

Politics asas humil tum

 Arrow Social Choice
Rationality
Arrows theocem

$$
(M) \Longrightarrow(C,-1) \Longrightarrow(P,-2) \Longrightarrow(M,-3) \Longrightarrow(C,-4) \Longrightarrow \cdots
$$

Assumptions

 was samene weme Economics ArrowSocial Choice
Rationality

- Ann prefers x to y, written $x \succ y$, iff Ann always takes x when y is the only alternative.
- If $x \succ y$, then $x+\$ w \succ y+\$ w$
- If $x \succ y$, then there is some $v>0$ such that for all u,

$$
x-\$ u \succ y \text { iff } u \leq v
$$

- $x+\$ w \succ x+\$ z$ iff $w>z$.

Note: $x-\$ w$ means that you keep item x and pay $\$ w$

- $A \succ B \succ C \succ A$
- Decision maker is faced with a choice over three days.
- "I will give you C for A, B for C, or A for B at a charge of $\$ 1$ "
- Each day, the decision maker can either accept (a) or reject (r) the offer.

time $-t_{1} \longrightarrow t_{2} \longrightarrow t_{3} \longrightarrow t_{4} \longrightarrow$

time $-t_{1} \longrightarrow t_{2} \longrightarrow t_{3} \longrightarrow t_{4} \longrightarrow$

time $-t_{1} \longrightarrow t_{2} \longrightarrow t_{3} \longrightarrow t_{4} \longrightarrow$

time $-t_{1} \longrightarrow t_{2} \longrightarrow t_{3} \longrightarrow t_{4} \longrightarrow$

Completeness

For all $x, y \in X$, one of the following obtains:

1. the decision maker strictly prefers x over $y(x \succ y)$;
2. the decision maker strictly prefers y over $x(y \succ x)$; or
3. the decision maker is indifferent between x over $y(y \sim x)$

Completeness

 wash Nashonal Choice Theory Pareto Harsanyi Arrow Social ChoiceRationality

To have complete and transitive preferences over such complex alternatives requires more knowledge than anyone is likely to have.
(Hausman, p19)

Completeness

 Mas semen wis Nash Rational Choice Theory ParetoHarsany Arrow RationalityTo have complete and transitive preferences over such complex alternatives requires more knowledge than anyone is likely to have.
(Hausman, p19)
The completeness axiom...is quite strong. Consider, for instance, a choice between money and human welfare. Many authors have argued that it simply makes no sense to compare money with welfare.
(Peterson, p169)

Completeness

To have complete and transitive preferences over such complex alternatives requires more knowledge than anyone is likely to have.
(Hausman, p19)
The completeness axiom...is quite strong. Consider, for instance, a choice between money and human welfare. Many authors have argued that it simply makes no sense to compare money with welfare.
(Peterson, p169)
[O]f all the axioms of utility theory, the completeness axiom is perhaps the most questionable. Like others, it is inaccurate as a description of real life; but unlike them we find it hard to accept even from the normative viewpoint.
(Aumann, 1962)

Context Independence

 Nens shemenem Economics Nash Consor Choice Theory ParetoHarsanyRational Cher Arrowsocial Rality

Context independence is a troublesome axiom, because some kinds of context dependence are common, and some kinds appear to be reasonable.

Context Independence

Context independence is a troublesome axiom, because some kinds of context dependence are common, and some kinds appear to be reasonable. One way to reconcile the existence of apparently context-dependent preferences...is to take the description of alternatives to include "everything that matters to the agent"
(Hausman, p16)

Context Independence

A. Sen. Maximization and the Act of Choice. Econometrica, Vol. 65, No. 4, 1997, 745-779.
"The formulation of maximizing behavior in economics has often parallels the modeling of maximization in physics an related disciplines.

Context Independence

A. Sen. Maximization and the Act of Choice. Econometrica, Vol. 65, No. 4, 1997, 745-779.
"The formulation of maximizing behavior in economics has often parallels the modeling of maximization in physics an related disciplines. But maximizing behavior differs from nonvolitional maximization because of the fundamental relevance of the choice act, which has to be placed in a central position in analyzing maximizing behavior.
"The formulation of maximizing behavior in economics has often parallels the modeling of maximization in physics an related disciplines. But maximizing behavior differs from nonvolitional maximization because of the fundamental relevance of the choice act, which has to be placed in a central position in analyzing maximizing behavior. A person's preferences over comprehensive outcomes (including the choice process) have to be distinguished form the conditional preferences over culmination outcomes given the act of choice."

Context Independence

 Mas semen wey Nasheonal Choice Theory ParetoHarsanyRational Cho Arrow Rationality

You arrive at a garden party and can readily identify the most comfortable chair. You would be delighted if an imperious host were to assign you that chair. However, if the matter is left to your own choice, you may refuse to rush to it.

Context Independence

 Mas seme temy conomics Nasheonal Choice Theory ParetoHarsanyRational $\underset{\text { Rrrows theorem }}{\text { Ratity }}$

You arrive at a garden party and can readily identify the most comfortable chair. You would be delighted if an imperious host were to assign you that chair. However, if the matter is left to your own choice, you may refuse to rush to it. You select a "less preferred" chair.

Context Independence

 uns nemene wein NashRational Choice Theory ParetoHarsany Arrowsationality

You arrive at a garden party and can readily identify the most comfortable chair. You would be delighted if an imperious host were to assign you that chair. However, if the matter is left to your own choice, you may refuse to rush to it. You select a "less preferred" chair. Are you still a maximizer?

You arrive at a garden party and can readily identify the most comfortable chair. You would be delighted if an imperious host were to assign you that chair. However, if the matter is left to your own choice, you may refuse to rush to it. You select a "less preferred" chair. Are you still a maximizer? Quite possibly you are, since your preference ranking for choice behavior may well be defined over "comprehensive outcomes", including choice processes (in particular, who does the choosing) as well as the outcomes at culmination (the distribution of chairs).

You arrive at a garden party and can readily identify the most comfortable chair. You would be delighted if an imperious host were to assign you that chair. However, if the matter is left to your own choice, you may refuse to rush to it. You select a "less preferred" chair. Are you still a maximizer? Quite possibly you are, since your preference ranking for choice behavior may well be defined over "comprehensive outcomes", including choice processes (in particular, who does the choosing) as well as the outcomes at culmination (the distribution of chairs). (Sen, pg. 747)

Should we see this as a violation of choice determination, or as a violation of context independence, or as a misdescription of the choice situation?

Rather than trying to provide instrumental or pragmatic justifications for the axioms of ordinal utility, it is better...to see them as constitutive of our conception of a fully rational agent....those disposed to blatantly ignore transitivity are unintelligible to us: we can't understand their pattern of actions as sensible.
[Gaus], pg. 39

Ordinal Utility Theory

Utility Function

 mass hame comerests mago ECOMOMICS ArrowSocial Choice
Rationality

A utility function on a set X is a function $u: X \rightarrow \mathbb{R}$

Utility Function

A utility function on a set X is a function $u: X \rightarrow \mathbb{R}$

A preference ordering is represented by a utility function iff x is (weakly) preferred to y provided $u(x) \geq u(y)$

Utility Function

 wans rame ther Nash Rational Choice Theory ParetoHarsany Arrow Social ChoiceRationality

A utility function on a set X is a function $u: X \rightarrow \mathbb{R}$

A preference ordering is represented by a utility function iff x is (weakly) preferred to y provided $u(x) \geq u(y)$

What properties does such a preference ordering have?

Ordinal Utility Theory

 uns nemene wo conomics Arrowsocia Choice

Fact. Suppose that X is finite and \succeq is a complete and transitive ordering over X, then there is a utility function $u: X \rightarrow \mathfrak{R}$ that represents \succeq (i.e., $x \succeq y$ iff $u(x) \geq u(y)$)

Ordinal Utility Theory

 Mas seme temo conomics Nash Consorcets parasooxRational Choice Theory ParetoHarsany
Arrow Social Choice Theory Sen $\underset{\text { Rrrows theorem }}{\text { Ratity }}$

Fact. Suppose that X is finite and \succeq is a complete and transitive ordering over X, then there is a utility function $u: X \rightarrow \mathfrak{R}$ that represents \succeq (i.e., $x \succeq y$ iff $u(x) \geq u(y)$)

Utility is defined in terms of preference (so it is an error to say that the agent prefers x to y because she assigns a higher utility to x than to y).

Important

All three of the utility functions represent the preference $x \succ y \succ z$

Item	u_{1}	u_{2}	u_{3}
x	3	10	1000
y	2	5	99
z	1	0	1

$x \succ y \succ z$ is represented by both $(3,2,1)$ and $(1000,999,1)$, so one cannot say that y is "closer" to x than to z.

