PHIL309P

Methods in Philosophy, Politics and Economics

Eric Pacuit
University of Maryland

Ordinal Utility Theory

Utility Function

 Nasational Choice Theory, paretortarssny Arrowsocial Cholice

A utility function on a set X is a function $u: X \rightarrow \mathbb{R}$

Utility Function

 Naghtoman chioce Thicar Arrowsocial Cholice

A utility function on a set X is a function $u: X \rightarrow \mathbb{R}$

A preference ordering is represented by a utility function iff x is (weakly) preferred to y provided $u(x) \geq u(y)$

Utility Function

 wans rame ther Nash Rational Choice 'Theory ParetoHarsany Arrow Social ChoiceA utility function on a set X is a function $u: X \rightarrow \mathbb{R}$

A preference ordering is represented by a utility function iff x is (weakly) preferred to y provided $u(x) \geq u(y)$

What properties does such a preference ordering have?

Ordinal Utility Theory

 uns nemene wo conomics Arrowsocia Choice

Fact. Suppose that X is finite and \succeq is a complete and transitive ordering over X, then there is a utility function $u: X \rightarrow \mathfrak{R}$ that represents \succeq (i.e., $x \succeq y$ iff $u(x) \geq u(y)$)

Ordinal Utility Theory

 Mas seme temo conomics Nash Consorcets parasooxRational Choice Theory ParetoHarsany
Arrow Social Choice Theory Sen Arrowsocia Choice

Fact. Suppose that X is finite and \succeq is a complete and transitive ordering over X, then there is a utility function $u: X \rightarrow \mathfrak{R}$ that represents \succeq (i.e., $x \succeq y$ iff $u(x) \geq u(y)$)

Utility is defined in terms of preference (so it is an error to say that the agent prefers x to y because she assigns a higher utility to x than to y).

Important

All three of the utility functions represent the preference $x \succ y \succ z$

Item	u_{1}	u_{2}	u_{3}
x	3	10	1000
y	2	5	99
z	1	0	1

$x \succ y \succ z$ is represented by both $(3,2,1)$ and $(1000,999,1)$, so one cannot say that y is "closer" to x than to z.

$$
X=\{M, C, P, L\}
$$

$$
X=\{M, C, P, L\}
$$

$M \subset P L$

$M P L$

C P L
$M \subset P$
$M \subset L$

M P

M L

C P

C L

L

$$
X=\{M, C, P, L\}
$$

$M \subset P L$

$M P L$

$\boldsymbol{C}^{P L}$

M C P
$M \subset L$

$$
X=\{M, C, P, L\}
$$

$$
\begin{gathered}
\succeq=\{(M, C),(C, M),(M, P),(M, L),(C, P),(C, L),(P, L), \\
(M, M),(P, P),(C, C),(L, L)\}
\end{gathered}
$$

$$
X=\{M, C, P, L\}
$$

$$
\begin{gathered}
\succeq=\{(M, C),(C, M),(M, P),(M, L),(C, P),(C, L),(P, L), \\
(M, M),(P, P),(C, C),(L, L)\}
\end{gathered}
$$

$$
X=\{M, C, P, L\}
$$

$$
\begin{gathered}
\succeq=\{(M, C),(C, M),(M, P),(M, L),(C, P),(C, L),(P, L), \\
(M, M),(P, P),(C, C),(L, L)\}
\end{gathered}
$$

$$
X=\{M, C, P, L\}
$$

$$
\begin{gathered}
\succeq=\{(M, C),(C, M),(M, P),(M, L),(C, P),(C, L),(P, L), \\
(M, M),(P, P),(C, C),(L, L)\}
\end{gathered}
$$

$$
X=\{M, C, P, L\}
$$

$$
X=\{M, C, P, L\}
$$

$$
X=\{M, C, P, L\}
$$

$M C P L$

(C) $P L$

What is utility?

 was same wein Economics Arrow Rationality

- usefulness
- from Principle of Utility: an object's "tendency to produce benefit, advantage, pleasure, good, or happiness" (Broome, p19) for all people
- a person's personal, subjective good
- "the value of a function that represents a person's preferences" (Reiss, p21)

Economists primarily use the last sense of utility (as will we), which is not problematic, however, "[i]f...you use 'utility' to stand for a representation of a person's preferences, and at the same time for the person's good, you cannot even express the question [of whether or not persons always act so as to maximize their utility]. You will say: by definition, what a person prefers has more utility for her, so how can it fail to have more utility for her? The ambiguity is intolerable." (Reiss, p. 21)

Individual decision-making (against nature)

States: it rains; it does not rain
Outcomes: encumbered, dry; wet; free, dry
Actions: take umbrella; leave umbrella

encumbered, dry	encumbered, dry
wet	free, dry

States: it rains; it does not rain
Outcomes: encumbered, dry; wet; free, dry
Actions: take umbrella; leave umbrella

States: it rains; it does not rain
Outcomes: encumbered, dry; wet; free, dry
Actions: take umbrella; leave umbrella

States: it rains; it does not rain
Outcomes: encumbered, dry; wet; free, dry
Actions: take umbrella; leave umbrella

encumbered, dry	encumbered, dry
wet	free, dry

States: it rains; it does not rain
Outcomes: encumbered, dry; wet; free, dry
Actions: take umbrella; leave umbrella

States: it rains; it does not rain
Outcomes: encumbered, dry; wet; free, dry
Actions: take umbrella; leave umbrella

Decision Problems

 Mess Giamene cemseryome NonOMICS Nashtuonal Choice Theory peretotharsany Arrowsocial ChoiceRationality
Arrows theorem

In many circumstances the decision maker doesn't get to choose outcomes directly, but rather chooses an instrument that affects what outcome actually occurs.

Decision Problems

 Nashleanace chise ther

ArrowSocial Choice TheorySen $\underset{\text { arrows theorem }}{\text { Rationa }}$

In many circumstances the decision maker doesn't get to choose outcomes directly, but rather chooses an instrument that affects what outcome actually occurs.

Choice under

- certainty: highly confident about the relationship between actions and outcomes
- risk: clear sense of possibilities and their likelihoods
- uncertainty: the relationship between actions and outcomes is so imprecise that it is not possible to assign likelihoods

Lotteries

 Mas semen wisw Arrow Rationality

Suppose that X is a set of outcomes.

A (simple) lottery over X is denoted $\left[x_{1}: p_{1}, x_{2}: p_{2}, \ldots, x_{n}: p_{n}\right]$ where for $i=1, \ldots, n, x_{i} \in X$ and $p_{i} \in[0,1]$, and $\sum_{i} p_{i}=1$.

Let \mathcal{L} be the set of (simple) lotteries over X. We identify elements $x \in X$ with the lottery $[x: 1]$.

Lotteries

Arrow Social Choice TheorySen $\underset{\substack{\text { Rrows theorem }}}{\substack{\text { Rity } \\ \text { and }}}$

Suppose that $X=\left\{x_{1}, \ldots, x_{n}\right\}$ is a set of outcomes. A lottery over X is a tuple $\left[p_{1}: x_{1}, \ldots, p_{n}: x_{n}\right]$ where $\sum_{i} p_{i}=1$.

Lotteries

Suppose that $X=\left\{x_{1}, \ldots, x_{n}\right\}$ is a set of outcomes. A lottery over X is a tuple $\left[p_{1}: x_{1}, \ldots, p_{n}: x_{n}\right]$ where $\sum_{i} p_{i}=1$.

Let \mathcal{L} be the set of lotteries.

Expected Value of a Lottery

Suppose that the outcomes of a lottery are monetary values. So, $L=\left[x_{1}: p_{1}, x_{2}: p_{2}, \ldots, x_{n}: p_{n}\right]$, where each x_{i} is an amount of money. Then,

$$
E V(L)=\sum_{i} p_{i} \times x_{i}
$$

Expected Value of a Lottery

 Rational Choice Theory ParetoHarsany
ArrowSocial Choice TheorySen Arrow Rationality

Suppose that the outcomes of a lottery are monetary values. So, $L=\left[x_{1}: p_{1}, x_{2}: p_{2}, \ldots, x_{n}: p_{n}\right]$, where each x_{i} is an amount of money. Then,

$$
E V(L)=\sum_{i} p_{i} \times x_{i}
$$

E.g., if $L=[\$ 100: 0.55, \$ 50: 0.25, \$ 0: 0.20]$, then

$$
E V(L)=0.55 * 100+0.25 * 50+0.2 * 0=80
$$

You are given a choice between two lotteries L_{1} and L_{2}. The outcome of the lotteries is determined by flipping a fair coin. The payoff for the two lotteries are given in the following table:

	Heads	Tails
L_{1}	$\$ 1 \mathrm{M}$	$\$ 1 \mathrm{M}$
L_{2}	$\$ 3 \mathrm{M}$	$\$ 0$

Which of the two lotteries would you choose?

1. L_{1}
2. L_{2}
3. I am indifferent between the two lotteries

Comments on Expected Utility

 Wheneme hrome Economics Nash Condorcet's Paradox ECO COM ParetoHarsanyiRational Choice Theory
ArrowSocial Choice TheorySen Arrowsocial Choice

Options	$1 / 2$	$1 / 2$
L_{1}	$1 M$	$1 M$
L_{2}	$3 M$	$0 M$

Comments on Expected Utility

 mass Game cheoryours Arrow Rationality

Options	$1 / 2$	$1 / 2$
L_{1}	$1 M$	$1 M$
L_{2}	$3 M$	$0 M$

$$
\begin{aligned}
& \operatorname{EVM}\left(L_{1}\right)=1 / 2 \cdot 1+1 / 2 \cdot 1=1 \\
& \operatorname{EVM}\left(L_{1}\right)=1 / 2 \cdot 3+1 / 2 \cdot 0=1.5
\end{aligned}
$$

Comments on Expected Utility

 Nash conarects faybate Raco Arrow Rationality

Options	$1 / 2$	$1 / 2$
L_{1}	$1 M$	$1 M$
L_{2}	$3 M$	$0 M$

$\operatorname{EVM}\left(L_{1}\right)=1 / 2 \cdot 1+1 / 2 \cdot 1=1$
$\operatorname{EVM}\left(L_{1}\right)=1 / 2 \cdot 3+1 / 2 \cdot 0=1.5$
What numbers should we use in place of monetary value?

Comments on Expected Utility

 Mas seme temo conomics $\underset{\text { Rrrows theocem }}{\text { Ratity }}$

Options	$1 / 2$	$1 / 2$
L_{1}	$1 M$	$1 M$
L_{2}	$3 M$	$0 M$

$$
\begin{aligned}
& \operatorname{EVM}\left(L_{1}\right)=1 / 2 \cdot 1+1 / 2 \cdot 1=1 \\
& \operatorname{EVM}\left(L_{1}\right)=1 / 2 \cdot 3+1 / 2 \cdot 0=1.5
\end{aligned}
$$

What numbers should we use in place of monetary value? (moral) value? personal utility?

Risk neutral

Risk neutral Risk seeking

Risk neutral Risk seeking Risk averse

