It is hard to think of any minimally reasonable decision rule that totally
ignores how much utility an act brings about. However, the concept of
utility has many different technical meanings, and it is important to
keep these different meanings apart. In Chapter 2 we distinguished
three fundamentally different kinds of measurement scales. All scales
are numerical, i.e. utility is represented by real numbers, but the infor-
mation conveyed by the numbers depends on which type of scale is

being used.

1. Ordinal scales (10 is better than 5”)
2. Interval scales  (“the difference between 10 and 5 equals that between 5 and 0”)

3. Ratio scales (“10 is twice as valuable as 57)

In ordinal scales, better objects are assigned higher numbers.
However, the numbers do not reflect any information about differences
or ratios between objects. If we wish to be entitled to say, for instance,
that the difference between ten and five units is exactly as great as the
difference between five and zero units, then utility has to be measured
on an interval scale. Furthermore, to be entitled to say that ten units of
utility is twice as much as five, utility must be measured on a ratio
scale.

Arguably, utility cannot be directly revealed by introspection. We could
of course ask people to estimate their utilities, but answers gathered by this
method would most certainly be arbitrary. Some more sophisticated
method is needed. So how on earth is it possible to assign precise numbers
to outcomes and acts that accurately reflect their value? And how can this
process be a scientific one, rather than a process that is merely arbitrary and
at best based on educated guesses?
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5.1 How to Construct an Ordinal Scale

Let us first show how to construct an ordinal utility scale. To make the
discussion concrete, imagine that you havea collection of crime novels, and
that you wish to assign ordinal utilities to each book in your collection.
To avoid a number of purely mathematical obstacles we assume that the
number of books in the collection is finite. Now, it would by no means be
unreasonable to ask you to answer the following question: “Which novel do
you like the most, The Hound of the Baskervilles by Arthur Conan Doyle or Death
on the Nile by Agatha Christie?” Suppose you answer Death on the Nile. This
preference can be represented by the symbol > in the following way.

(1) Death on the Nile > The Hound of the Baskervilles

Proposition (1) is true if and only if Death on the Nile is preferred over
The Hound of the Baskervilles. This may sound trivial, but what does this mean,
more precisely? How do we check if you do in fact prefer Death on the Nile to
The Hound of the Baskervilles? Economists argue that there is an easy answer to
this question: Your preferences are revealed in your choice behavior.
Therefore, you prefer x to y if and only if you choose x over y whenever
given the opportunity. The main advantage of this proposal is that it links
preference to directly observable behavior, which entails that the concept
of preference (and hence utility) becomes firmly connected with empirical
observations. However, it is of course easy to question this alleged connec-
tion between choice and preference. Perhaps you actually preferred x overy,
but chose y by mistake, or did not know that y was available. Furthermore,
using the behaviorist interpretation of preferences it becomes difficult to
distinguish between strict preference (“strictly better than”) and indiffer-
ence (“equally good as”). The observation that you repeatedly choose x over
y is equally compatible with the hypothesis that you strictly prefer x over
y as with the hypothesis that you are indifferent between the two. However,
for the sake of the argument we assume that the decision maker is able, in
one way or another, to correctly state pairwise preferences between any
pair of objects.

Indifference will be represented by the symbol ~. For future reference we
also introduce the symbol >, which represents the relation “at least as
preferred as.” We now have three different preference relations, >, ~ and
». Each of them can easily be defined in terms of the others.
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(2a) x »=yifandonlyifx >yorx~y
(2b) x~yifandonlyifx > yandy = x \
(2c) x»>yifandonlyifx > yandnotx~y

Let us return to the example with crime novels. The entire collection of
novels can be thought of as a set B = {x,y, z, . ..}, where book x is Death on tH(\e
Nile and book y is The Hound of the Baskervilles, and so on. Since you were able
to state a preference between Death on the Nile and The Hound of the Baskervilles
it seems reasonable to expect that you are able to compare any two books in
your collection. That is, for every x and y in B, it should hold that:

Completeness x>yorx~yory > x.

Completeness rules out the possibility that you fail to muster any pre-
ference between some pairs of books. This may sound trivial, but it is in fact
arather strong assumption. To see this, consider a completely different kind
of choice: Do you prefer to be satisfied but stupid like a pig, or dissatisfied
but clever as Socrates? A natural reaction is to say that the two alternatives
are incomparable. (J.S. Mill famously had a different opinion; he preferred
the latter to the former.) The possibility of incomparability is not consistent
with the completeness axiom.

We moreover assume that strict preferences are asymmetric and negatively

transitive.
Asymmetry If x >y, then it is false that y > x.
Transitivity Ifx~yandy > z thenx > z.

Negative transitivity Ifit is false that x > y and false that y > z, then it is false
that x > z.

From asymmetry we can conclude that if Death on the Nile is preferred over
The Hound of the Baskervilles, then it is not the case that The Hound of the
Baskervilles is preferred over Death on the Nile. Transitivity is a slightly more
complex property: if Death on the Nile is preferred over The Hound of the
Baskervilles and The Hound of the Baskervilles is preferred over Sparkling
Cyanide, then Death on the Nile is preferred over Sparkling Cyanide. This
assumption has been seriously questioned in the literature, for reasons we
will return to in Chapter 8. Here, we shall accept it without further ado.
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Negative transitivity is a slightly stronger version of transitivity. The
reason why we assume negative transitivity rather than just transitivity is
because we need it. Negative transitivity implies that indifference is transi-
tive (if x ~y and y ~ z, then x ~ z), but this does not follow from the assumption
that strict preference is transitive. (I leave it to the reader to verify this claim.)
Furthermore, it can also be shown that negative transitivity, but not transi-
tivity, entails that x > z if and only if, forally inB,x > yory > z.

Let us now return to the problem of constructing an ordinal utility scale.
What assumptions must we make about preference relations for this to be
possible? That is, what must we assume about preferences for there to exist
a function u that assigns real numbers to all books in your collection such
that better books are assigned higher numbers, i.e.

(3) x> yifand only if u(x) > u(y)?

Note that there would not, for instance, exist a utility function u if the
strict preference relation is cyclic, i.e. if x = y and y > z and z > x. There are
simply no real numbers that can represent this ordering such that better

Box 5.1 An ordinal utility scale

Theorem 5.1 Let B be a finite set of objects. Then, > is complete,
asymmetric and negatively transitive in B if and only if there exists
a real-valued function u such that condition (3) on this page.

Proof We have to prove both directions of the biconditional. Let us
first show that if there exists a function u such that (3) holds, then the
preference relation > is complete, asymmetric and negatively transi-
tive. Completeness follows directly from the corresponding property
of the real numbers: Since it is always true that u(x) > u(y) or u(x) = u(y)
or u(y) > u(x), it follows that x > y or x ~y or y > x. Furthermore, note
that if u(x) > u(y), then it is not the case that u(y) > u(x); this is sufficient
for seeing that > is asymmetric. Finally, negative transitivity follows
from the observation that if u(x) > u(y) and u(y) > u(z), then u(x) > u(z).
(Since x > y is not compatible with y > x, given completeness.)

Next, we wish to show that if the preference relation > is com-
plete, asymmetric and transitive, then there exists a function u such

that (3) holds. We do this by outlining one of the many possible ways
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in which u can be constructed. Before we start, we label the elements
in B with index numbers. This can be done by just adding indices to
the elements of B, i.e. B = {x4, y2, z3 ...}. The next step is to define the
set of elements that are worse than an arbitrarily chosen element x. Let
W (x) = {y: x > y}, i.e. y is an element in W that is worsg than x.
Furthermore, let N(x) be the set of index numbers correspondihg toW,
ie. N(x) = {n: x, € W(x,))}. Y

The utility function u can now be defined as follows:

ux) = )" -

All that remains to do is to verify that u satisfies (3),i.e. thatx > y if *’
and only if u(x) > u(y). From left to right: Suppose that x > y. Then, since
> is transitive and asymmetric, W(x) must contain at least one ele-
ment that is not in W{(y). Hence, N(x) must also contain at least one
element that is not in N(y). By stipulation we now have: '

1\" 1\" 1\" 1\"
=30 =306 20 > 2E) -w
neN(x) neN(y) neN(x)—N(y) neN(y) "

From right to left: Suppose that u(x) > u(y). Completeness guar-
antees that x > y or x ~ y or y > x. The last alternative is impossible,
since it has already been shown above that if y > x then u(y) > u(x),
which is a contradiction. For the same reason, we can rule out x ~ y,
because u(x) = u(y) is also inconsistent with u(x) > u(y). Hence, we can
conclude that x > y. O

neN(x) s

objects are represented by higher numbers. However, it can be shown that
such numbers do exist, i.e. that there is a real-valued function u such that (3)
holds true, if and only if the relation > is complete, asymmetric and nega-
tively transitive. (A proofis given in Box 5.1.) This means that we have solved
the problem we set out to solve - we now know under what conditions it is
possible to construct an ordinal utility scale, and how to do it!

5.2 Von Neumann and Morgenstern’s Interval Scale

In many cases ordinal utility scales do not provide the information required
for analyzing a decision problem. The expected utility principle as well as
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several other decision rules presuppose that utility is measured on an interval
scale. In the second edition of the Theory of Games and Economic Behavior,
published in 1947, John von Neumann and Oskar Morgenstern proposed
a theory that has become the default strategy for constructing interval scales,
with which other theories of utility must compete. This is partly because von
Neumann and Morgenstern’s theory does not merely explain what utility is
and how it can be measured; their theory also offers an indirect but elegant
justification of the principle of maximizing expected utility.

The key idea in von Neumann and Morgenstern’s theory is to ask the
decision maker to state a set of preferences over risky acts. These acts are
called lotteries, because the outcome of each act is assumed to be ran-
domly determined by events (with known probabilities) that cannot be
controlled by the decision maker. The set of preferences over lotteries is
then used for calculating utilities by reasoning “backwards.” To illustrate
this point, we will consider a simple example. Note that the example
only gives a partial and preliminary illustration of von Neumann and
Morgenstern’s theory.

Suppose that Mr. Simpson has decided to go to a rock concert, and that
there are three bands playing in Springfield tonight. Mr. Simpson thinks
that band A is better than band B, which is better than band C. For some
reason, never mind why, it is not possible to get a ticket that allows him to
watch band A or C with 100% certainty. However, he is offered a tickét that
gives him a 70% chance of watching band A and a 30% chance of watching
band C. The only other ticket available allows him to watch band B with
100% certainty. For simplicity, we shall refer to both options as lotteries,
even though only the first involves a genuine element of chance. After
considering his two options carefully, Mr. Simpson declares them to be
equally attractive. That is, to watch band B with 100% certainty is, for
Mr. Simpson, exactly as valuable as a 70% chance of watching band A and
a 30% chance of watching band C. Now suppose we happen to know that
Mr. Simpson always acts in accordance with the principle of maximizing
expected utility. By reasoning backwards, we can then figure out what his
utility for rock bands is, i.e. we can determine the values of u(A), u(B) and
u(C). Consider the following equation, which formalizes the hypothesis that
Mr. Simpson accepts the expected utility principle and thinks that the two
options are equally desirable:

E
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0.7 - u(A) + 0.3 - u(C) = 1.0 - u(B) - A)

Equation (1) has three unknown variables, so it has infinitely many
solutions. However, if utility is measured on an interval scale, Equatibn (1)
nevertheless provides all the information we need, since the unit anq

We may therefore stipulate that the utility of the best outcome is 100 (that
By inserting these arbitrarily chosen end points into Equation (1), we get the
following equation.

0.7-100+0.3-0 =1.0-u(B) (2)

Equation (2) has only one unknown variable, and it can be easily solved:
As you can see, u(B) = 70. Hence, we now know the following.

- u(A) =100
u(B) =70
u(C) =0

_ Now suppose that Mr. Simpson is told that another rock band will play in
:" Springfield tonight, namely band D, which he thinks is slightly better than
* B.What would Mr. Simpson’s numerical utility of watching band D be? For
- some reason, never mind why, Mr. Simpson is offered a ticket that entitles
: - him to watch band D with probability p and band C with probability 1 — p,

where p is a variable that he is free to fix himself. To figure out what his
utility for D is, he asks himself the following question: “Which value of
~ p would make me feel totally indifferent between watching band B with
._ ' - 100% certainty, and D with probability p and C with probability 1 — p?” After
- considering his preferences carefully, Mr. Simpson finds that he is indiffer-
‘ent between a 100% chance of watching band B and a 78% chance of watch-
~ ing D combined with a 22% chance of watching C. Since we know that
- 4(B) = 70 and u(C) = 0, it follows that:

. 1.0.70=0.78 -u(D) +0.22- 0 (3)

By solving this equation, we find that u (D) = 70/0.78 ~ 89.7. Of course,
';Iﬁhe same method could be applied for determining the utility of every type
‘.6fgood. Forinstance, if Mr. Simpson is indifferent between a 100% chance of
WatChing rock band B and a 95% chance of winning a holiday in Malibu

end points of an interval scale can be chosen arbitrarily. (See Chapter 2‘.)'

is, u(A) = 100), and that the utility of the worst outcome is 0 (that is, u{(C) =0). -
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combined with a 5% chance of watching band C, then his utility of a holiday
in Malibu is 70/0.95 = 73.7.

An obvious problem with this preliminary version of von Neumann
and Morgenstern's theory is that it presupposes that the decision maker
chooses in accordance with the principle of maximizing expected utility.
We seem to have no reason for thinking that the decision maker will
apply the expected utility principle, rather than some other principle,
for evaluating lotteries. This very strong assumption needs to be justified
in one way or another. Von Neumann and Morgenstern proposed
a clever way of doing that. Instead of directly assuming that the decision
maker will always apply the expected utility principle (as we did above),
they proposed a set of constraints on rational preferences which imply that
the decision maker behaves as if he or she is making decisions by
calculating expected utilities. More precisely put, von Neumann and
Morgenstern were able to prove that if a decision maker’s preferences
over the sort of lotteries exemplified above satisfy a number of formal
constraints, or axioms, then the decision maker’s choices can be repre-
sented by a function that assigns utilities to lotteries (including lotteries
comprising no uncertainty), such that one lottery is preferred to another
just in case the expected utility of the first lottery exceeds that of the
latter. In the remaining paragraphs of this section we shall spell out the
technical assumptions underlying von Neumann and Morgenstern's the- :
ory in more detail.

We assume that Z is a finite set of basic prizes, which may include
a holiday in Malibu, a ticket to a rock concert, as well as almost any kind
of good. That is, the elements of Z are the kind of things that typically
constitute outcomes of risky decisions. We furthermore assume that L is
the set of lotteries that can be constructed from Z by applying the following
inductive definition. (Note that even a 100% chance of winning a basic prize
counts as a “lottery” in this theory.)

1. Every basic prize in Z is a lottery.

2. If A and B are lotteries, then so is the prospect of getting A with prob-
ability p and B with probability 1 — p, forevery 0 <p < 1.

3. Nothing else is a lottery.

For simplicity, the formula ApB will be used as an abbreviation for
a lottery in which one wins A with probability p and B with probability
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1 — p. Thus, the second condition stated above could equally well be
formulated as follows: If A and B are lotteries, then so is ApB, for every
0 < p < 1. Furthermore, since ApB is a lottery, it follows that also Cg(ApB),
0 < g < 1isalottery, given that g is a probability and C is a lottery. And so
on and so forth. -

The next assumption introduced by von Neumann and Morgenstern
holds that the decision maker is able to state pairwise prefereﬁtes
between lotteries. The formula A > B means that lottery A is preferfed
over lottery B, and A ~ B means that lottery A and B are equally preferred.
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Now, it should be obvious that preferences have to satisfy some structural .=

conditions. For example, it would make little sense to prefer Ato BandBto

A; that is, for a rational decision maker it cannot hold true that A > B and
B > A. This property of rational preferences is usually referred to as the
asymmetry condition. What further conditions could we impose upon
rational preferences? Von Neumann and Morgenstern, as well as many
other decision theorists, take completeness and transitivity to be two
intuitively reasonable conditions. We recognize them from the discussion
of ordinal utility. However, note that the objects over which one is sup-
posed to state preferences are now a set of lotteries, not a set of certain
outcomes.

VNM 1 (Completeness) A>~BorA~BorB>A
VNM 2 (Transitivity) IfA>BandB > C, thenA >~ C

To state the next axiom, let p be some probability strictly greater
than zero.

VvNM 3 (Independence) A > Bifand only if ApC > BpC

The independence axiom is best illustrated by considering an example.
Imagine that you are offered a choice between lotteries A and B in Table 5.1.
Each ticket is equally likely to be drawn, so the probability of winning, say,
$5 million if lottery B is chosen is 10/11.

Suppose that you prefer lottery A to lottery B. Then, according to the
independence axiom it must also hold that you prefer the first lottery to
the second in the situation illustrated in Table 5.2. That is, you must prefer
ApC to BpC.
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Table 5.1
Ticket no. 1 Ticket no. 2-11

A $1m $1m
B $0 $5m
Table 5.2

Ticket no. 1 Ticket no. 2-11 Ticket no. 12-100
ApC  $1m $1m $1m
BpC 50 $5m $1m
Table 5.3

Ticket no. 1 Ticket no. 2-11 Ticket no. 12-100
ApC  $1m $1m $0
BpC  §0 $5m 30

The strongest objection to the independence axiom is that it entails
the Allais paradox, discussed in Chapter 4. To see this, note that the inde-
pendence axiom is supposed to hold no matter what C is. Thus, if you prefer
A to B in the first situation you must also prefer ApC to BpC in the situation
illustrated in Table 5.3. However, in this case it seems entirely reasonable to
hold the opposite preference, that is, to prefer BpC to ApC. This is because
there is no longer any alternative that gives you a million for sure. Hence, it
might be worth taking a slightly larger risk and hope to get $5 million
instead.

However, despite the worries raised above we shall nevertheless suppose
that the independence axiom can be defended in some way or another. This
is because we need it for formulating the utility theory proposed by von
Neumann and Morgenstern.

The fourth and last axiom proposed by von Neumann and Morgenstern is
a continuity condition. Let p and g be some probabilities strictly greater than
0 and strictly smaller than 1.

vNM 4 (Continuity) If A = B > C then there exist some p and q such that
ApC > B = AqC
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The following example explains the assumption articulated by the con-
tinuity axiom. Suppose that A is a prize worth $10 m, Ba prize worth $9 m
and C a prize worth $0. Now, according to the continuity axiom, if you
prefer $10 m to $9 m and $9 m to $0, then there must be some probability p,
which may be very close to 1, such that you prefer $10 m with probability
p and $0 with probability 1 — p over $9 m for sure. Furthermore, there must
be some probability g such that you prefer $9 m for sure over $10 m with
probability g and $0 m with probability 1 — q.Of course some people might
feel tempted to deny that these probabilities exist: perhaps it could be
argued that there is no probability p simply because $9 m for sure is always
better than a lottery yielding either $10 m or $0, no matter how small the
probability of getting $0 is. The standard reply to this domplaint is that
p might lie very close to 1.

In addition to the four axioms stated above, we also need to make an
additional technical assumption, saying that the probability calculus
applies to lotteries. (In some presentations this condition is listed as
a separate axiom.) The essence of this assumption is that it does not matter
ifyou are awarded prize A if you first roll a die and then roll it again, or make
a double roll, provided that you only get the prize if you get two sixes. Put
into mathematical vocabulary, compound lotteries can always be reduced
to simple ones, involving only basic prizes. Hence, if pqr and s are prob-
abilities such that pg + (1 — p)r = 5, then (AgB)p(ArB) ~ AsB.

The axioms stated above imply the following theoretn, which is
frequently referred to as von Neumann and Morgenstern’s theorem.
It consists of two parts, a representation part and a uniqueness part.

Theorem 5.2 The preference relation > satisfies VYNM 1-4 if and only if
there exists a function u that takes a lottery as its argument and returns
areal number between 0 and 1, which has the following properties:

(1) A > Bif and only if u(A) > u(B).

(2) u(ApB) = pu(A) + (1 — pu(B).

(3) For every other function v’ satisfying (1) and (2), there are numbers ¢ > 0
andd such thatu’ =c-u+d.

Property (1) articulates the fact that the utility function u assigns higher
utility numbers to better lotteries. From (1) it follows that A ~ B if and only if
UA) = u(B). Here is a proof: To prove the implication from left to right,
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suppose for reductio that A ~ B and that u(A) > u(B). It then follows from
(1) that A > B, which contradicts the completeness axiom. Moreover,
if A ~ B and u(B) > u(4) it follows that B > A, which also contradicts
the completeness axiom. Hence, if A ~ B then it has to be the case that
u(A) = u(B). Furthermore, to prove the implication from right to left,
suppose that u(A) = u(B) and that it is false that A ~ B. The completeness
axiom then entails that either A > B or B~ A (but not both), and in
conjunction with (1) both possibilities give rise to a contradiction,
because neither u(A) > u(B) nor u(B) > u(A) is consistent with the assump-
tion that u(A) = u(B).

Property (2) of the theorem is the expected utility property. It shows
us that the value of a compound lottery equals the expected utility of
its components. This means that anyone who obeys the four axioms
acts in accordance with the principle of maximizing expected utility.
Of course, it does not follow that the decision maker consciously applies
the expected utility principle. All that follows is that it is possible to
rationalize the decision maker’s behavior by pointing out that he acts as
if he or she were ascribing utilities to outcomes and calculating the
expected utilities.

Properties (1) and (2) are the representation part of the theorem, which
show how a utility function can be used for representing the decision maker'’s
behavior. Property (3) is the uniqueness part, telling us that all utility/
functions satisfying (1) and (2) have something important in common:
they are all positive linear transformations of each other. This means
that every utility function satisfying (1) and (2) can be obtained from
every other such function by multiplying the latter by a constant and
adding another constant. As explained in Chapter 2, this means that in
von Neumann and Morgenstern’s theory utility is measured on an inter-
val scale. A proof of von Neumann and Morgenstern’s theorem can be
downloaded from www.martinpeterson.org.

Commentators have outlined at least three general objections to von
Neumann and Morgenstern’s result. If correct, these objections show that
a utility function cannot be constructed in the way proposed by them.

(1) The axioms are too strong. As pointed out above, the axioms on which the
theory relies are not self-evidently true. It can be questioned whether
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rational agents really have to obey these axioms. We shall return to

i this criticism, which is by far the most common one, in Chapter 8.

IJ (2) No action guidance. By definition, a rational decision maker who is
about to choose among a large number of very complex acts (lot-
teries) has to know already from the beginning which risky act (lot-
tery) to prefer. This follows from the completeness axiom. Hence,
a utility function derived in von Neumann and Morgenstern's theory
cannot be used by the decision maker for first calculating expected
utilities and thereafter choosing an act having the highest expected

utility. The output of von Neumann and Morgenstern’s theory is not
a set of preferences over acts - on the contrary, these preferences are
: used as input to the theory. Instead, the output is a (set of) utility
I function(s) that can be used for describing the agent as an expected
| utility maximizer. Hence, ideal agents do not prefer an act because its
expected utility is favorable, but can only be described as if they were
acting from this principle. To some extent, the theory thus puts the
cart before the horse. '

In reply to this objection, it could be objected that someone who is

not fully rational (and thus does not have a complete preference
ordering over lotteries) might nevertheless get some help from the
axioms. First, they can be used for detecting any inconsistencies in the
decision maker’s set of preferences. Second, once youf utility function

has been established the expected utility principle could be used for
f filling any “missing gaps,” i.e. lotteries you have not yet formed pre-
i ferences about. Note that both these responses presuppose that the
B decision maker is a nonideal agent. But what about ideal decision
makers? Does it really make sense to define an ideal decision maker
such that it becomes trivially true that ideal decision makers do not
¥ need any action guidance?

i (3) Utility without chance. It seems rather odd from a linguistic point of view to
say that the meaning of utility has something to do with preferences over
lotteries. For even a decision maker who (falsely) believes that he lives in
a world in which every act is certain to result in a known outcome, i.e.
aworld that is fully deterministic and known to be so, can meaningfully
say that the utility of some events exceeds that of others. In everyday
contexts the concept of utility has no conceptual link to the concept of

risk. Hence, it might be questionable to develop a technical notion of
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utility that presupposes such a link, at least ifit is meant to be applied in
normative contexts. (Perhaps it might be fruitful for descriptive
purposes.)

The obvious reply to this objection is that von Neumann and
Morgenstern’s theory is not a claim about the meaning of utility, it is
a claim about how to measure utility. However, this is not a very helpful
reply, because it then follows that their theory is at best a partial theory.
If we acknowledge that it would make sense to talk about utilities even if
the world was fully deterministic and known to be so, it seems to follow
that we would then have to come up with some other method for
measuring utility in that world. And if such a method exists, why not
use it everywhere?

Box 5.2 How to buy a car from a friend without
bargaining

Joanna has decided to buy a used car. Her best friend Sue has a yellow
Saab Aero Convertible that she is willing to sell to Joanna. However,
since Joanna and Sue are good friends and do not want to jeopardize
their friendship, they feel it would be unethical to bargain about the
price. Instead, they agree that a fair price of the Saab would be the
price at which Joanna is indifferent between the Saab and the amount
of money paid for the car, irrespective of Sue’s preference. Hence, if
Joanna is indifferent between the Saab and $10,000 it follows that
$10,000 is a fair price for the car. Unfortunately, because Joanna and
Sue are friends, Joanna is not able to honestly and sincerely make
direct comparisons between the Saab and various amounts of money.
When asked to state a preference between the car and some amount
of money she cannot tell what she prefers. Therefore, to overcome
Joanna's inability to directly compare the Saab with money they
decide to proceed as follows:

1. Sue offers Joanna to state preferences over a large number of
hypothetical car lotteries. The prizes include a Ford, the Saab and
a Jaguar. It turns out that Joanna’s preferences over car lotteries
satisfy the von Neumann-Morgenstern axioms and that she is indif-
ferent between getting the Saab for certain and a lottery in which
the probability is 0.8 that she wins a Ford and 0.2 that she wins
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a Jaguar. The von Neumann-Morgenstern theorem (Theorem 5.2)
now implies that:

(i) 0.8 -u(Ford) + 0.2 - u(Jaguar) = 1.0 - u(Saab)
By letting u{Jaguar) = 1 and u(Ford) = 0 it follows that u{Saab) = 0.2

2. Next, Sue helps Joanna to establish a separate utility function of

money by offering her a second set of hypothetical lotteries.:
This utility function has no (direct) relation to her utility of cars. <

As before, Joanna’s preferences satisfy the von Neumann-
Morgenstern axioms, and for future reference we note that she is
indifferent between getting $25,000 for certain and a lottery in
which the probability is 0.6 that she wins $60,000 and 0.4 that'

she wins nothing. Joanna is also indifferent between getting.

$60,000 for certain and a lottery in which the probability is 0.2
that she wins $25,000 and 0.8 that she wins $90,000. Hence, we
have:

(i) 0.6-1($60,000) + 0.4 - u($0) = 1.0 - u($25,000)
(iii) 0.2 - 1($25,000) + 0.8 - 11($90,000) = 1.0 - 1($60,000)

Equation (ii) entails that if u($60,000) = 1 and u($0) = 0, then ($25,000)
= 0.6. Furthermore, according to equation (iii), if u($90,600) =1and
u($25,000) = 0, then u($60,000) = 0.8. The two utility scales derived
from (ii) and (iii) are not directly connected to each other. However,
they can of course be merged into a single scale by observing that the
difference in utility between $60,000 and $25,000 corresponds to 0.4
units on scale (ii) and 0.8 units on scale (iii). This means that
a difference of 0.2 units on scale (iii) between $60,000 and $90,000
would correspond to a difference of 0.1 unit on scale (ii). Hence,
1($90,000) = 1.1 on that scale. The leftmost columns of Table 5.4
summarize the two original scales. The scales to the right show how
the original scales can be merged into a single scale as described
above, and thereafter calibrated such that the end points become 1
and 0.
3. In the third and final step Joanna has to find a way of connecting
her utility scale for cars with her utility scale for money.
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Table 5.4

Scale (ii) Scale (iii) Merged scale Calibrated scale

$90,000 1 1.1 111.1=1
$60,000 1 0.8 1 111 =091
$25,000 0.6 0 0.6 0.6 /1.1 =0.55
$0 0 0 01.1=0

As mentioned above, she finds it impossible to directly compare the
Saab with money, but she is willing to compare other cars with
money. It turns out that she is indifferent between a Jaguar and
$90,000 and between a Ford and $25,000. So on the calibrated scale
a Jaguar is worth 1 unit of utility and a Ford 0.55 units. Hence, the
difference between a Jaguar and a Ford is 1 - 0.55 = 0.45 on the
calibrated scale. Now recall the first step, in which we established
that the utility of the Saab is 20% of the difference between the
Jaguar and the Ford. As 20% of 0.45 is 0.09, the utility of the Saab is
0.45 +0.09 = 0.54.

What amount of money corresponds to 0.54 units of utility? This
is equivalent to asking: What amount $X for certain is judged by
Joanna to be exactly as attractive as a lottery in which she wins
$90,000 with a probability of 0.54 and $0 with a probability of 0.46?
As pointed out in Step 2, Joanna is indeed willing to answer this
type of question. After some reflection, she concludes that the
amount in question is $55,000. This answers the question we set
out to answer at the beginning: An ethically fair price of Sue’s
yellow Saab Aero Convertible is $55,000.

In summary, this example shows how the von
Neumann-Morgenstern theory can be used for making indirect
comparisons of items the agent is not immediately willing to com-
pare, e.g. a specific car and some amount of money. The trick is to
construct two separate scales, one for cars and one for money, and
then weld them together into a single scale. So in this type of case
Joanna’s preferences satisfy the completeness axiom in an indirect
sense.
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5.3 Can Utility be Measured on a Ratio Scale?

Many decision theorists believe that utility can be measured only on an
interval scale, and that the best way to construct an interval scale is along
the lines suggested by von Neumann and Morgenstern. Arguably, this is
a metaphysical claim about the nature of utility. If correct, it tells us some-
thing important about what utility is. However, some economists and
mathematicians maintain that it is also possible to measure utility on
a ratio scale. To render this claim plausible, a radically different approach
has to be taken. The point of departure is the observation that there seems
to be an intimate link between the utility of an option and the probability
with which it is chosen. At first glance this may seem trivial. If you think
that $20 is better than $10, then you will of course choose $20 with prob-
ability 1 and $10 with probability 0, whenever offered a choice between
the two objects. However, the probabilistic theory of utility, as.I shall call it,
is much more sophisticated than that.

To start with, let us suppose that an external observer wishes to figure
out what a decision maker’s utility function for some set of objects is.
We assume that it is not entirely sure, from the observer’s perspective,
what the decision maker will choose. All the observer can tell'is that
the probability that some option will be chosen over aln‘o'ther‘is, say, 0.8.
Imagine, for instance, that the manager of a supermarket observes that
one of her customers tends to buy apples but no bananas eight times out
of ten, and bananas but no apples two times out of ten. In that case the
manager may conclude that the customer will choose an apple over
a banana with a probability of 0.8. Now assume that the observer is
somehow able to verify that none of the customer’s tastes or desires
has changed; that is, the reason why the customer sometimes buys
apples and sometimes buys bananas is not that he frequently changes
his taste.

Empirical studies show that probabilistic choice behavior is by no
means uncommon, but how can such behavior be rational? It has been
suggested that we may think of the decision maker’s choice process as
a two-step process. In the first step, the decision maker assesses the
utility of each option. Then, in the second step, she makes a choice
among the available options by simply trying to choose an alternative
that maximizes utility. Now, there are at least two possibilities to
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consider, each of which gives rise to probabilistic choice behavior. First,
the decision maker may sometimes fail to choose an option that max-
imizes utility in the second step of the choice process, because she fails
to choose the alternative that is best for her. This version of the prob-
abilistic theory is called the constant utility model. Second, we may ima-
gine that the decision maker in the second step always chooses an
alternative with the highest utility, although the first step is probabil-
istic, i.e. the probabilities come from the assessment of utilities rather
than the choice itself. This version of the probabilistic theory is called
the random utility model. According to this view one and the same object
can be assigned different utilities at two different times, even if every-
thing else in the world is kept constant, because the act of assigning
utilities to objects is essentially stochastic.

Now, in order to establish a more precise link between probability
and utility, it is helpful to formalize the probabilistic approach. Let %, y,
z be arbitrary objects, and let A, B, ... be sets of objects, and let the
formula p(x > B) denote a probability of p that x will be chosen out of B.
Hence, p (apple > {apple; banana}) = 0.8 means that the probability is 0.8
that an apple will be chosen over a banana. Furthermore, let p(A > B)
denote the probability of the following conditional: If A is a subset of B,
then the probability is p that the chosen alternative in B is also an
element of A. l

We now come to the technical core of the probabilistic theory. This
is the choice axiom proposed by Duncan Luce. This axiom holds that if
A is a subset of B, then the probability that x will be chosen from
B equals the probability that x will be chosen from A multiplied by the
probability that the chosen alternative in B is also an element of A.
In symbols,

Choice axiom if ACB, then p(x = B) =p(x > A) -p(A > B).

To grasp what kind of assumption is at stake here, it is helpful to consider
an example. Suppose that Mr. Simpson is visiting a posh restaurant and
that he is about to choose a wine from a list containing two red and two
white wines. Now, the choice axiom entails that it should not matter if
Mr. Simpson divides his choice into two stages, that is, first chooses between
red and white wine and then between the wines in the chosen subset, or
chooses directly which of the four wines to order. Hence, if Mr. Simpson is
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indifferent between red and white wine in general, as well as between the

two red wines and the two white ones at hand, the probability that

a particular bottle will be chosen is -;— . % = ;11—

Gerard Debreu, winner of the Nobel Prize in Economics, has constructed
an interesting counterexample to the choice axiom: When having dinner
in Las Vegas, Mr. Simpson is indifferent between seafood and meat, as well
as between steak and roast beef. The menu comprises only three dishes:
x = lobster, y = steak and z = roast beef. Let B be the entire menu, let A be
the set comprising x and y, and let A’ be the set of y and z. Then, since

Mr. Simpson is indifferent between seafood and meat, p(x>~B) = %
/ ’ 1 ‘1 "3

However, p(A>B)=1—-p(z~B)=1-p(z ~A") -p(A >B) =1 — 5

Hence, the axiom implies that p(x >~ B) = p(x > A) - p(A>B) = % . Z = —:- .

In response to Debreu’s example, people wishing to defend the choice
axiom may say that the root of the problem lies in the individuation of
alternatives. It could be argued that lobster, steak and roast beef are not
alternatives at the same level. Lobster belongs to the catég_ory “seafood,”
and could equally well be replaced with tuna, or any other seafood dish.
However, for the example to work, neither steak nor roast beef can be
replaced with some other meat dish, say kebab, because then it would no
longer be certain that the agent will remain indifferent between the two meat
dishes. Hence, the moral of Debreu’s example seems to be that alternatives
must be individuated with care. Perhaps the choice axiom should be taken
into account already when alternatives are being individuated - it could be
conceived of as a normative requirement for how alternatives ought to be
individuated. We are now in a position to prove the following theorem.

Theorem 5.3 Let B be a finite set of objects such that p(x > B) # 0; 1 for all
x in B. Then, if the choice axiom holds for B and all its subsets, and the
axioms of probability theory hold, then there exists a positive real-valued
function u on B such that for every A C B it holds that

u(x)

u(y)

yeA
(2) for every other function u’ satisfying condition (1) there is a constant

ksuchthatu=%-u'.

(1) p(x-A) =
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Proof First consider the existence part, (1), saying that the utility function
u exists. Since it was assumed that the probability that x is chosen is
nonzero, it also holds that p(A > B) # 0. It then follows that
p(x = A) = pp———((zii)) :

We stipulate that u (x) = k - p(x > B), where k > 0. Then, since the
elements of A are mutually exclusive, the axioms of the probability

k-px>B) _ _ ux)
Dok p=B) D ()

move on to the uniqueness part, (2). Suppose that u' is another utility

. We now

calculus guarantee that p(x = A) =

function defined as above and satisfying (1). Then, for every x in B, it
k-u'(x)

= 7, <° m}

ZyeAu (y )

The downside of the probabilistic theory is that it requires that p # 0,

holds that u(x) =k-p(x > B) =

i.e. that each option is chosen with a nonzero probability. (This assumption
is essential in the proof of Theorem 5.3, because no number can be divided
by 0.) However, as pointed out above, the probability that you choose $10
rather than $20 if offered a choice between the two is likely to be 0. Call this
the problem of perfect discrimination. The problem of perfect discrimina-
tion can be overcome by showing that for every set of objects B there exists
some incomparable object x* such that p(x* > x) # 0, 1 for every x in B. Suppose,
for example, that I wish to determine my utility of $20, $30 and $40,
respectively. In this case, the incomparable object can be taken to be
a photo of my beloved cat Carla, who died when I was fourteen. The photo
of this cat has no precise monetary value for me; my choice between money
and the photo is always probabilistic. If offered a choice between $20 and
the photo, the probability is 1/4 that I would choose the money; if offered
a choice between $30 and the photo, the probability is 2/4 that I would
choose the money; and if offered a choice between $40 and the photo,
the probability is 3/4 that I would choose the money. This information is
sufficient for constructing a single ratio scale for all four objects. Here is
how to do it.

We use the three local scales as our point of departure. They have one
common element: the photo of Carla. The utility of the photo is the same in
all three pairwise choices. Let u(photo) = 1. Then the utility of money is
calculated by calibrating the three local scales such that u(photo) = 1 in all
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Table 5.5
Uq Uy Us u
1/4
1/4 - - i/ it
2/4
3 - 2/4 - =
o / 2/4
3/4
0 - - 3/4 =
$4 / 1/4 3
photo 3/4 214 7 1/4 1

of them. This is achieved by dividing the probability numbers listed
above by 3/4, 2/4 and 1/4, respectively. Table 5.5 summarizes the example.
The symbols u,, u, and us denote the three local scales and u denotes the
single scale obtained by “welding together” the local scales.

3 Of course, there might exist some large amount of money that would
make me choose the money over the photo with probability one. This
indicates that the photo is not incomparable with every possible amount .
of money. However, this difficulty can be overcome by choosing some other 4

beloved object to compare with, e.g. the only remaining photd of my
daughter, or peace in the Middle East. '

5.4 Can We Define Utility Without Being Able
to Measure It?

Intuitively, it seems plausible to separate the meaning of the term utility from
the problem of how to measure it. Consider the following analogy: We all
know what it means to say that the mass of Jupiter exceeds that of Mars, but
few of us are able to explain how to actually measure the mass of a planet.
Therefore, if someone proposed a measurement procedure that conflicts with
our intuitive understanding of mass, we would have reason to reject that
procedure insofar as we wish to measure the thing we call mass. We are,
under normal circumstances, not prepared to replace our intuitive concept
of mass with some purely technical concept, even if the technical concept
simplifies the measurement process. Does the analogous point apply to utility?

Theories of utility are sometimes interpreted as operational definitions, i.e.
as definitions that fix the meaning of a term by setting up an empirical

method for observing the entity the term is referring to. In this view, it does
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not make sense to distinguish meaning from measurement. As long as the
concept of utility is merely used for descriptive purposes, i.e. for predicting
and explaining choices, this operational approach seems fine. However,
when we consider normative applications it is far from clear that an opera-
tional definition is what we are looking for. If we, for example, wish to say
that a decision was rational because it maximized expected utility, it seems
essential that the notion of utility we refer to is the true, core notion of utility.
So what is this core notion of utility, with which operational procedures
should be compared?

Philosophers taking a utilitarian approach to ethics frequently apply
the notion of utility in moral contexts. These utilitarian philosophers
often think of utility as a mental state. That my utility increases if I get
a new car means that my mental state is transformed from one state into
another, which is more valuable. Let us see if we can make any sense of
this traditional utilitarian notion of utility. If we can, we will at least be
able to say something interesting about the meaning of utility. To start
with, it is helpful to divide the utility of an outcome or object into
temporal intervals, such that the utility may vary from one interval to
the next, but not within an interval. Call such intervals, which may be
arbitrarily small, moments of utility. It is, of course, an empirical question
whether moments of utility exist. It cannot be excluded that in some
time periods there are no constant moments of utility. To overcome this
problem we assume that if m is an interval which cannot be divided into
a sequence of constant intervals, then it is always possible to construct
a constant interval m’ covering the same time interval, such that m ~ m/,
by choosing some m’ having the right intensity.

A moment of utility is to be thought of as a property of an indivi-
dual’s experience within a certain time interval. The more an agent
wants to experience a moment, the higher the utility of the moment.
Thus, the agent’s well-informed preferences over different moments
are likely to be the best way of determining the utility of moments.
In this respect the utilitarian concept resembles von Neumann and
Morgenstern’s approach, since the latter also uses preferences for axio-
matizing utility.

Let M = {a, b, ...} be a set of moments, and let > be a relation
on M representing strict preference. Indifference is represented by the
relation ~. We furthermore suppose that there is a binary operation >
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on M. Intuitively, a © b denotes the utility of first experiencing the utility
moment a, immediately followed by the utility moment b. The set of utility
moments is an extensive structure if and only if, for all g, b; ¢, d € M, the axioms
stated below hold true. We recognize the first two axioms from von
Neumann and Morgenstern’s theory, but note that they now deal with
moments rather than lotteries.

Util1 Eithera>borb>aora~b

Util2 Ifa>bandb>c thena>c¢

Util3 [ao(boc)]~[(acb)o(]

Util4 a>bifandonlyif(aoc)> (boc)ifandonlyif(coa)> (cob)

Util 5 Ifa > b, then there is a positive integer n such that (na o ¢) > (nbc d),
where na is defined inductively as 1a = q, (n+ 1) a = (a o na).

The third axiom, Util 3, is mainly technical. It holds that it does not .

matter if b and c are attached to a or if ¢ is attached to a and b. Util 4 states
that in the case that a utility moment a is preferred to b, then a > b even in
the case that a moment c comes before or after those moments. Of course,
this axiom does not imply that the entities that cause utility can be attached

in this way. For example, if salmon is preferred over beef, it would be

a mistake to conclude that salmon followed by ice cream is preferred to
beef followed by ice cream. Moreover, Util 4 tells us that if the utility of
eating salmon is preferred to the utility of eating beef, then the utility
of eating salmon followed by the utility of eating ice cream after,eating
salmon is preferred to the utility of eating beef followed by the utility of
eating ice cream after eating beef.

Util 5 is an Archimedean condition. It implies that even if d is very
strongly preferred to c, then this difference can always be outweighed
by a sufficiently large number of moments equal to a with respect to b,
a > b, such that (na o ¢) > (ny o d). This roughly corresponds to the
Archimedean property of real numbers: if b > a > 0 there exists
a finite integer n such that na > b, no matter how small g is. Util 5 is
problematic if one thinks that there is some critical level of utility, such
that a sequence of moments containing a subcritical level moment
should never be preferred to a sequence of moments not containing
a subcritical level moment. Personally I do not think there are any such
critical levels, but to really argue for that point is beyond the scope of
this book.
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Theorem 5.4 If Util 1-5 hold for > on a nonempty set of moments M anq
if o is a binary operation on M, then there exists a real-valued functigp
u on M such that

(1) a > bif and only if u(a) > u(b), and

(2) waob) =u(a)+u(b), and

(3) For every other function u’ that satisfies properties (1) and (2) there
exists some k > 0 such that u’ = ku.

Theorem 5.4 follows from a standard theorem in measurement theory.
(See e.g. Krantz et al. 1971.) I shall spare the reader from the proof. Note
that the axioms listed above do not say anything about what is being
measured. It is generally agreed that they hold for mass and length, and if
the (hedonistic) utilitarians are right they also hold for moments of
utility. However, if they hold for moments of utility they merely fix the
meaning of the concept. The axioms say almost nothing about how
utility could be measured in practice. Are agents really able to state
preferences not between, say, salmon and beef, but between the mental
states caused by having salmon or beef, respectively? And are they really
able to do so even if the comparison is made between hypothetical
mental states which are never experienced by anyone, as required by
the theory?

Exercises

5.1 Which preference ordering is represented by the following ordinal
utility function: u(a) = 7, u(b) = 3, u(c) = 34, u(d) = —430, ufe) = 3.76?

5.2 The following function u is not an ordinal utility function. Why not?
wa) = 7, u(b) = 3, u(c) = 34, u(d) = —430, ufe) = 3.76, ufe) = 12.

5.3 Your preferences are transitive and asymmetric, and you prefer a to
bandb to c. Explain why it has to be the case that you do not prefer ctoa.

5.4 Your preferences are asymmetric and complete, and you prefer a to
b and b to c. What is your preference between a and ¢ ?

5.5 Show that negative transitivity is logically equivalent with the fol-
lowing claim: x > z implies that, forallyin B, x > yory > z.

5.6 Show that if > is asymmetric and negatively transitive, then > is
transitive.




Exercises

00y 5.7 You prefer B to A and you are indifferent between receiving A for

5.8

sure and a lottery that gives you B with a probability of 0.9 and

C with a probability of 0.1. You are also indifferent between receiv-

ing A for sure and a lottery that gives you B with a probability of

0.6 and D with a probability of 0.4. Finally, you prefer B to A and

A to D. All of your preferences satisfy the von Neumann-Morgenstern

axioms. )

(a) What do you prefer most, C or D? .

(b) Calculate the (relative) difference in utility between B and C, and
between B and D.

(c) If we stipulate that your utility of B is 1 and your utility of C is 0,
what are then your utilities of A and D?

You are indifferent between receiving A for sure and a lottery that

gives you B with a probability of 0.8 and C with a probability of 0.2. You

are also indifferent between receiving A for sure and a lottery that

gives you B with a probability of 0.5 and D with a probability of 0.5.

Finally, you prefer B to A and all of your preferences satisfy the von

Neumann-Morgenstern axioms. What is the utility of A, B, C and

D {(measured on an interval scale of your choice)?

|
V

5.9 The continuity axiom employed by von Neumann and Morgenstern

holds thatif A > B >~ C then there exist some probabilities p and g such
that ApC >~ B > AqC. Let A = $10,000,001 and B = $10,000,000, and C =
50 years in prison. (a) Do you think it is really true that there are any
values of p and g such that ApC > B > AqC truly describes your prefer-
ences? (b) Psychological studies suggest that most people cannot dis-
tinguish between very small probabilities, i.e. that their preferences
over lotteries in which there is a small probability of a very bad out-
come are unaffected by exactly how small the probability is. Does this
show that there is something wrong with von Neumann and
Morgenstern’s theory?

You prefer a fifty-fifty chance of winning either $100 or $10 to a lottery
in which you win $200 with a probability of 1/4, $50 with a probability
of 1/4, and $10 with a probability of 1/2. You also prefer a fifty-fifty
chance of winning either $200 or $50 to receiving $100 for sure. Are
your preferences consistent with von Neumann and Morgenstern’s
axioms?
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5.11 You somehow know that the probability is 75% that your parents wil
complain about the mess in your room the next time they see you,
What is their utility of complaining?

5.12 You somehow know that the probability is 5% that you will tidy up
your room before your parents come and visit you. What is best for
you, to tidy up your room or live in a mess?

5.13 The conclusion of Exercise 5.12 may be a bit surprising - can you really
find out what is best for you by merely considering what you are likely
to do? For example, the probability is 0.99 that a smoker will smoke
another cigarette, but it seems false to conclude that it would be better
for the smoker to smoke yet another cigarette. What could the advo-
cate of the probabilistic theory say in response to this objection?

Solutions

51c>a>e>b>d

5.2 Because u assigns two different numbers to one and the same argument:
u(e) = 3.76 and ufe) = 12.

5.3 It follows from transitivity that you prefer a to ¢, and by applying
asymmetry to that preference we find that it is not the case that c is
preferred to a.

5.4 We cannot tell what your preference between c and a is, except that it is
complete.

5.5 By contraposition, the rightmost part of the statement can be
transformed into the following logically equivalent statement: not
(x = y ory > z for all y in B) implies not x > z. This is equivalent with:
for all y in B, not x > y and not y > z implies not x > z This is
negative transitivity.

5.6 Suppose that x > y and y > z. From asymmetry and Exercise 5.6 we can
conclude that: x > y implies that either x > z or z > y. The second
possibility, z > y, is inconsistent with what we initially supposed and
can hence be ruled out. Hence, x > z, which gives us transitivity.
Asymmetry implies that not y > x and not z > y. By applying negative
transitivity to these preferences we get: not z >~ x. From completeness
it follows that either x > z or x ~ z.

5.7 (a) D. (b) The difference between B and C is exactly four times the
difference between B and D. (c) u{A) = 0.9 and u(D) = 0.75.
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Solutions

5.8 u(B) = 100, u(A) = 80, u(D) = 60 and u(C) = 0
59 (a) No matter how small the probabilities p and q are it seems

510
5.11
5.12

5.13

better to take B for sure. Why risk everything for one extra
dollar? (b) The psychological evidence suggests that the von
Neumann-Morgenstern theory does not accurately describe how
people do in fact behave. Whether it is a valid normative hypothesis
depends on what one thinks about the answer to (a).

No. Your preferences violate the independence axiom. o %

Their utility of complaining is three times that of not complaining.
It is better for you to leave your room as it is; the utility of that option

is 19 times that of tidying up the room.

In this context “better for” means “better as viewed from the decision
maker’s present viewpoint and given her present beliefs and desires.”
The point that the smoker may in fact die of lung cancer at some point
in the future is perfectly consistent with this notion of “better.”
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