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An important part of this course One aspect of this course that many stu-
dents struggle with is mathematical notation.

1 Basic Set Theory

We often groups things together. Everyone in this class, your group of friends,
your family. These are all collections of people. Set theory is a mathematical
language to reason about collections.

Set

Any collection of objects. It is assumed that there is a universal set, called
the domain of discourse, so that a set is a collection of objects from the
universal set.

In these notes, sets are denoted with upper-case letters, and elements of
sets with lower-case letters.

Remark 1.1 Note that there is no standard notation for sets and elements. For
instance, some texts may use lowercase letters to denote sets.



There are two ways to write down a set:

1. List all the elements of the set. Each element should be separated by a
comma and there entire list of elements is written between curly brack-
ets: ‘}" and ‘{’. For example, the set that contains the first 5 letters of the
alphabet is {a,b,c,d, e}.

2. Define a property that all objects in the set have in common. For exam-
ple, the set of all positive integers is A = {x | x > 0 and x is an integer}.
This is read “the set of all x such that x is an integer that is greater than
or equal to zero”.

Element

A member of a set. When x is an element of the set A, we write x € A.

Subset

A set A is a subset of a set B, denoted A C B, provided that every element
of A is also an element of B.

We use the phrase "...is contained in" when talking about both elements
and subsets. If A = {1,2,3}, then it is common to say that “A contains 1" or
"1 is contained in A". Something that can be confusing for beginners is that it
is also common to say that "the set {1,2} is contained in A". It is important
to remember that the subset notation “A C B" should only be used when A
and B are both sets. For example, if X = {a,b,c}, then it is incorrect to write
“a C X" since a is not a set. Note that it is possible that a set contains an
element that is also a subset. This can happen when sets contain other sets
as members. For instance, the set X = {a,b,c} contains three elements (i.e.,
ae€ X, beXandc € X),and Y = {a,{b,c}} contains two elements (a € Y
and {b,c} € Y). An example of a set that has an element that is also a subset
is Z={a,{a}}, since {a} C Z (since a € Z) and {a} € Z.



Visualizing sets

A Venn diagram is a geometrical visualization of a set, or collection of sets. For
instance, A C B can be depicted as follows:

ACB

Operations on sets

We will discuss a number of operations on sets. That is, ways of combining
or modifying sets to form new sets.

Union

The union of two (or more) sets is a set that contains all the elements of
each set. For two sets A and B, the union of A and B, denoted A U B, is
the set

AUB={x|x€ Aorx e B}.

More generally, if S is any collection of sets, then

S ={x|x € Aforsome A € S}.

The union of two sets can be pictured as follows (the gray shaded region
is the union of A and B):



AUB

Example: Union
o If A={1,2,3} and B = {a,b}, then AUB = {1,2,3,4,b}

e If A={1,2,3} and B = {1,3,4}, then AUB = {1,2,3,4}

o If A={1,2,3} and B = {{1,3},4}, then AUB = {1,2,3,{1,3},4}

Exercise 1.2 Use a Venn diagram to convince yourself of the following two facts:

e Forany sets Aand B, AC AUBand BC AUB.

e Forany sets A and B, A C B if, and only if, AU B = B.

Intersection

The intersection of two (or more) sets is the set of all items in common
to each set. If A and B are two sets, then the intersection of A and B,
denoted A N B, is the set

ANB={x|x € Aand x € B}.
More generally, if S is any collection of sets, then

(NS={x|xecAforall Ac S}.

The intersection can be pictured as follows (the gray shaded region is the
intersection of A and B):



ANB

Example: Union
e If A={1,2,3} and B = {1}, then ANB = {1}.

e If A={1,2,3} and B = {{1,3},2}, then ANB = {2}.

e If A ={1,2} and B = {3,4}, then AN B contains no elements (it is
the empty set).

Exercise 1.3 Use a Venn diagram to convince yourself of the following two facts:
o Forany sets Aand B, ANB C Aand ANB C B.

e For any sets A and B, A C B if, and only if, AN B = A.

Set Difference

The difference between two sets A and B (A minus B), denoted A — B is
all the elements in A but not in B. The difference between A and B is the

set A—B={x|x€ Aand x ¢ B}.

The differences between A and B can be pictured as follows:



Complement

The complement of a set is the set of all elements not contained in that
set. Formally, the complement of the set A is

A€ = {x | x is in the universal set and x ¢ A}.

Example: Set Difference and Complement

e If A={1,23}and B = {1,2,4}, then A—B = {3} and B— A =

{4}.
e If A=1{1,2,3} and B = {1}, then A — B = {2,3} and B — A is the
empty set.

e If the universal set is {0,1,2,3,4,5,6,7,8,9} and A = {1,2,3}, then
AC = {0,4,5,6,7,8,9}.

Exercise 1.4 Using Venn diagrams, convince yourself that for any sets A and B,
A—B=ANB"

Symmetric Difference

The symmetric difference of two sets is all the elements in either set but
not in both. The symmetric difference is the set (A — B) U (B — A).

The symmetric difference is pictured as follows:
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(A—B)U(B— A)

Example: Symmetric Difference
e The symmetric difference of A = {1,2,3} and B = {1,2,4} is {3,4}.

e The symmetric difference A = {1,2,3} and B = {1} is {2,3}.

We conclude this brief introduction to set theory by defining some impor-
tant sets.

Empty Set

The empty set, or null set, is a set that contains no elements. We write @
to denote the set containing no elements.

Power Set

The power set is the set of all subsets. If A is a set, then the power set of
Ais theset p(A) ={B| B C A}.

Example: Finding the power set



Suppose that A = {1,2,3}. Then the power set of A is defined as follows:

p(A) = {2, {1},{2}, {3}, {1,2},{1,3},{2,3}, {1,2,3}}.

Cardinality of a Set

The cardinality of a finite” set A is the total number of elements in A, and
is denoted |A|.

“The notion of cardinality can be applied to infinite sets as well. However, a discus-
sion of this is beyond the scope of these introductory notes.

Exercise 1.5 1. What is the powerset of @ (i.e., p(D))?

2. If A has n elements, |A| = n, then how many elements are in p(A)?

2 Relations

The order in which we list elements in a set does not matter. That is, {a,b} is
the same set as {b,a} (they both denote the set consisting of two elements ‘a’
and ‘D’). There are many situations in which the order in which the elements
appear is important. When the order in which the elements appear matters,
we use ‘(" and ‘). For example, (a,b) is an ordered pair, or tuple, of length
2. The first component is a2 and the second component is b. Since the order
in which the elements appear matters, we have that (a,b) # (b,a). More
generally, examples of tuples of length 5 consisting of elements from the set
{a,b,c,d,e} include (a,b,c,d,e), (b,d,a,d,e) or (a,a,b,b,e) (note that in the
last tuple we allow the same element to be repeated.

Product
Suppose that A and B are non-empty sets. The product of A and B,



denoted A x B, is the set of ordered pairs where the first component
comes from A and the second component comes from B. That is,

AxB={(a,b)|aec Aandb € B}.

Example: Products on sets

The set X x X is the cross-product of X with itself. That is, it is the set

of all pairs of elements (called ordered pairs) from X. For example, if
X ={a,b,c}, then

X x X =1{(a,a),(a,b),(a,c), (ba),(bb),(bc),(ca),lcb),(cc)}

Suppose that X is a set and that n a positive integer. We write X" for
the n-fold product of X. Thatis X! = X and foralln > 1, X"*! = X x X",
So, X? = X x X and X3 is the set of all tuples from X of length 3 (formally,
X3 =X x (X x X)).

A relation R on a set X is a subset of X X X (the set of pairs of elements
from X). Formally, R is a relation on X means that R C X x X. It is often
convenient to write a R b for (a,b) € R. To help appreciate this definition,
consider the following examples. Suppose that X is the set of people in a
room and that everyone in the room is pointing at some person in the room. A
relation can be used to describe who is pointing at whom, where for a,b € X,
a R b means that person a is pointing at person b. A second example is
the”taller-than" relation, denoted T C X x X, where a T b means that person
a is taller than person b. Typically, we are interested in relations satisfying
special properties.

Properties of relations

Suppose that R C X x X is a relation.

e R is reflexive provided that foralla € X, a R a.



R is irreflexive provided that for all 2 € X, it is not the case that
aRa.

R is complete provided that for all 4,b € X, a R b or b R a (or both).

R is symmetric provided that for all 4,b € X, if a R b then b R a.

e Ris asymmetric provided that for all 2,b € X, if aRb then not-b R a.

R is anti-symmetric provided that for alla,b € X ifa Rband b R g,
then a = b.

R is transitive provided that for all 4,b,c € X, ifa Rband b R c
then a R c.

Remark 2.1 As stated, completeness implies reflexivity (let @ = b in the above
definition of completeness). Often, completeness is defined as follows: for
all distinct a,b € X, a R b or b R a. In what follows, we will use the above
stronger definition of completeness where completeness implies reflexivity.

Recall the example of a relation R that describes people pointing at other
people in the room. If R is reflexive, then this means everyone is pointing
at themselves. If R is irreflexive, then this means that no-one is pointing
at themselves. This example illustrates the fact that irrelexivity is not the
negation of reflexivity. That is, there are examples of relations that are neither
reflexive nor irreflexive. If R is complete, then this means that every person in
the room is either pointing at somebody or being pointed at. Symmetry of R
means that every person that is being pointed at is pointing back at the person
pointing at them. Asymmetry of R means that nobody is pointing back at the
person pointing at them. Similar to the relationship between reflexivity and
irreflexivity, asymmetry is not the negation of symmetry. Picturing transitivity
of the relation R is a bit more complicated. If the relation R is transitive, then
everyone is pointing at the person that is being pointed to by the person that
they are pointing at.

Exercise 2.2 Suppose that there are 5 people in a room. Draw a picture of a situation
where the people are pointing at each other and the relation that describes the situation
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is transitive.
Exercise 2.3 What properties does the “better-than” relation satisfy?

Remark 2.4 (Describing Relations) Suppose that R C X x X is a relation. We
will often use the following shorthand to denote elements in the relation: If
xX1,...,%; € X, then

X Rxp R---x,_1 R xy

means that foralli = 1,...,n—1, (x;,x;11) € R or (x;, x]-) € Rforallj <i
if R is assumed to be transitive (or j < i if R is assumed to also be reflex-
ive). For example, if R is transitive and reflexive, then 2 R b R ¢ means that

{(a,a),(a,b),(b,b),(a,c),(bc),(cc)} CR.

When thinking about relations, it is often helpful to draw a picture of the
relation. For instance, suppose that X = {a,b,c,d} and R C X x X is:

R ={(a,a),(b,a),(c,d),(a,c), (d,4d)}.

Relations on X can be visualized as follows: Write down all the elements of X
and draw an arrow from element x to element y when (x,y) € R. Following
this convention, the following pic:

3

Cycle

A cycle in a relation R C X x X is a set of distinct elements x1, xp,...,x, €
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X such that foralli=1,...,n—1, x; R x;11, and x,, R x1. A relation R is
said to be acyclic if there are no cycles.

For example, suppose that X = {a,b,c} and R = {(a,b), (b,c), (c,a)}. Then
R is a cycle on X which can be depicted as:

@/«;

Exercise 2.5 Suppose that X has three elements (i.e., X = {a,b,c}. How many
cycles can be formed from elements in X?

Often one is interested in relations that are acyclic. The main reason is that
if a relation on X has a cycle, then there is a subset of S C X for which there is
no element of S that can be considered the “largest” or “best" in S according to
R. There are two notions of the “largest" or “best" element in a set according
to a relation R.

Maximal

Suppose that X is a set, S C X and R is a relation on X. An elementm € S
is R-maximal in S provided that for all x € S, if x R m, then x = m. Let
maxg (S) be the set of maximal elements of S.

An equivalent definition of an element m € S being R-maximal in S is that
there is no x € S such that x R m (except possibly m). So, an element m € S is
maximal means that there is no element of S that is R-related to m.
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Example: Examples of maximal elements

Suppose that X = {a,b,c}. Consider the following examples

If R ={(aDb),(brc),(ac)}, then maxg(X) = {a} (thereisno x € X
such that x R a).

If R = {(a,b),(b,c),(c,a)}, then maxg(X) = @ (for each x € X,
there is y € X such that x # y and y R x).

R = @, then maxg(X) = {a,b,c} (for each x € X, thereisnoy € X
such that y R x).

R = {(a,a),(b,b),(c,c)}, then maxg(X) = {a,b,c} (for each x € X,
there is no y € X such that x # y and y R x).

R ={(a,b),(c,b)}, then maxg(X) = {a,c} (for each x € {a,c}, there
isno y € X such that x # y and y R x).

If R = {(a,b)}, then maxg(X) = {a,c} (note that there is no element
that is R-related to ¢)

If R ={(a,b),(b,a)}, then maxg(X) = {c} (again, note that there is
no element that is R-related to c).

The above examples illustrate that given a relation R on a set S, there may

be no maximal elements in S, a unique maximal element of S, or more than

one maximal element in S. However, if a relation R is complete on S (i.e., all
elements in S are related by R in some way), then there can be at most one
maximal element. Furthermore, when there is a unique maximal element in
a set S for a relation R, this element is R-related to every element of S. ! This
motivates the following definition.

!Unless S contains a single element and R is empty. In this degenerate case, the only
element of S is maximal.
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Maximum

Suppose that X is a set, S C X and R is a relation on X. An element
m € S is the R-maximum of S provided that for each x € S, either m R x
or x = m.

So, an element is the maximum of S provide that it is R-related to every other
element in S. Note that if a set S has an R-maximum, then it must be unique.
Every maximum element is maximal, but Example 2 shows that there may be
maximal elements that are not maximum.

Example: Examples of maximum elements

Suppose that X = {a,b,c}. Consider the following examples:

o If R={(a,b),(bc),(a,c)}, then a is the maximum in X.

If R ={(a,b),(b,c),(c,a)}, then there is no maximum in X.

R ={(a,b),(c,b)}, then there is no maximum in X.

If R = {(a,b)}, then there is no maximum in X (but a is the maxi-
mum of Y = {a,b}).

If R ={(a,a),(b,b),(c,c),(ab),(b,c) (ac)}, thenais the maximum
in X.

Exercise 2.6 Is it possible to find a relation that has a cycle and a non-empty set
of maximal elements? What about a relation that has a cycle, a non-empty set of
maximal elements, and is complete and transitive?

Exercise 2.7 Prove that if R is acyclic, then maxg(Y) # @. Is the converse true?
(Why or why not?)

Relations are an important mathematical tool used throughout Economics,
Logic and Philosophy. You have already studied binary relations during your
mathematical eduction: =, <,>, <, and > are all relations on numbers (eg.,
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the natural numbers IN, real numbers IR, rational numbers Q, etc.) and C
is a relation on the power set of a set S. For example, the binary relation
<C NN x N is the set

{(a,b) | a,b € N and a is less than or equal to b}

Exercise 2.8 What properties do <, <, and = satisfy (assume the relations are de-
fined on the natural numbers IN)?

If X is a set, we write X" to denote the n-fold cross product. That is
X'=Xx---xX
%/_/
n-times

For example, if X = {a,b}, then X?> = {(a,a), (a,b), (b,a), (b,b)}.

Example: Products of products

There are situations when one must consider products of sets which are
themselves products. For example, suppose that X = {a,b}. Let Y = X2
Then, elements Y? consists of tuples of length 2 where each component is
a tuple of length 2 of elements from X:

Y2 = {((a,a),(a,a))((a,a),(a,b)),((a,a),(ba)),((aa),(bb)),
((a,b), (a,a)), ((a,b), (a,b)),((a,b), (b, a)),((a,b), (b, b)),
((b,a),(a,a)),((b,a),(a,b)),((b,a),(b,a)),((b,a),(b,b)),
((b,b), (a,a)),((b,b), (a,b)),((b,b), (b,a)),((b,b), (b, b))}

An example of an element in Y2 is ((a,a), (b,a),(a,b)). Since Y has 4
elements, we have that |Y3| = 64. More generally, if A has m elements,
|A| = m, then |A"| = m".

Often relations are intended to represent an ordering or ranking of a set of
objects. This is the motivation behind the following definitions.
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Preorder

A relation R on X is a preorder if, and only if, R is reflexive (for all x € X,
x R x) and transitive (for all x,yz € X if x Ry and y R z then x R z).

Partial Order

A relation R on X is a partial order, or poset if, and only if, R is reflexive
(for all x € X, x R x), anti-symmetric (for all x,y € X, if x Ryand y R x
then x = y) and transitive (for all x,yz € X if x Ry and y R z then x R z).

Total Order

A partial order R on X is a total order, or linear order, if it is complete
(for all x,y € X, either x Ry or y R x). A total order R on X that satisfies
asymmetry (for all x,y € X, if x R y then it is not the case that y R x) is
called a strict total order, or strict linear order.

The standard example of a partial order is the relation C on p(X). An
example of a total order is the less-than-or-equal relation on the natural num-
bers <C IN x IN. Finally, an example of a strict total order is the less-than
relation on the natural numbers <C IN x IN.

Suppose that R is a relation on X. We say that R’ is a subrelation of R
when R’ C R. For example, if R C X x X, then we can define the following
subrelations (typically, R is assumed to be preorder):

Strict Subrelation For each x,y € X, Pr if, and only if, x R y and it is
not the case that y R x.

Indifference Order: For each x,y € X, x Iz v if, and only if, x R y and
y R x.

Incomparability Order: For each x,y € X, x Nr y if, and only if, it is
not the case that x R y and it is not the case that y R x
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The above relations play an important role when R is intended to represent
a ranking or preference ordering of a decision maker.

Exercise 2.9 If R is complete and transitive, what properties do Pr, Ir and Npg

satisfy?

Equivalence Relation

A relation R that is reflexive, symmetric and transitive is said to be an
equivalence relation

Equivalence Class

If R is an equivalence relation on A, then for each a € A, the equivalence
class of a, denoted by [a], is the following set [a] = {b | aRb}.

Example: Equivalence Relation

Suppose that A = {1,2,3} and R = {(1,1),(2,2),(3,
Then R is an equivalence relation and we have that [1]
and [3] = {3}.

Suppose that P is the partial order

3),(1,2), 1)},
= [ = {12}

P={(1,1),(2,2),(3),(1,2),(21),(1,3),(23),(3,3)}.
Then the indifference relation associated with R,

Ip ={(1,1),(2,2),(3,3),(1,2),(2,1)}

is an equivalence relation on A.

We can now state our first theorem. It is somewhat technical, but illustrates
a fundamental idea about equivalence classes. Every equivalence relation par-
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titions a set and every partition of a set has an equivalence relation associated
with it. We start by defining a partition.

Partition

A partition of a set S is a collection of subsets of S, S = {S1,S,,...}
(possibly infinite), such that

e the sets are pairwise disjoint: if S;,S; € S with i # j,
then S; N S] =Q

e their union is S, thatis, S = Ug.¢sS;.

Theorem 2.10 The equivalence classes of any equivalence relation R on a set A forms
a partition of A, and any partition of A determines an equivalence relation on A for
which the sets in the partition are the equivalence classes.

Proof. Suppose R is an equivalence relation on A. We must show that the
equivalence classes of R forms a partition of A.

1. Each equivalence class is non-empty, since a R a for all a € A.

2. Clearly A is the union of all the equivalence classes (since each element
of A belongs to at least one equivalence class)

3. We must show any two equivalence classes are disjoint. Let [a], [b] be
two distinct equivalence classes. Suppose ¢ € [a] N [b]. Then a R ¢ and
b R c. Hence by symmetry, ¢ R b. And so by transitivity, a R b.

Let x € [a], then x R ¢ and by the above argument x R b (Why?), and so
x € [b]. Thus [a] C [b]. Using a similar argument, we can show [b] C [a].
Therefore [a] = [b], which contradicts the fact that [a] and [b] are distinct
equivalence classes.

For the second part of the theorem, suppose A = {Aj,...,A,} is any
partition of A. Define R = {(a,b) | a € A; and b € A;}. We must show that R
is reflexive. Let 2 € A be any element. Then a € A; for some i, and hence by
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definition of R, a R a. Next we will show that R is symmetric. Suppose a R b.
Thena € A; and b € A; for some i. Then clearly, b € A; and a € A; and hence
b R a. We must show R is transitive. Suppose, @ R b and b R c. Then a € A;
and b € Aj,and b € Ajand ¢ € A; for some i,j. Since b € A;NAj, A; = A
(since the elements of A are pairwise disjoint). Therefore, a € A; and ¢ € A;
and hence a R c. QED

Maximal/Maximum elements reconsidered: = When R is a complete com-
plete relation, then it is convenient to define the maximal elements, denoted
bestr(X), as follows:

bestr(X) ={x € X |x Ry forally € X}

If R is anti-symmetric, then this definition is equivalent to Definition 2. To
illustrate the difference between the definitions, suppose that X = {a,b,c}
and R = {(a,b), (b,a),(a,c),(b,c),(a,a),(b,b),(c,c)}. According to Definition
2 there are no maximal elements (for each element of x € X, there is an
element y € X such that x # y and y R x). (Similarly, there is no maximum
element in X). However, if R represents a ranking or preference order of a
decision maker, then it is natural to interpret the fact that a R b and b R a
as meaning that “a and b are tied according to R". According to the above
definition, we have that a,b € bestg(X).

We can related the different notions of “best" elements of X as follows.
Suppose that X = {a,b,c} and R is a preorder on X. Then, let X; = {{a,b},{c}}
and define R C X x X is as follows: For Y,Z € X, Y R Z iff for all y€Y,and
forall z € Z, y R z. Now, R is an anti-symmetric, complete and transitive.
Furthermore, we have that bestg (X) is the maximum of maxg(X).

More generally, Given a set X with a preorder R on X, let X be the set
of equivalence classes according to the indifference relation Ig. Then, for
[x], [y] € X, let [x] R [y] iff x R y. Then, R is a total order on X and bestg(X)
is the R-maximum of X.

2.1 Functions

A function from a set A to a set B is a way of associating elements of A with
elements of B. Formally, a function is a special type of relation:

19



Function

A function f is a binary relation on A and B (i.e., f C A X B) such that
for all a € A, there exists a unique b € B such that (a,b) € f. We write
f: A — Bwhen f is a function, and if (a,b) € f, then write f(a) = b.

Example: Example of a function

Suppose that A = {1,2,3} and B = {a,b}. Examples of relations that are
functions include:

o Ry ={(L,4),(2,a),(3,b)}
e Ry ={(1,a),(2,a),(3,a)}
e R3={(L,a),(3,b)}

An example of a relation that is not a functionis Ry = {(1,4), (1,b), (3,b) }.

Suppose f : A — B is a function. The set A is called the domain and B the
codomain.

Image

The image of a set A’ C A is the set:

f(A")={b| b= f(a) forsomea € A’}

Range

The range of a function is the image of its domain.
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Surjection

f is a surjection (or onto) if its range is equal to its codomain. Le., f is
surjective iff for each b € B, there exists an a € A such that f(a) =0

Injection

f is an injection (or 1-1) if distinct elements of the domain produce distinct
elements of the codomain. Le., f is 1-1 iff a # a’ implies f(a) # f(a’), or
equivalently f(a) = f(a’) implies a = a’.

Bijection

a one-to-one correspondence.

Inverse Image

Suppose that f : A — B and that Y C B. The inverse image of Y is the set
fAY)={x|x€ Aand f(x) € Y}

Example: Function on the powerset

Suppose that X = {a,b,c}. A function from non-empty subsets of X to
non-empty subsets of X is denoted f : (p(X) — Q) — (p(X) —@). An
example of such a function is:
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f(a}) = {b}
f{b}) = {b}
fHe}) = e
f({ab}) = A{a}
f(acy) = {b}
f({be}) = {b;
f(abcy) = {bc}

Consider the following constraint
forallY € p(X)—@, f(Y)CY

The above function does not satisfy this constraint since, for instance,

f({a}) = {b} Z {a} (we also have that f({a,c}) = {b} £ {a,c}. An

example of a function that satisfies the above constraint is:

f(a}) = Ha}
f({b}) = {b}
fe}) = e}
f({a,b}) = A{a}
fHacy) = e}
f({be}) = {b}
f(Habey) = {bc}

3 Proofs

3.1 Introduction

Learning how to write mathematical proofs takes time and lots of practice. A
proof of a mathematical statement is simply an explanation of that statement
written in the language of mathematics. It is very important that you become
comfortable with the definitions. If you don’t know or understand the for-
mal definitions, then you will not be able to write down your explanations.
It would be like trying to explain something to someone in Italian without
actually knowing Italian.
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3.2 Proving Equality and Subset

How do you prove that two sets are equal? The answer to this question
depends on who you are trying to convince. In this class, we will always err
on the side of caution and given fairly detailed formal proofs. In turns out
that proving two sets are equal reduces to proving the sets are subsets of each
other.

Fact3.1 A =Bifandonlyif AC Band BC A

Why is this true? Well, if A and B are equal, then they both name the same
collection of objects. Le., B is another name for the collection of objects that A
names and vice versa. So, if A and B are equal then of course A C B since A
is always a subset of itself and B is simply another name for A. Similarly, we
can show B C A. Conversely, suppose A C B and B C A. We want to know
that A and B name the same collection of objects. Suppose they didn’t, then
there should be some object x € A that is not in B or some object y € B that
is not in A. Well, we know such an object x cannot exist since A C B, and so,
every element of A is an element of B. Similarly, the element y cannot exist.
Hence, A and B must name the same collection of objects.

What about trying to prove that two sets are not equal? This turns out to
be easier. In order to show that A does not equal B, you need only find an
element in A that is not in B OR an element of B that is not in A.

Showing two sets are equal reduces to proving that the sets are subsets
of each other. But, how to show that a set is a subset of another set? The
general procedure to show A C B is to show that each element of A is also
and element of B. This is straightforward if A and B are both finite sets. For
example, suppose A = {2,3,4} and B = {1,2,3,4,5,6}. How do we show
that A C B. Since A is finite, we simply notice that2 € B, 3 € B and 4 € B.

What if A is the set of even numbers and B is the set of all integers? We
would get awfully tired (and bored) if we waited around to show that each
and every element of A is also an element of B. Imagine A and B are two
boxes, and you would like to know whether all the elements in A’s box are
also in B’s box. Suppose you reach in box A and select an element, say the
number 10. After inspecting 10, you notice that 10 is in fact an integer and so
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must also be an element of box B. But you are not satisfied, since you cannot
be sure that the next element you choose from A will also be an element of
B. In fact, even if you have shown that the first million even integers are all
members of box B, you cannot be sure that the next element you select from
box A will in fact be an integer. Instead, you should consider the property
that all elements of A have in common and show that any object satisfying
that property must be an element of B. What property does x satisfy if it is
contained in A’s box? The answer is x = 2 - n, where 7 is some integer. Then,
you simply notice that if 7 is an integer, then 2 - n is also an integer; and hence,
any element of A must also be an element of B.

3.3 Examples
Theorem 3.2 AUB= ANB

Proof. We must show AUBC AnBand ANB C AUB.

We will show AUB C ANB. Suppose x € AUB. Then x € A or x € B.
Suppose x € A then x ¢ A. Then x ¢ AN B (if x is not in A then x is certainly
not in both A and B). Hence x € AN B. Suppose x € B. For similar reason,
x € AN B. Hence in either case, x € AN B. Therefore, AUB C AN B.

We must show ANB C AU B. Suppose x € ANB. Then x ¢ AN B, and
so x & A or?> x € B. Hence either x € A or x € B. In either case, x € A UB.
QED

Theorem 3.3 A C Biff ANB = A.

Proof. We must show A C B implies ANB = A and ANB = A implies
A CB.

Assume that A C B. We must show ANB = A. Le. we must show (1)
ANB C A and (2) A € AN B. The first statement is trivial, it is always the

2Notice that x ¢ A N B does not imply that x ¢ A and x ¢ B. The "and" in italics is should
be an "or". Make sure you clearly understand the logic here, since this is often misunderstood
by students.
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case that AN B C A. For the second statement, assume x € A. We must show
x € ANB. Since A C B, x € B. Hence x € AN B.

Assume ANB = A. We must show A C B. Let x € A. Thenx € ANB
since A = AN B. Hence x € B. QED

Attempt to answer these questions before looking at the answers.
Exercise 3.4 Suppose that f : A — B. Prove or disprove the following:
1. f XCAandY C A, then f(XNY) = f(X)N f(Y).
2.IfXCAYCAand fis1-1then f(XNY) = f(X)Nf(Y).
3. f X CBandY C B, then f~1(XNY) = f~4X)N f1(Y).
Claim 3.5 It not the case that if X C AandY C A, then f(XNY) # f(X)N f(Y).

Proof of Claim 3.5. To prove this, we must find counterexample. Let A =
{1,2,3} and B = {a,b,c}. And f : A — B be defined as follows: f(1) = ¢,
f(2) =band f(3) =c. Let X = {1,2} and Y = {2,3}. Then XNY = {2}
and f(XNY) = f({2}) = {f(2)} = {b}. But, f(X)Nf(Y) = {f(1), f(2)} N
{f(2),fB3)} ={c, b} n{b,c} = {b,c}. Hence, f(XNY) # f(X) N f(Y).

QED (of Claim)

It is true that for any function f : A — B and all subsets X,Y C A, f(XNY) C
f(X) N f(Y) (for a proof see below).

Claim 3.6 f X C A, Y C Aand fis 1-1then f(XNY) = f(X) N f(Y).

Proof of Claim 3.6. Suppose that f : A — Bis a 1-1 function. Let X C A and
Y € A. We must show (1) f(XNY) C f(X)Nf(Y) and (2) f(X) N f(Y) C
f(XNY).

Notice that (1) is true even if f is not 1-1. Let y € f(XNY). Then there is
an element x € X N Y such that f(x) =y. Sincex € XNY,x € Xand x € Y.
Therefore, y = f(x) € f(X) and y = f(x) € f(Y). Hence, y € f(X) N f(Y).
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We now prove (2). Lety € f(X)N f(Y). Theny € f(X) and y € f(Y).
Since y € f(X) there is x; € X such that f(x1) = y. Since y € f(y), there is
xp € Y such that f(xp) = y. Since f is 1-1, x; = x,. Therefore x; = x, € XNY;
and so, y = f(x1) = f(x2) € f(XNY). QED (of Claim)

Claim 3.7 If X C Band Y C B, then f~1{(XNY) = f~4X) N f~1(Y).

Proof of Claim 3.7. Let f : A — B be any function and suppose X C B and
Y C B. We must show f~1(XNY) C fYX)nf1(Y)and f 1 (X)Nf1(Y) C
FHXNY).

Suppose x € f~1(XNY). Then f(x) € XNY. Hence f(x) € X and
f(x) €Y. Since f(x) € X, x € f~1(X). Since f(x) €Y, x € f~1(Y). Therefore
xe fAHX)NFH(Y).

Suppose x € f1(X)N f~1(Y). Then x € f~1(X) and x € f~1(Y). There-
fore, f(x) € X and f(x) € Y. Hence, f(x) € XNY;and so, x € f1(XNY).

QED (of Claim)
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