
CMSC423: Bioinformatic Algorithms,
Databases and Tools

Exact string matching:
introduction

Sequence alignment: exact matching

ACAGGTACAGTTCCCTCGACACCTACTACCTAAG
CCTACT
CCTACT
CCTACT
CCTACT

Text
Pattern

for i = 0 .. len(Text) {
 for j = 0 .. len(Pattern) {
 if (Pattern[j] != Text[i]) go to next i
 }
 if we got there pattern matches at i in Text
}

Running time = O(len(Text) * len(Pattern)) = O(mn)

What string achieves worst case?

Worst case?

AA
AAAAAAAAAAAAT

(m – n + 1) * n comparisons

Can we do better?

the Z algorithm (Gusfield)

For a string T, Z[i] is the length of the longest prefix of T[i..m]
that matches a prefix of T. Z[i] = 0 if the prefixes don't match.

T[0 .. Z[i]] = T[i .. i+Z[i] -1]

Z[i] i i + Z[i] - 1
A T

m

Example Z values

ACAGGTACAGTTCCCTCGACACCTACTACCTAAG
0010004010000000003020002002000110

Z[i] i i + Z[i] - 1

Can the Z values help in matching?

Pattern Text

If there exists i, s.t. Z[i] = length(Pattern)
 Pattern occurs in the Text starting at i

Create string Pattern$Text where $ is not in the alphabet

example matching

• What is the largest Z value possible?

CCTACT$ACAGGTACAGTTCCCTCGACACCTACTACCTAAG
01001000100000100002310100106100100410000

Can Z values be computed in linear time?

Z[1]?

AAAGGTACAGTTCCCTCGACACCTACTACCTAAG

compare T[1] with T[0], T[2] with T[1], etc. until mismatch

Z[1] = 2

This simple process is still expensive:
T[2] is compared when computing both Z[1] and Z[2].

Trick to computing Z values in linear time:
each comparison must involve a character that was
not compared before

Since there are only m characters in the string, the overall
of comparisons will be O(m).

Basic idea: 1-D dynamic programming

Can Z[i] be computed with the help of Z[j] for j < i?

i

j

Assume there exists j < i, s.t. j + Z[j] – 1 > i
then Z[i – j + 1] provides information about Z[i]

If there is no such j, simply compare characters T[i..] to T[0..]
since they have not been seen before.

i-j+1

Z[j]

Three cases
Let j < i be the coordinate that maximizes j + Z[j] – 1
(intuitively, the Z[j] that extends the furthest)

I. Z[i – j + 1] < Z[j] – i + j – 1 => Z[i] = Z[i – j + 1]

i

ji-j+1

Z[j]

i

ji-j+1

Z[j]

i

ji-j+1

Z[j]
A C C

II. Z[i – j + 1] > Z[j] – i + j – 1 => Z[i] = Z[j] –i + j - 1

III. Z[i – j + 1] = Z[j] – i + j – 1 => Z[i] = ??, compare from
 i + Z[i – j + 1]

A C

???

Time complexity analysis
• Why do these tricks save us time?

1. Cases I and II take constant time per Z-value computed –
total time spent in these cases is O(n)

2. Case III might involve 1 or more comparisons per Z-value
 however:
 - every successful comparison (match) shifts the

rightmost character that has been visited
 - every unsuccessful comparison terminates the “round”

and algorithm moves on to the next Z-value

 total time spent in III cannot be more than # of characters in
the text

Overall running time is O(n)

Space complexity?
• If using Z algorithm for matching, how many Z values do we

need to store?

PPPPPPPPPP$TTTTTTTTTTTTTTTTTTTTTTTT

Some questions
• What are the Z-values for the following string:

TTAGGATAGCCATTAGCCTCATTAGGGATTAGGAT

• In the string above, what is the longest prefix that is
repeated somewhere else in the string?

• Trace through the execution of the linear-time algorithm for
computing the Z values for the string listed above. How
many times do rules I, II, and III apply?

Z algorithm, not just for matching

• Lempel-Ziv compression (e.g. gzip)

• Note: other exact matching algorithms used for data
compression (e.g. Burrows-Wheeler transform relates to
suffix arrays)

Z[i] i i + Z[i] - 1 n

if Z[i] = 0, just send/store the character T[i], otherwise,
instead of sending T[i..i+Z[i] – 1] (Z[i] – 1 characters/bytes)
simply send Z[i] (one number)

Knuth-Morris-Pratt algorithm

Given a Pattern and a Text, preprocess the Pattern to compute
sp[i] = length of longest prefix of P that matches a suffix of P[0..i]

isp[i]
P

T

i

j

A

CP

P'

● Compare P with T until finding a mis-match
 (at coordinate i + 1 in P and j + 1 in T).
● Shift P such that first sp[i] characters match T[j – sp[i] + 1 .. j].
● Continue matching from T[i+1], P[sp[i]+1]

index: 0123456
pattern: AAAAAAA
sp: 0123456

index: 0123456
pattern: AAAAAAB
sp: 0123450

AAAAABAAAAAABAAAAAAA

index: 0123456
pattern: ABACABC
sp: 0010120

ABABBABAABABACABC

KMP
• Does it work?

• Can you miss a match by shifting too far?

• How do you prove that?

KMP – speed
• How many character comparisons are made during the

execution?

• If a character in the text matches a character in the pattern,
do we have to look at it again?

• How many times can a character in the text fail to match the
pattern?

KMP – computing sp values
• Can sp values be computed efficiently?

• Can you use Z values?
• (aside – sp' values)

• Can you use induction as for the Z values?

