The era of long reads
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Assembly review
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Genome Assembly

p Assembllng a puzzle with a billion pleces
INTERRRETATON




Assembly the Celera way

» Step O:
Find overlaps Original:
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Toward Simplifying and Accurately Formulating Fragment Assembly.
Myers. Journal of Computational Biology (1995)




Assembly the Celera way

» Step 2:

reduction 0 I I
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Unique After Step 3:
f I Chunk

» Output
“Unitigs”

Chunk Graph

Toward simplifying and accurately formulating fragment assembly.
Myers. Journal of Computational Biology (1995)



Read length matters (E. colj
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* No errors, perfect coverage, uniform read length

One chromosome, one contig: complete microbial genomes from long-read sequencing and assembly.
Koren and Phillippy. Current Opinion Microbiology (2015)



How long are microbial repeats?
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Reducing assembly complexity of microbial genomes with single-molecule sequencing.
Koren et al. Genome Biology (2013)



A new era of sequencing
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PacBio Sequel II

« Single Molecule sequencer (one DNA strand)
- Ligate adapters to make a bell ¢ = =}
* Load molecules onto zero mode waveguides
* Real-time polymerase sequencing
* Video analysis

+ Capable of sequencing long molecules
+ 10-60 kbp
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* High error (85-90% accuracy) but random j§
« Can read shorter reads multiple times
- Converges to near-perfect consensus




Oxford Nanopore MinION

$1000 (free) instrument
$100 / bacterial genome
85-95% read accuracy
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Oxford nanopore technologies



Long read assembly in practice
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Real data is messy

» Every technology has its own quirks
» Tools developed for one don’t work on others

» Best tool may not be the theoretically optimal but
best engineered



Example: PacBio Sequel II

» Single Molecule sequencer (one DNA strand)
- Ligate adapters to make a bell & - =3 Ny |

» Load molecules onto zero mode wavegwdes
 Real-time polymerase sequencing
* Video analysis
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What can go wrong
‘More than 1 read loaded into a well
-Chimeric sequence when basecaller mixes them

‘Read goes around adapter
-Same sequence (forward then complement strand)

-Secondary DNA structure slows down/confuses polymerase




Example: Oxiord Nanopore MinION

+ Single Molecule sequencer (one DNA strand)
+ Ligation or transposase to add adapter
 Load molecules onto flowcell guides
* DNA denatured in real time and passed through pore
« Signal analysis to identify bases

AN “\s\“\““ Id]ey :: SeN Mk
What can go wrong o

*Two reads pass through same pore quickly
-Chimeric sequence when not detected
*Can be same as PacBio chimera (fwd then comp)

-Continuous current mistaken for empty pore
*Single read split into multiple parts

*DNA structure re-folding on the other side of the pore
-Can make one strand higher error than the other



In summary

» Long-read data is noisy

Base errors

Chimeric reads

Solution: read clustering, correction, and trimming
» Overlaps are long, and graph is big

All-pairs alignment is slow

Full graph is a giant tangle (due to repeats)

Solution: MinHash “best” overlap graph

» D. melanogaster results

Celera Assembler v8: 630,000 CPU hours, 15 Mbp NG50
Canu v1: 500 CPU hours, 21 Mbp NG50

Assembling large genomes with single-molecule sequencing and locality-sensitive hashing.
Berlin et al. Nature Biotechnology (2015)



Fast overlapping with MinHash
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On the resemblance and containment of documents. Broder (1997)



tf-idf weighted MinHash

elephgnettecnve The Stolen White Elephant by Mark Twain
heard louder
mannig ht open The Tell-Tale Heart by Edgar Allan Poe
elephant

Shooting an Elephant by George Orwell



A few extra details

» Throw hashes in hash table for all-pairs speedup
Only look at reads sharing some minimum number
» Jaccard based on k-mers, want a base error rate

Estimate from k-mers in the first round of overlapping
Compute exactly in the second round for contigging

»  tf-idf weighted MinHash
Common repeats more likely to get larger hash value
Distinctive words more likely to get smaller hash value
Lower memory and runtime without k-mer filtering

» Keep position for each hash
Can be used to approximate the overlap bounds
(See German tank problem)
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* And it’s written in Java



Overlap-based correction and trimming

» Every (long) read corrected by its overlaps
Consensus called for covered bases
Missing coverage suggests low-quality or chimeras
Read correction acc: >99% PacBio, <98% Nanopore

» Data cleaning is key to assembly
Necessary, not glamorous



Best overlap graph

» After transitive reduction, only best are left
With enough coverage, nearly a global alignment
Find the “best” 5’ and 3’ overlap for each read
Build a graph from these edges

» Greedy approach, can be mislead by repeats
Works great if given only “true” overlaps



Check your work

» Overlap filtering + greedy = pretty good
Automatically split divergent repeats and alleles

» Can still make mistakes, so...
Annotate repeats within contigs using overlaps
Check repeats for spanning reads
Check local error rate across each contig
Break on suspicion of misjoin

» Complete the graph with non-best overlaps



Repeat and haplotype separation
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Don’t know the read error rate a priori



Repeat and haplotype separation

@ O Best overlaps
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Can long reads solve assembly?
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Yes



How long do reads need to be, for human?

» How long are the repeats?
7 kKbp LINEs
1 Mbp+ rDNA arrays
1 Mbp+ centromere arrays
10 Mbp+ heterochromatin blocks

» Coverage and accuracy matter too
1,000X of 100 bp reads at 100% accuracy? NO
10X of 10,000,000 bp reads at 100% accuracy,
100X of 100,000 bp reads at 90% accuracy,



Ultra-long read sequencing

» ONT R9 pore: E. coli CsgG membrane proteln
» 100 kb read N50, max over to 1 Mb!

~2 miles in 37 min

*Assuming 3.4 A per bp, 1 Mbp = 3,400,000 A (0.34 mm) = 40,000x height of the pore
»  http://lab.loman.net/2017/03/09/ultrareads-for-nanopore/ (Josh Quick & Nick Loman, U. Birmingham)



Ultra-long read benetfits
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Nanopore sequencing and assembly of a human genome with ultra-long reads.
Jain, Koren, Miga, Quick, Rand, Sasani, Tyson, et al. Nature Biotech (2018)



Ultra-long read benetfits
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Nanopore sequencing and assembly of a human genome with ultra-long reads.
Jain, Koren, Miga, Quick, Rand, Sasani, Tyson, et al. Nature Biotech (2018)



Human genome, 2001
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ref28 / hg10 : N50 0.5 Mbp



The human genome, 2017
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GRCh38 NG50 contig 56.4 Mbp

The Genome Reference Consortium consists of:
. l l

sanger Wellcome Sanger Institute

( ™y _.McCDONNELL
GENOME INSTITUTE  The McDonnell Genome Institute at Washington University

EMBL-EBI :

The European Bioinformatics Institute
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The National Center for Biotechnology Information



The human genome, 2018
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CHM13 NG50 contig 79.5 Mbp (50x UL ONT)



An assembly is a hypothesis
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K-mers as a measure of completeness

a Trio-binning b Trio-binning (Col-0) c Trio-binning (Cvi-0)
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Mapleson et al,

Bioinformatics (2016)

K-mers only in assembly
(misassembled bps)

Haplotype completeness
Over-assembled (duplications)
Repeat copies ~ exp. copies?

Frequency (107)

34



Complementary technologies

» StrandSeq to validate large-scale structure

0
5.0e+07 1.0e+08 1.56+08
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Collapse in assembly, binoano map shows missing repeat units. 13 copies.
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Who said assembly wasn’t cool?

> April 1, 2016



Assembly is not solved
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X Centromere Detail

DXZ| Satellite

Xq XCEN Xp



» Unique structural variants from PacBio
» Unique k-mers confirmed by Duplex-Seq
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There isn’t a single “genome”
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The genomes assembly problem
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pseudo-haplotype

State of the art




Trio binning with TrioCanu

Sire
ll I x

F1 cross

Parental
k-mers

o

Dam

Sire assembly

Sire haplotype

Dam haplotype

Complete assembly of parental haplotypes with trio binning.

Koren, Rhie et al.2018



Esperanza: The nearly perfect diploid

Sire (Highland) Esperanza Dam (yak)
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25 26 27 28 29 X 25 26 27 28 29 X

125x PacBio coverage (~60x per haplotype), TrioCanu haplotig NG50 70 Mbp, BUSCOs 94%
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