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Protein sequence alignments have become an important tool for molecular biologists. Local
alignments are frequently constructed with the aid of a “substitution score matrix” that
specifies a score for aligning each pair of amino acid residues. Over the years, many different
substitution matrices have been proposed, based on a wide variety of rationales. Statistical
results, however, demonstrate that any such matrix is implicitly a “log-odds’ matrix, with
a specific target distribution for aligned pairs of amino acid residues. In the light of
information theory, it is possible to express the scores of a substitution matrix in bits and to
see that different matrices are better adapted to different purposes. The most widely used
matrix for protein sequence comparison has been the PAM-250 matrix. It is argued that for
database searches the PAM-120 matrix generally is more appropriate, while for comparing
two specific proteins with suspected homology the PAM-200 matrix is indicated. Examples
discussed include the lipocalins, human o, B-glycoprotein, the cystic fibrosis transmembrane
conductance regulator and the globins.
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1. Introduction

General methods for protein sequence comparison
were introduced to molecular biology 20 years ago
and have since gained widespread use. Most early
attempts to measure protein sequence similarity
focused on global sequence alignments, in which
every residue of the two sequences compared had to
participate (Needleman & Wunsch, 1970; Sellers,
1974; Sankoff & Kruskal, 1983). However, because
distantly related proteins may share only isolated
regions of similarity, e.g. in the vicinity of an active
site, attention has shifted to local as opposed to
global sequence similarity measures. The basic idea
is to consider only relatively conserved sub-
sequences; dissimilar regions do not contribute to or
subtract from the measure of similarity. Local simi-
larity may be studied in a variety of ways. These
include measures based on the longest matching
segments of two sequences with a specified number
or proportion of mismatches (Arratia ef al., 1986;
Arratia & Waterman, 1989), as well as methods that
compare all segments of a fixed, predefined
“window” length (McLachlan, 1971). The most
common practice, however, is to consider segments
of all lengths. and choose those that optimize a
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similarity measure (Smith & Waterman, 1981; Goad
& Kanehisa, 1982; Sellers, 1984). This has the
advantage of placing no a priori restrictions on the
length of the local alignments sought. Most data-
base search methods have been based on such local
alignments (Lipman & Pearson, 1985; Pearson &
Lipman, 1988; Altschul et al., 1990).

To evaluate local alignments, scores generally are
assigned to each aligned pair of residues (the set of
such scores is called a substitution matrix), as well as
to residues aligned with nulls; the score of the
overall alignment is then taken to be the sum of
these scores. Specifying an appropriate amino acid
substitution matrix is central to protein comparison
methods and much effort has been devoted to
defining, analyzing and refining such matrices
{(McLachlan, 1971; Dayhoff et al., 1978; Schwartz &
Dayhoff, 1978; Feng et al., 1985; Rao, 1987; Risler et
al., 1988). One hope has been to find a matrix best
adapted to distinguishing distant evolutionary
relationships from chance similarities. Recent
mathematical results (Karlin & Altschul, 1990;
Karlin et al., 1990) allow all substitution matrices to
be viewed in a common light, and provide a
rationale for selecting particular sets of “‘optimal”
scores for local protein sequence comparison.
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2. The Statistical Significance of Local
Sequence Alignments

Global alighments are of essentially no use unless
they can allow gaps, but this is not true for local
alignments. The ability to choose segments with
arbitrary starting positions in each sequence means
that biologically significant regions frequently may
be aligned without the need to introduce gaps.
While, in general, it is desirable to allow gaps in
local alignments, doing so greatly decreases their
mathematical tractability. The results described
here apply rigorously only to local alignments that
lack gaps, i.e. to segments of equal length from each
of the two sequences compared. Some recent data-
base search tools have focused on finding such align-
ments (Altschul & Lipman, 1990: Altschul et al.
1990). However, the statistics of optimal scores for
local alignments that include gaps (Smith ef al.
1985; Waterman et al., 1987) are broadly analogous
to those for the no-gap case (Karlin & Altschul,
1990; Karlin ef al.. 1990), where more precise results

are available. Therefore, one may hope that many of

the basic ideas presented below will generalize to
local alignments that include gaps.

Formally, we assume that the aligned amino acids
a; and @; are assigned the substitution score s;;.
Given two protein sequences, the pair of equal
length segments that, when aligned, have the
greatest aggregate score we call the Maximal
Segment Pair (MSPt). An MSP may be of any
fength: its score is the MSP score.

Since any two protein sequences, related or un-
related. will have some MSP score, it is important to
know how great a score one can expect to find
simply by chance. To address this question one
needs some model of chance. The simplest is to
assume that in the two proteins compared, the
amino acid a; appears randomly with the prob-
ability p;. These probabilities are chosen to reflect
the observed frequencies of the amino acids in
actual proteins. For simplicity of discussion we will
assume both proteins share the same amino acid
probability distribution; more generally, one can
allow them to have different distributions. A
random protein sequence is simply one constructed
according to this model.

For the sake of the statistical theory, we need to
make two crucial but reasonable assumptions about
the substitution scores. The first is that there be at
least one positive score and the second is that the
expected score Y ; p;p;s; be negative. Because we
permit the length of a segment pair to be adjusted
to optimize its score, both these assumptions are
necessary also from a practical perspective. If there
were no positive scores, the MSP would always
consist of a single pair of residues (or none at all. if
this were permitted), and such an alignment is not
of interest. If the expected score for two random
residues were positive, extending a segment pair as

1 Abbreviations used: MSP. Maximal Segment Pair:
Tg. immunoglobulin.

far as possible would always tend to increase its
score; this violates the idea of seeking local align-
ments. Substitution matrices used in other contexts,
such as global alignments (Needleman & Wunsch,
1970)  or loeal alignments using windows
(McLachlan, 1971), need not satisfy  these
constraints. However, unless otherwise stated, it
will be assumed below that any substitution matrix
satisfies the two conditions described.

The statistical theory of MSP scores (Karlin &
Altschul, 1990; Karlin et al.. 1990} involves a key
parameter A. which is the unique positive solution to
the equation:

X pipy e =1. ()
ij

Notice that multiplying all the scores of a substitu-
tion matrix by some positive constant does not
effect the relative scores of any subalignments. Two
matrices related by such a factor can, therefore. be
considered essentially equivalent. Inspection of
equation (1) reveals that multiplying all scores by «
also has the effect of dividing 4 by a. The parameter
A may, therefore, be viewed as a natural scale for
any scoring svstem: its deeper meaning will be
discussed below,

Given two random protein sequences as described
above, how many distinct. or “locally optimal™
(Sellers, 1984) MSPs with score at least N are
expected to oceur simply by chance? This number is
well approximated by the formula:

KNe *8 (2)

where N is the product of the sequences’ lengths.
and K is an explicitly calculable parameter (Karlin
& Altschul, 1990: Karlin ¢t «al.. 1990). When
comparing a single random sequence with all the
sequences in a database, setting V to the product of
the query sequence length and the database length
(in residues) yields an upper bound on the number
of distinct MSPs with score at least N that the
search is expected to yield.

3. Optimal Substitution Matrices for Local
Sequence Alignment

Formula (2} allows us to tell when a segment pair
has a significantly high score. However. it does not
assist  in  choosing an  appropriate substitution
matrix in the first place. A second class of results,
however, has direct bearing on this question. These
state that among MSPs from the comparison of
random sequences, the amino acids a; and «a; are
aligned with frequency approaching g;; = p;p; e™v
(Arratia et al., 1988; Karlin & Altschul, 1990: Karlin
et al., 1990; Dembo & Karlin, 1991).

Given any substitution matrix and random pro-
tein model, one may easily calculate the set of
target frequencies, ¢;;. just described. Notice that
by the definition of 4 in equation (1). these target
frequencies sum to 1. Now among alignments repre-
senting distant homologies. the amino acids are
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paired with certain characteristic frequencies. Only
if these correspond to a matrix’s target frequencies,
it has been argued, can the matrix be optimal for
distinguishing distant local homologies from simi-
larities due to chance (Karlin & Altschul, 1990).

Any substitution matrix has an implicit set of
target frequencies for aligned amino acids. Writing
the scores of the matrix in terms of its target
frequencies, one has:

,s,.,:(;nq"{ 5 (3)
Pib; /

In other words, the score for an amino acid pair can
be written as the logarithm to some base of that
pair’s target frequency divided by the background
frequency with which the pair occurs. Such a ratio
compares the probability of an event occurring
under two alternative hypotheses and is called a
likelthood or odds ratio. Scores that are the
logarithm of odds ratios are called log-odds scores.
Adding such scores can be thought of as multiplying
the corresponding probabilities, which is appro-
priate for independent events, so that the total score
remains a log-odds score.

Log-odds matrices have been advocated in a
number of contexts, (Dayhoff et al., 1978; Gribskov
et al., 1987, Stormo & Hartzell, 1989). The widely
used PAM matrices (Dayhoff ef al., 1978), for
instance, are explicitly of this form. Other substitu-
tion matrices, though based on a wide variety of
rationales, are all log-odds matrices, but with
implicit rather than explicit target frequencies.
Therefore, while one may criticize the method
described by Dayhoff et al. for estimating appro-
priate target frequencies (Wilbur, 1985), the most
direct way to derive superior matrices appears to be
through the refined estimation of amino acid pair
target and background frequencies rather than
through any fundamentally different approach.

4. Substitution Matrices for Global Alignments

While we have been considering substitution
matrices in the context of local sequence compari-
son, they may be employed for global alignment as
well (Needleman & Wunsch, 1970; Sellers, 1974;
NSchwartz & Dayhoff, 1978). There is a fundamental
difference, however, between the use of such
matrices in these two contexts. For global align-
ments, as previously, multiplying all scores by a
fixed positive number has no effect on the relative
scores of different alignments. But adding a fixed
quantity @ to the score for aligning any pair of
residues (and a/2 to the score for aligning a residue
with a null) likewise has no effect. Scoring systems
that may be transformed into one another by means
of these two rules are, for all practical purposes,
equivalent. Unfortunately, the new transformation
means that no unique log-odds interpretation of
global substitution matrices is possible, and it is

doubtful that any “target distribution™ theorem
can be proved. It may be possible to make a
convincing case for a particular substitution matrix
in the global alignment context, but the argument
will most likely have to be different from that for
local alignments (Karlin & Altschul, 1990). The
same applies to substitution matrices used with
fixed-length windows for studying local similarities
(McLachlan, 1971; Argos, 1987; Stormo & Hartzell,
1989): a fixed quantity can be added to all entries of
such a matrix with no essential effect. It is notable
that while the PAM matrices were developed origin-
ally for global sequence comparison (Dayhoff et al.,
1978), their statistical theory has blossomed in the
local alignment context.

5. Local Alignment Scores as Measures
of Information

Multiplying a substitution matrix by a constant
changes A but does not alter the matrix’s implicit
target frequencies. By appropriate scaling, one may
therefore select the parameter 1 at will. Writing the
matrix in log-odds form, such scaling corresponds
merely to using a different implicit base for the
logarithm. One natural choice for 4 is 1, so that all
scores become natural logarithms. Perhaps more
appealing is to choose 4=1In 22 0693, so that the
base for the log-odds matrix becomes 2. This lends a
particularly intuitive appeal to formula (2). Setting
the expected number of MSPs with score at least 8§
equal to p, and solving for S, one finds:

S = log, ‘1; +log, N. ()

For typical substitution matrices, K is found to be
near 0-1, and an alignment may be considered
significant when p is 0-05. Therefore the right-hand
side of equation (4) generally is dominated by the
term log, N. In other words, the score needed to
distinguish an MSP from chance is approximately
the number of bits needed to specify where the MSP
starts in each of the two sequences being compared.
(One bit can be thought of as the answer to a single
ves-no question; it is the amount of information
needed to distinguish between 2 possibilities. It
becomes apparent that, in general. log, ¥ bits of
information are needed to distinguish among N
possibilities.)

For comparing two proteins of length 250 amino
acid residues, about 16 bits of information are
required; for comparing one such protein to a
sequence database containing 4,000,000 residues,
about 30 bits are needed. When cast in this light,
alignment scores are not arbitrary numbers. By
appropriate scaling (multiplying by 1/0-693) they
take on the units of bits, and rough significance
calculations can be performed in one’s head.
Furthermore, when so normalized, different amino
acid substitution matrices may be directly
compared.
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6. The Relative Entropy of a
Substitution Matrix

The above review of previous results has provided
us with the necessary tools for the analysis that
follows. The ultimate goal is to decide which substi-
tution matrices are the most appropriate for data-
base searching and for detailed pairwise sequence
comparison.

Giiven a random protein model and a substitution
matrix, one may calculate the target frequencies g;;
characteristic of the alignments for which the
matrix is optimized. A useful quantity to consider is
the average score (information) per residue pair in
these alignments. Assuming the substitution matrix
is normalized as described above, this value is
simply:

H = Z(Iij3u=2‘1ij log, RUS (5)

ij ij Pip;
Notice that H depends both on the substitution
matrix and on the random protein model. In
information theoretic terms, H is the relative
entropy of the target and background distributions.
The origin of the name need not be of concern. The
important point is that, for an alignment character-
ized by the target frequencies g;;, // measures the
average information available per position to
distinguish the alignment from chance. Intuitively,
the higher the value of the relative entropy of target
and background distributions, the more easily they
are distinguished. For a high value of /i, relatively
short alignments with the target distribution can be
distinguished from chance. while, if the value of /] is

lower, longer alignments are necessary.

It is interesting to examine the PAM model of
molecular evolution (Dayhoff et al.. 1978) from this
standpoint. From a study of mutations between a
large number of closely related proteins. Dayhoff
and co-workers proposed a stochastic model of pro-

tein evolution. The amount of evolutionary change
that yields. on average. one substitution in 100
amino acid residues they called one PAM. Using
their model, one may easily calculate the frequency
with which any two amino acid residues are paired
in an accurate alignment of two homologous pro-
teins that have diverged by any given amount of
evolutionary change. These target frequencies may
then be used to construct log-odds matrices and. in
particular. the widely used PAM-250 matrix.
Dayhoff et al. (1978) originally proposed this matrix
for the global alignment of two sequences suspected
to be homologous, but it has since been used to
search protein databases for local alignments to a
query sequence {Lipman & Pearson. 1985: Pearson
& Lipman, 1988). One may therefore inquire
whether 250 PAMs yield reasonable target frequen-
cies for database searches.

Assuming the model described by Dayvhott et «al.
(1978), Table 1 hsts the relative entropy I1 implicit
in a range of PAM matrices. As argued above.
distinguishing an alignment from chance in a search
of a typical current protein database using an
average length protein requires about 30 bits of
information. Accordingly. for an alignment of
segments separated by a given PAM distance. one
can calculate the minimum length necessary to rise
above background noise; these lengths are recorded
in Table 1. For instance, at a distance of 250 PAMx.
on average only (136 bit of information is available
per alignment position. To he statistically signifi-
cant, such an alignment would need to have a
length greater than about 83 residues. Many biologi-
cally interesting regions of protein similarity are
much shorter than this, and accordingly need a
stronger signal to be detected. A local alignment of
length 20 residues will need about 15 bits per align-
ment position, while one of length 40 residues will
need about 0-75 bit. Table 1 shows that such align-
ments will not be detectable if their constituent

Table 1
The relative entropy H of PAM matrices
PAM Min. significant PAM Min. significant
distance H (bits) length (30 bits) distance H (bits) length (30 bits)

0 417 8 180 0-60 b1l
10 343 9 190 055 55
20 2-95 i1 200 051 59
30 2:57 12 210 0-48 63
40 2:26 14 220 045 68
50 2:00 15 230 0-42 73
60 1179 17 240 0-39 78
70 160 19 250 036 83
80 1-44 21 260 034 89
90 1-30 24 270 032 94
100 118 26 280 0-30 100
110 1-08 28 290 028 107
120 0-98 31 300 027 113
130 0-90 34 310 0-25 120
140 0-82 37 320 024 127
150 076 40 330 022 134
160 070 43 340 021 14]
170 0-65 47 350 020 149
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Table 2
The average score (in bits) per alignment position when using given PAM matrices
to compare segments in fact separated by a variety of PAM distances

PAM matrix

Actual PAM distance D of segments

M employed 10 80 120 160 200 240 280 320
40 2:26 1-31 0-62 010 —0-30 —0-61 —0-86 —1-06

80 214 I-44 0-92 053 023 —0-02 —021 —0-37

120 1-93 1-:39 098 0-67 0-42 0-22 006 —0-07

160 171 128 095 070 0-50 0-33 0-20 0-09

200 1-51 1-16 0-90 0-68 0-51 0-38 0-26 017

240 1-32 105 0-82 065 0-51 039 0-29 0-21

280 117 094 075 0-60 048 0-38 0-30 023

320 1-03 -84 0-68 056 046 0-37 0-30 024

segments have diverged by more than about 75 and
150 PAMs. respectively.

7. PAM Matrices for Database Searching and
Two-sequence Comparison

The relative entropy associated with a specific
PAM distance indicates how much information per
position is optimally available. For a given align-
ment, one can attain such a score only by using the
appropriate PAM matrix, but, of course. before the
alignment is found it will not be known which
matrix that is. It has therefore been proposed that a
variety of PAM matrices be used for database
searches (Collins et al., 1988). We seek here to
analyze how many such matrices are necessary, and
which should be used.

Suppose one uses a matrix optimized for PAM
distance M to compare two homologous protein
segments that are actually separated by PAM
distance D. For a range of values of M and D, the
average score achieved per alignment position is
shown in Table 2. Notice that for any given matrix
M, the smaller the actual distance D, the higher the
score. On the other hand, for a specific distance D,
the highest score corresponds to the matrix with
PAM distance M = D; this score is just the relative
entropy discussed above. Using a PAM matrix with
M near D, however, can vield a near-optimal score.

Table 3
Ranges of local alignment lengths for which various
PAM matrices are appropriate

939, efficiency range
PAM  for database searching

879, efficiency range
for 2-sequence

matrix (30 bits) comparison (16 bits)

40 9to 21 4to 14

80 13 to 34 6to 22

120 19 to 50 9to 33

160 26 to 70 12 to 46
200 36 to 94 16 to 62
240 47 to 123 21 to 80
280 60 to 155 27 to 101
320 75 to 192 34 to 124
360 94 to 233 42 to 149

For example, the relative entropy for D =160 is
0-70 bit, but any PAM matrix in the range 120 to
200 yields at least 0-67 bit per position. In practice,
how near the optimal is it important to be?

As argued above, for a given PAM distance there
is a critical length at which alignments are just
distinguishable from chance in a typical current
database search; these lengths are recorded in Table
1. For the sake of analysis, we will assume that it is
worth performing an extra search (using a different
PAM matrix) only if it is able to increase the score
for such a critical alignment by about two bits,
corresponding to a factor of 4 in significance. Since a
critical alignment has about 30 bits of information,
we will therefore be satisfied using a PAM matrix
that yields a score greater than 939 of the optimal
achievable. Using data such as those shown in Table
2. one can calculate for which PAM distances D
(and thus for which eritical lengths) a given matrix
M is appropriate; the results are recorded in Table
3. Our experience has shown that perhaps the most
typical lengths for distant local alignments are those
for which the PAM-120 matrix gives near-optimal
scores, i.e. lengths 19 to 50 residues. Therefore, if
one wishes to use a single standard matrix for
database searches, the PAM-120 matrix (Table 4) is
a reasonable choice. This matrix may, however,
miss short but strong or long but weak similarities
that contain sufficient information to be found.
Accordingly, Table 3 shows that to complement the
PAM-120 matrix, the PAM-40 and PAM-240 (or
traditional PAM-250) matrices can be used..
Additional matrices should improve the detection of
distant similarities only marginally (i.e. raise their
scores by at most 2 bits).

If, rather than searching a database with a query
sequence, one wishes to compare two specific
sequences for which one already has evidence of
relatedness, the background noise is greatly
decreased. As discussed above, for two proteins of
typical length, about 16 bits are needed to
distinguish a local alignment from chance.
Accordingly, applying the same criteria as before, a
matrix should be considered adequate for those
PAM distances at which it yields an average score
within 879, of the optimal. In Table 3, we list the
range of critical lengths over which various PAM
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Table 4
The PAM-120 matrix with scores in half bits
A 3
R -3 6
N 0 -1 4
D 0O -3 2 5
(! -3 -4 =5 -7 9
Q —1 1 0 1 —7 6
I 0 -3 1 3 =17 2 5
G 1 -4 0 0o -5 =3 =1 b
H -3 i 2 0 —4 3 -1 -4 7
[ —1 -2 -2 -3 -3 -3 -3 -4+ —4 6
L -3 -4 —4 -5 -7 =2 -4 -5 =3 I 5
K -2 2 1 -1 -7 o -1 -3 -2 -2 -4 5
M -2 -1 -3 -4 -6 -1 -4 -4 —4 1 3 0 8
I -4 -4 -4 -7 -6 -6 -6 =5 -2 ¥} 0 -6 -1 8
P 1 —1 -2 -2 -3 [ | -2 -1 -3 -3 =2 =3 =5H 6
S 1 —1 1 0 -1 A | 1 -2 -2 —4 -1 -2 =3 I 3
T 1 -2 0 -1 -3 =2 =2 -1 -3 0O -3 -1 —1 -4 -1 2 4
W ) !l -5 -8 -8 —-6 -8 -8 -5 -7 -5 -5 -7 =1 -7 =2 —6 12
Y -4 -6 -2 -5 -1 -5 -+ -6 =1 -2 -3 -6 —4 4 -6 -3 -3 -1 N
3\ o -3 -3 -3 -2 -3 -3 -2 -3 3 1 —4 I -3 -2 =2 0 -8 =3 5
A R N D [ Q E G H I L K M F p S T W Y \

matrices are appropriate for detailed pairwise
sequence comparison. As a single matrix, the
PAM-200 spans the most typical range of local
alignment lengths, ie. 16 to 62 residues.
Alternatively, if two different matrices are to be
used, the PAM-80 and PAM-250, which together
span alignment lengths 6 to 85 residues, or the
PAM-120 and PAM-320 matrices, which span
lengths 9 to 124 residues, appear to be appropriate
pairs.

Since it is convenient to express substitution
matrices as integers, and since a probability factor
of 2 between score levels is too rough, the units for
the PAM-120 matrix shown in Table 4 are half bits.
The scores in the original PAM-250 matrix (Dayhoff
et al., 1978) were scaled as 10xlog,,. Because
10/(In 10) = 3/(In 2) to within 049, a unit score in
that matrix can be thought of as approximately
one-third of a bit.

8. Biological Examples

As discussed, the particular PAM matrix that
best distinguishes distant homologies from chance
similarities found in a database search depends on
the nature of the homologies present, and this
cannot be known a priori. However, it is frequently
the case that distantly related proteins will share
isolated stretches of relatively conserved amino acid
residues, corresponding to active sites or other
important structural features. It has been observed
that in general the mutations along genes coding for
proteins are not Poisson-distributed (Uzzell &
Corbin, 1971; Holmquist et al., 1983), suggesting
that short, conserved regions are to be expected. As
shown in Table 3, this means that the widely used
PAM-250 matrix generally will not be optimal for
locating distant relationships.

In the examples below, we compare the PAM-250

and PAM-120 scores for MSPs representing distant
relationships to four different query sequences. In
all cases, we consider relationships near the limits of
what can be distinguished from chance in a search
of the PIR protein sequence database (Release 26-0;
7,348,950 residues). It will be noticed that the high-
est chance PAM-250 scores are consistently slightly
smaller than the highest chance PAM-120 scores.
This is primarily attributable to the fact that the
parameter K discussed above is about half as large
for the former scores as for the latter. Furthermore,
since neither the PIR database nor a given query
sequence ever precisely fits the random protein
model described by Dayhoff et al. (1978), the para-
meter A varies slightly from one comparison to
another. Therefore, while we will treat the PAM-120
scores from Table 4 as half bits, and the PAM-250
scores of Dayhoff et al. (1978) as one-third bits, it
should be noted that this is always a slight
approximation.

(a) Lapocaling

We used the BLAST program (Altschul et al.,
1990) to search the PIR database with human apoli-
poprotein D precursor (PIR code LPHUD: Drayna
et al., 1987), using both the PAM-250 (Davhoff ef af..
1978) and PAM-120 (Table 4) substitution matrices.
Human apolipoprotein D) precursor is a 189 residue
glycoprotein  that belongs to the lipocalin
(ay-microglobulin) superfamily, which contains pro-
teins that exhibit a wide range of functions related
to their ability to bind small hydrophobic ligands.
The similarities among these proteins and their bio-
logical roles have been analyzed (Peitsch & Boguski.
1990). and crystal structures are available for
several members of the superfamily (Cowan et al..
1990). Three proteins in the superfamily are rat
androgen-dependent epididymal protein (PIR code
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Table 5
Three MSPs representing distant relationships, from searches of the PIR protein
sequence database (release 26-0) with human apolipoprotein D precursor (PIR code

LPHUD)
Optimal PAM-250 Optimal PAM-120
PIR code Optimal PAM-250 alignment score (bits) score (bits)
LPHUD 25 LGKCPNPPVQENFDVNKYLGRWYEI 49
SQRTAD 12 LAAGTEGAVVKDFDISKFLGFWYEI 36 27.0 33.5
A32202 27 HDTVQPNFQODKFLGRWY 44 25.7 33.5
HCHU 28 NIQVQENFNISRIYGKWYNL 47 23.0 30.5
Highest chance alignment score: 27.0 29.0
PIR code of sequence involved: sS00758 S00758

LPHUD. human apolipoprotein D precursor; SQRTAD, rat androgen-dependent epididymal 18-5 K
protein precursor; A32202, rat prostaglandin-D synthase: HCHU, human a;-microglobulin/
inter-a-trypsin inhibitor precursor: S00758. human surface glycoprotein (‘D16 precursor.

SQRTAD: Brooks et al., 1986), rat prostaglandin-D
synthase (PTR code A32202; Urade ef al.. 1989) and
human  «,-microglobulin (PIR code HCHLU:
Kaumeyer et al., 1986). The second of these has only
recently been recognized as a member of the super-
family (M. S. Boguski & M. C. Peitsch. personal
communication): it is the first such member with
known eatalytic activity (Urade et al.. 1989).

Using PAM-250 scores. the maximal segment pair
for each of these sequences when compared to
LPHUD is shown in Table 5. These local similarities
correspond to one of two motifs that are conserved
throughout the superfamily (Boguski & States.
1990). The scores for the three alignments are 27-0.
257 and 230 bits, respectively. However. the high-
est score from a protein in the database unrelated to
LPHUD is 27-0 bits, involving human surface glyco-
protein (‘D16 precursor (PIR  code S00758:
Simmons & Seed. 1988). The PAM-250 matrix
therefore fails to separate the homologous align-
ments shown from background noise. In contrast.
using the PAM-120 matrix of Table 4, the scores for
the three alignments jump to 33-5, 33:5 and 305
bits, respectively. (The 1st 7 alignment positions for
LPHUD-SQRTAD shown in Table 5 are dropped in
an optimal PAM-120 alignment, as are the 1st 3
positions for the LPHUD-A32202 alignment.) This
raises their scores above that of the best chance
PAM-120 alignment (29-0 bits), again involving
human surface glycoprotein (!D16 precursor. Notice
that in hoth cases the estimate that about 30 bits
are needed clearly to distinguish an MSP from
chanece is valid. For this query sequence. no
relationship is found using the PAM-250 matrix
that is missed by the PAM-120.

(by Human a  B-glycoprotein

We searched the PIR database with human
a; B-glycoprotein (PIR code OMHUIB: Ishioka et
al., 1986), a plasma glycoprotein of unknown func-
tion, and a member of the immunoglobulin superfa-
mily. Using the PAM-250 matrix, the only protein
in the database with an MSP that rises above back-
ground noise is pig Po2 F protein (PIR code
PLO030; Van de Weghe et al.. 1988), which achieves
a score of 32:3 bits. As shown in Table 6. the score
for this known homology (Van de Weghe ef al.
1988) rises to 45-0 bits when the PAM-120 matrix 15
used instead. In addition, two proteins with
immunoglobulin  domains, kinase-related trans-
forming protein precursor (PIR code S00474: Qiu et
al., 1988) and human Ig x chain precursor V-III
region (PIR code K3HUVH; Pech & Zachau, 1984),
achieve scores of 290 and 285 bits, respectively.
Table 6 illustrates that both these similarities are
only just distinguishable from chance. and that
using the PAM-250 matrix both similarities drop in
score by at least four bits.

(¢) The cystic fibrosis transmembrane
conductance requlator

The cause of cystic fibrosis has been traced to
mutations in a protein that bears striking similarity
to many proteins involved in the transport of
substances across the cell membrane (PTR code
A30300; Riordan et al., 1989). Characteristic
features of the protein are two nucleotide (ATP)-
binding folds (Higgins et af., 1986). When the PIR
database is searched with A30300, many related
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Table 6
Three MSPs representing distant relationships, from searches of the PIR protein sequence database (relewse
26-0) with human o B-glycoprotein (PIR code OMHU1B)

Optimal PAM-250  Optimal PAM-120;

PIR code Optimal PAM-250 alignment score (bits) score (bits)
OMHU1B 1 AIFYETQPSLWAESESLLKPLANVTLTCQA 30
PL0O030 1 ALFLDPPPNLWAEAQSLLEPWANVTLTSQS 30 32.3 45.0
OMHU1B 171 LSEPSATVTIEELAAPPPPVLMHHGESSQVLHPGNKVTLTCVAPLS 216
500474 18 LRGQTATSQPSASPGEPSPPSIHPAQSELIVEAGDTLSLTCIDP 61 25.0 29.0
K3HUVH 15 LPDTTREIVMTQSPPTLSLSPGERVTLSCRASQS 48 22.0 28.5

Highest chance alignment sccre: 27.0 28.0

PIR code of sequence involved: JQ0102 WGSMHH

OMHUILB, human o, B-glycoprotein: PLO030. pig Po2 F protein: S00474. kinase-related transforming protein (kit) precursor:
K3HUVH, human Ig x chain precursor V-1I1 region (Vh); JQO0102, eggplant mosaic virus RNA replicase (Osorio-Keese ¢f al_. 1989):
WGSMHH. Streptomyces hygromycin B phosphotransferase (Zalacain ef al.. 1986).

proteins may be identified easily using either the
PAM-250 or the PAM-120 substitution matrix.
However, several distant relationships present are
harder to detect. In Table 7 are shown four optimal
PAM-250 alignments, representing homologies to
each of the two A30300 nucleotide-binding folds.
None of these alignments has a PAM-250 score as
great as the highest chance score of 31:3 bits. In
contrast, when the PAM-120 matrix is used, the

alignments jump in score by 4 to almost 12 bits,
giving all but one a score greater than the highest
chance PAM-120 score of 33-0 bits. (The boundaries
of the optimal alignments change slightly under the
alternate scoring scheme.) No biologically signifi-
cant similarity is distinguished by the PAM-250
matrix that is not found using the PAM-120. The
relatively high chance scores found in this example
are partly attributable to the length of the query

Table 7
Four MSPs representing distant relationships, from searches of the PIR protein sequence database (relense
26:0) with cystic fibrosis transmembrane conductance regulator (PIR code A30300)

Optimal PAM-250 Optimal PAM-120

PIR code Optimal PAM-250 alignment score (bits) score (bits)
A30300 438 TPVLKDINFKIERGQLLAVAGSTGAGKTSLLMMIMGELEPSEGKI 482
S05328 18 VSKDINLEIQDGEFVVFVGP SGCGKSTLLRMIAGLETVTSGDL 60 28.3 40.0
BVECUA 11 THNLKNINLVIPRDKLIVVTGLSGSGKSSL 40 24.7 35.0
A30300 1219 YTEGGNAILENISFSISPGQRVGLLGRTGSGKSTLLSAFLRLLNTEGEI 1287
QRECFH 19 FRVPGRTLLHPLSLTFPAGKVTGLIGHNGSGKSTLLEMLGR 59 29.3 35.0
QREBOT 31 DGDVTAVNDLNF TLRAGETLGIVGESGSGKSQSRLRLMGLLATNGRI 77 28.3 32.5
Highest chance alignment score: 31.3 33.0
PIR code of sequence involved: A34416 A32916
AB0300, Cystic fibrosis transmembrane conductance regulator: S05328, Enterobacter uerogenes inner membrane protein mallk (Dahl ¢f

al . 1989); BYECUA. Escherichia coli uvrA protein (Husain et «l.. 1986); QRECKFH. ferrichrome-iron transport protein thu(’ (Coulton e
al.. 1987): QREBOT, oligopeptide permease membrane protein oppl) (Higgins ef af., 1985); A34416. fluke hvdroxymethylglutaryl-CoA
reductase (NADPH) (Rajkovic et al.. 1989): A32916. Vibrio harveyi acyl-protein svnthetase (fragment) (Johnston ef al.. 1989).
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GPVF 49 SAGVVDSPKLGAHAEKVEGMVRDSAVQLRATGEVVLDGKDGSIHIQ 94
S AHA V L L H

506134 61 ASQLRSSROMQAHAIRVSSIMSEYIEELDSDILPELLATLARTHDL 106

GPVF 95 KGVLDPHFVVVKEALLKTIKEASGDKWSEELSAAWEVAYDGLATAI 140

v H L G W A
S06134 107 NKVGPAHYDLFAKVLMEALQAELGSDFNQKTRDSWAKAFSIVQAVL 152

Figure 1. The PAM-250 maximal segment pair of broad
bean leghemoglobin 1T (PIR code GPVF) and sea
cucumber hemoglobin T (PTR code S06134). Identical
residues are echoed on the central line. PAM-250 score.
253 bits: length. 92 residues.

sequence (1480 residues), and partly to its composi-
tion, which renders the parameter 4 slightly smaller
than in the previous examples.

(d) Globins

It is possible to find examples of long alignments
representing distant relationships that are better
distinguished by the PAM-250 than by the
PAM-120 matrix. In practice such examples are
rare, for some of the reasons discussed above. The
globins are one superfamily in which sequence diver-
gence has been relatively uniform over the length of
entire proteins. As a result, some sequence relation-
ships within this superfamily become apparent only
with scoring systems tailored for long but very weak
alignments.

For example, searching the PIR database with
broad bean leghemoglobin 1 (PIR code GPVF;
Richardson et al., 1975), the alignment with sea
cucumber hemoglobin I (PTIR code S06134; Suzuki,
1989), shown in Figure 1, is found having a
PAM-250 score of 25-3 bits. This is almost as high as
the score of the best chance MSP (26-7 bits), which
involves Salmonella  typhimurium cystathionine
B-lyase (PIR code JV0020; Park & Stauffer, 1989).
The alignment is 92 residue pairs long; only 14 of
these pairs involve identical amino acid residues,
and they are spread fairly evenly along the align-
ment. This particular similarity is totally obscured
when PAM-120 scores are used. The best region of
the alignment shown then involves residues 100 to
133 of the leghemoglobin sequence and has a score
of only 13 bits, while the best chance PAM-120
alignment, involving mouse hepatitis virus El
membrane glycoprotein (PIR code VGIHEL;
Armstrong et al., 1984), scores 275 bits.
Nevertheless, as in the previous examples, a number
of relationships are distinguished by the PAM-120
matrix but missed by the PAM-250.

9. Conclusion

This paper has analyzed the properties of amino
acid substitution matrices in the context of local
alignments lacking gaps. This is exactly the sort of
alignment sought by the recently developed BLAST
database search programs (Altschul et al., 1990;
Altschul & Lipman, 1990). We have concluded that

for protein databases of typical current size (about
1 x 107 residues), the most broadly sensitive substi-
tution matrix should be a log-odds matrix with
relative entropy of about one bit, e.g. the PAM-120
matrix. In order to detect short but strong homo-
logies or long but weak ones, this matrix can be
complemented by the PAM-40 and PAM-250
matrices; additional matrices should be of only
marginal utility. Of course, many database search
methods, such as the FASTA programs (Lipman &
Pearson, 1985; Pearson & Lipman, 1988), seek local
alignments with gaps, and such measures are poten-
tiallv more sensitive to distant homologies.
Unfortunately, if gaps with associated scores are
allowed, the specific quantitative discussion above is
no longer correct. Nevertheless, the general thrust
of the arguments should still apply, and theory and
experiment suggest that analogous results will hold
for local alignments with gaps (Smith et al.. 1985;
Waterman et al., 1987; Collins ef al., 1988).

There are, of course, many much more involved
ways for assessing local alignment than those
discussed here. Scores can be assigned to aligned di-
residues or tri-residues; they can depend on align-
ment length (Altschul & Erikson, 1986); or they can
be complex combinations of various scoring
methods (Argos, 1987). Protein databases may also
be searched with position-dependent scores or
“profiles” constructed from multiple alignments
(Taylor, 1986; Gribskov ef al., 1987; Patthy, 1987).
In certain contexts such systems may well be more
sensitive than the straightforward local scoring
system considered here. Two advantages of simple
additive scores are their amenability to powertul
algorithmic methods (Altschul et al.. 1990) and to
rigorous statistical analysis (Karlin & Altschul,
1990; Karlin et al., 1990). Such analysis may also
vield insight into the properties of more complicated
scoring schemes.

The author thanks Drs David Lipman. Mark Boguski
and Andrew McLachlan for helpful conversations and
suggestions on the manuseript.
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