
Introduction to Logics of Knowledge and
Belief

Eric Pacuit

University of Maryland
pacuit.org

epacuit@umd.edu

May 13, 2019

Eric Pacuit 1

pacuit.org
epacuit@umd.edu

Knowing what

i knows what the value of c

∃xKi(c = x)

Eric Pacuit 2

Knowing what

ϕ ::= > | p | ¬ϕ | (ϕ ∧ ϕ) | Kiϕ | Kvic

where p ∈ At and c ∈ C (a set of constant symbols)

M = 〈W ,D, (Ri)i∈A,V ,VC〉

where W , ∅, each Ri is a relation on W , V : At→ ℘(W), D is
the constant domain and VC : C ×W → D assigns to each
c ∈ C and world w a value d ∈ D.

M,w |= Kvic iff for any v1, v2, if wRiv1 and wRiv2,

then VC(v1, c) = vC(c, v2)

Eric Pacuit 3

KiKvjc ∧ ¬Kvjc vs. KiKjp ∧ ¬Kip

ϕ ::= > | p | ¬ϕ | (ϕ ∧ ϕ) | Kiϕ | Kvic | [ϕ]ϕ

(〈p〉Kvic ∧ 〈q〉Kvic)→ 〈p ∨ c〉Kvic is not derivable is S5 with
recursion axioms.

Y. Wang and J. Fan. Knowing that, knowing what, and public communi-
cation: Public announcement logic with Kv operators. In: Proceedings
of IJCAI?13, pp 1139 - 1146, 2013.

Eric Pacuit 4

KiKvjc ∧ ¬Kvjc vs. KiKjp ∧ ¬Kip

ϕ ::= > | p | ¬ϕ | (ϕ ∧ ϕ) | Kiϕ | Kvic | [ϕ]ϕ

(〈p〉Kvic ∧ 〈q〉Kvic)→ 〈p ∨ c〉Kvic is not derivable is S5 with
recursion axioms.

Y. Wang and J. Fan. Knowing that, knowing what, and public communi-
cation: Public announcement logic with Kv operators. In: Proceedings
of IJCAI?13, pp 1139 - 1146, 2013.

Eric Pacuit 4

A. Baltag. To Know is to Know the Value of a Variable. AiML, 2016.

Y. Wang. A New Modal Framework for Epistemic Logic. TARK 2017.

Eric Pacuit 5

Know how

J. Fantl. Knowing-how and knowing-that. Philosophy Compass, 3
(2008), 451 470.

M.P. Singh. Know-how. In Foundations of Rational Agency (1999), M.
Woodridge and A. Rao, Eds., pp. 105 132.

Eric Pacuit 6

Related Work: Knowing How to Execute a Plan

J. van Benthem. Games in dynamic epistemic logic. Bulletin of Eco-
nomics Research 53, 4 (2001), 219 248..

J. Broersen. A logical analysis of the interaction between Obligation-
to- do and knowingly doing. In Proceedings of DEON 2008.

Y. Lesperance, H. Levesque, F. Lin and R. Scherl. Ability and Knowing
How in the Situation Calculus. Studia Logica 65, pgs. 165 - 186, 2000.

W. Jamroga and T. Agotnes. Constructive Knowledge: What Agents
can Achieve under Imperfect Information. Journal of Applied Non-
Classical Logics 17(4):423–425, 2007.

Eric Pacuit 7

Knowledge, action, abilities

A. Herzig and N. Troquard. Knowing how to play: uniform choices in
logics of agency. Proceedings of AAMAS 2006, pgs. 209 - 216.

A. Herzig. Logics of knowledge and action: critical analysis and chal-
lenges. Autonomous Agent and Multi-Agent Systems, 2014.

J. Broeresen, A. Herzig and N. Troquard. What groups do, can do
and know they can do: An analysis in normal modal logics. Journal of
Applied and Non-Classical Logics, 19:3, pgs. 261 - 289, 2009.

W. van der Hoek and M. Wooldridge. Cooperation, knowledge and
time: Alternating-time temporal epistemic logic and its applications.
Studia Logica, 75, pgs. 125 - 157, 2003.

Eric Pacuit 8

Example

A. Herzig and N. Troquard. Knowing how to play: uniform choices in
logics of agency. In Proceedings of AAMAS 2006.

Eric Pacuit 9

Example

Ann, who is blind, is standing with her hand on a light switch.
She has two options: toggle the switch (t) or do nothing (s):

fw1 o w2

o w6f w5fw4ow3

t s t s

Does she have the ability to turn the light on? Is she capable of
turning the light on? Does she know how to turn the light on?

Eric Pacuit 10

Example

Ann, who is blind, is standing with her hand on a light switch.
She has two options: toggle the switch (t) or do nothing (s):

fw1 o w2

o w6f w5fw4ow3

t s t s

Does she have the ability to turn the light on? Is she capable of
turning the light on? Does she know how to turn the light on?

Eric Pacuit 10

Example

Ann, who is blind, is standing with her hand on a light switch.
She has two options: toggle the switch (t) or do nothing (s):

fw1 o w2

o w6f w5fw4ow3

t s t s

Does she have the ability to turn the light on? Is she capable of
turning the light on? Does she know how to turn the light on?

Eric Pacuit 10

Example

fw1 o w2

o w6f w5fw4ow3
t s t s

w1 |= ¬�f : “Ann does not know the light is on”

Eric Pacuit 11

Example

fw1 o w2

o w6f w5fw4ow3
t s t s

w1 |= 〈t〉o “after toggling the light switch, the light will be on”

Eric Pacuit 11

Example

fw1 o w2

o w6f w5fw4ow3
t s t s

w1 |= ¬�〈t〉o: “Ann does not know that after toggling the light
switch, the light will be on”

Eric Pacuit 11

Example

fw1 o w2

o w6f w5fw4ow3
t s t s

w1 |= �(〈t〉> ∧ 〈s〉>): “Ann knows that she can toggle the
switch and she can do nothing”

Eric Pacuit 11

Example

fw1 o w2

o w6f w5fw4ow3
t s t s

w1 |= 〈t〉¬�o: “after toggling the switch Ann does not know that
the light is on”

Eric Pacuit 11

Example

fw1 o w2

o w6f w5fw4ow3
t s t s

Let l be “turn the light on”: a choice between t and s

Eric Pacuit 11

Example

fw1 o w2

o w6f w5fw4ow3
t s t s

w1 |= 〈l〉∃o ∧ ¬〈l〉∀o: executing l can lead to a situation where
the light is on, but this is not guaranteed (i.e., the plan may fail)

Eric Pacuit 11

Example

fw1 o w2

o w6f w5fw4ow3
t s t s

w1 |= �〈l〉∃o: Ann knows that she is capable of turning the light
on. She has de re knowledge that she can turn the light on.

Eric Pacuit 11

Example

fw1 o w2

o w6f w5fw4ow3
t s t s

w1 |= ¬〈l〉^o: Ann cannot knowingly turn on the light: there is
no subjective path leading to states satisfying o (note that all
elements of the last element of the subject path must satisfy o).

Eric Pacuit 11

Knowing How to Win

w0

w1 w2

pA w6pB w5pBw4pAw3

x y
a b a b

x y

a b

“the plan is a winning strategy for Ann.”

Eric Pacuit 12

Knowing How to Win

w0

w1 w2

pA w6pB w5pBw4pAw3

x y
a b a b

x y

a b

“Ann knows that the plan is a winning strategy.”

Eric Pacuit 12

Knowing How to Win

w0

w1 w2

pA w6pB w5pBw4pAw3

x y
a b a b

x y

a b

“ the plan can be executed, but Ann does not know how to use
it to win.”

Eric Pacuit 12

Y. Wang. A New Modal Framework for Epistemic Logic. TARK 2017.

Eric Pacuit 13

The know-wh modalities all share a general de re schema:
∃x�ϕ(x) (mention-some)

“knowing how to achieve ϕ” roughly means that there exists a
way such that you know that it is a way to ensure that ϕ

“knowing why ϕ” means that there exists an explanation such
that you know that it is an explanation to the fact ϕ.
mention-all interpretation: “knowing who came to the party”
means, under an exhaustive reading, that for each relevant
person, you know whether (s)he came to the party or not:
∀x(�ϕ(x) ∨ �¬ϕ(x)).

Eric Pacuit 14

“knowing [what] the value of c [is]” means, under the
interpretation of mention-some, that there exists a value such
that you know that it is the value of c, which is equivalent to the
mention-all interpretation: for any value, you know whether it is
the value of c, given there is one and only one real value of c.

Eric Pacuit 15

The logical core of the ”mention-some” logics: �xϕ is a
packaging of ∃x�.

“I know a theorem of which I do not know any proof”:
�x
¬�yProve(y , x)

“i knows a country which j knows its capital”: �x
i �

y
j Capital(y , x)

Eric Pacuit 16

Let X be a set of variables and P a set of predicate symbols.

ϕ ::= x ≈ y | Px | ¬ϕ | (ϕ ∧ ϕ) | �xϕ

where x , y ∈ X and P ∈ P

Eric Pacuit 17

M = 〈W ,D, δ,R , ρ〉

I W , ∅ is a set of worlds
I D , ∅ is the domain
I R ⊆W ×W is an accessibility relation
I δ : W → ℘(D) assigns to each w ∈W a non-empty local

domain such that wRv implies that δ(w) ⊆ δ(v) (write Dw
for δ(w))

I ρ : P ×W →
⋃

n∈ω ℘(Dn) assignes to each n-ary predicate
and world, an n-ary relation on D.

σ : X→ D is a variable assignment.

Eric Pacuit 18

I M,w, σ |= x ≈ y iff σ(x) = σ(y)

I M,w, σ |= P(x1, . . . , xn) iff (σ(x1), . . . , σ(xn)) ∈ ρ(P,w)

I M,w, σ |= ¬ϕ iffM,w, σ 6|= ϕ

I M,w, σ |= ϕ ∧ ψ iffM,w, σ |= ϕ andM,w, σ |= ψ

I M,w, σ |= �xϕ iff there is an a ∈ δ(w) such that
M, v , σ[x 7→ a] |= ϕ for all v such that wRv

Eric Pacuit 19

Reminder: bisimulation for modal logic

I Language: p | ¬ϕ | ϕ ∨ ψ | �ψ, p ∈ At (atomic
propositions), Boolean connectives defined as usual,
^ϕ := ¬�¬ϕ

I Frame: 〈W ,R〉, where W , ∅ and R ⊆W ×W
I Model: 〈W ,R ,V〉, where 〈W ,R〉 is a frame and

V : At→ ℘(W) (Kripke structure)
I Truth at a state in a model: M,w |= ϕ

• M,w |= p iff w ∈ V(p)
• M,w |= ¬ϕ iffM,w 6|= ϕ
• M,w |= ϕ ∧ ψ iffM,w |= ϕ andM,w |= ψ
• M,w |= �ϕ iff for all v ∈W , if wRv thenM, v |= ϕ

Eric Pacuit 20

Reminder: bisimulation for modal logic

A bisimulation betweenM = 〈W ,R ,V〉andM′ = 〈W ′,R ′,V ′〉 is
a non-empty binary relation Z ⊆W ×W ′ such that whenever
wZw′:

Atomic harmony: for each p ∈ At, w ∈ V(p) iff w′ ∈ V ′(p)
Zig: if wRv, then ∃v′ ∈W ′ such that vZv′ and w′R ′v′

Zag: if w′R ′v′ then ∃v ∈W such that vZv′ and wRv

Eric Pacuit 21

Reminder: bisimulation for modal logic

I We writeM,w ↔M′,w′ if there is a Z such that wZw′.
I We writeM,w ≡LM′,w′ iff for all ϕ ∈ L,M,w |= ϕ iff
M
′,w′ |= ϕ.

I Lemma IfM,w ↔M′,w′ thenM,w ≡L M
′,w′.

I Lemma On finite models, ifM,w ≡L M
′,w′ then

M,w ↔M′,w′.
I Lemma On m-saturated models, ifM,w ≡L M

′,w′ then
M,w ↔M′,w′.

Eric Pacuit 22

Reminder: monotonic neighborhood bisimulations

Let W be a non-empty set of states.

Any function N : W → ℘(℘(W)) is called a neighborhood
function

A pair 〈W ,N〉 is a called a neighborhood frame if W a
non-empty set and N is a neighborhood function that is closed
under supersets.

A neighborhood model based on F = 〈W ,N〉 is a tuple
〈W ,N,V〉 where V : At→ ℘(W) is a valuation function.

Eric Pacuit 23

Reminder: monotonic neighborhood bisimulations

I M,w |= p iff w ∈ V(p)

I M,w |= ¬ϕ iffM,w 6|= ϕ

I M,w |= ϕ ∧ ψ iffM,w |= ϕ andM,w |= ψ

I M,w |= �ϕ iff there is a X ∈ N(w) such that X ⊆ [[ϕ]]M

where [[ϕ]]M = {w |M,w |= ϕ}.

Eric Pacuit 24

Reminder: monotonic neighborhood bisimulations

M. Pauly. Bisimulation for Non-normal Modal Logic. Manuscript, 1999.

H. Hansen. Monotonic Modal Logic. ILLC, Masters Thesis, 2003.

Eric Pacuit 25

Reminder: monotonic neighborhood bisimulations

Suppose thatM = 〈W ,N,V〉 andM′ = 〈W ′,N′,V ′〉 are two
monotonic neighborhood models. A relation Z ⊆W ×W ′ is a
monotonic bisimulation provided that, whenever wZw′:

Atomic harmony: for each p ∈ At, w ∈ V(p) iff w′ ∈ V ′(p).

Zig: If w N X then there is an X ′ ⊆W ′ such that w′ N′ X ′

and ∀x′ ∈ X ′, ∃x ∈ X such that x Z x′.

Zag: If w′ N′ X ′ then there is an X ⊆W such that w N X
and ∀x ∈ X , ∃x′ ∈ X ′ such that x Z x′.

WriteM,w ↔M′,w′ when there is a monotonic bisimulation
Z ⊆ dom(M) × dom(M′) such that w Z w′.

Eric Pacuit 26

Reminder: monotonic neighborhood bisimulations

I Lemma. IfM is a monotonic model,M,w ↔M′,w′

impliesM,w ≡L M′,w′.

Eric Pacuit 27

Reminder: monotonic neighborhood bisimulations

I Suppose that F is a monotonic collection of subsets of W .
The non-monotonic core, denoted F nc , is a subset of F
defined as follows: F nc = {X | X ∈
F and for all X ′ ⊆W , if X ′ ⊆ X , then X ′ < F }.
A monotonic collection of sets F is core-complete
provided for all X ∈ F , there exists a Y ∈ F nc such that
Y ⊆ X .

I A neighborhood modelM = 〈W ,N,V〉 is locally
core-finite provided thatM is core-complete and for each
w ∈W , Nnc(w) is finite, and for all X ∈ Nnc(w), X is finite.

Lemma. Suppose thatM = 〈W ,N,V〉 and
M′ = 〈W ′,N′,V ′〉 are monotonic, locally core-finite models.
Then, for all w ∈W , w′ ∈W ′,M,w ≡L M′,w′ iff
M,w ↔M′,w′.

Eric Pacuit 28

I M,w, σ |= x ≈ y iff σ(x) = σ(y)

I M,w, σ |= P(x1, . . . , xn) iff (σ(x1), . . . , σ(xn)) ∈ ρ(P,w)

I M,w, σ |= ¬ϕ iffM,w, σ 6|= ϕ

I M,w, σ |= ϕ ∧ ψ iffM,w, σ |= ϕ andM,w, σ |= ψ

I M,w, σ |= �xϕ iff there is an a ∈ δ(w) such that
M, v , σ[x 7→ a] |= ϕ for all v such that wRv

Eric Pacuit 29

LetM, N be two models, a relation
Z ⊆ (WM

× D∗
M

) × (WN
× D∗

N
) is an ∃�-bisimulation if for every

((w, (a)), (v ,b)) ∈ Z such that |a | = |b |, the following holds:

PISO: a and b form a partial isomporphism wr.t. identity and
the interpretations of the predicates at w and v

∃�Zig: for any c ∈ DMw , there is a d ∈ DNv such that for any
v′ ∈WN , if vRNv′ then there is a w′ ∈WM such that wRMw′

and w′acZv ′bd

∃�Zag: for any d ∈ DNv , there is a c ∈ DMw such that for any
w′ ∈WM, if wRMw′ then there is a v′ ∈WN such that vRNv′

and w′acZv ′bd

Eric Pacuit 30

We say thatM,wa and N , vb are ∃�-bisimilar (denoted
M,wa ↔ ∃�N , vb) if |a | = |b | and there is a ∃�-bisimulation
connecting wa and vb

Eric Pacuit 31

I Lemma. IfM,wa ↔ ∃�N , vb, thenM,wa ≡MLMS≈ N , vb
I Lemma. IfM,w ↔ ∃�N , v, then for all closed formula ϕ,
M,w |= ϕ iff N , v |= ϕ.

I �∃xPx, ∃x^Px and ^∃xPx are not expressible in MLMS≈.
I IfM and N are finite (∃�-saturated) and |a | = |b |, then
M,wa ↔ ∃�N , vb iffM,wa ≡MLMS≈ N , vb

Eric Pacuit 32

A New Epistemic Logic

Let X be a set of variables and P a set of predicate symbols.

ϕ ::= x ≈ y | Px | ¬ϕ | (ϕ ∧ ϕ) | �xϕ | �ϕ

where x , y ∈ X and P ∈ P

The models are the same except:
I Each R is an equivalence relation
I For all w ∈W , Dw = D

Eric Pacuit 33

M,w, σ |= �xϕ iff for each d ∈ D, eitherM,wσ[x 7→ d] |= �ϕ or
M,wσ[x 7→ d] |= �¬ϕ

M,w, σ |= �∀xϕ iff for each d ∈ D,M,wσ[x 7→ d] |= �ϕ

M,w, σ |= �x1···xnϕ iff there is d1, . . . ,dn ∈ D such that
M,wσ[x 7→ d] |= �ϕ

Eric Pacuit 34

M,w, σ |= �xϕ iff for each d ∈ D, eitherM,wσ[x 7→ d] |= �ϕ or
M,wσ[x 7→ d] |= �¬ϕ

M,w, σ |= �∀xϕ iff for each d ∈ D,M,wσ[x 7→ d] |= �ϕ

M,w, σ |= �x1···xnϕ iff there is d1, . . . ,dn ∈ D such that
M,wσ[x 7→ d] |= �ϕ

Eric Pacuit 34

M,w, σ |= �xϕ iff for each d ∈ D, eitherM,wσ[x 7→ d] |= �ϕ or
M,wσ[x 7→ d] |= �¬ϕ

M,w, σ |= �∀xϕ iff for each d ∈ D,M,wσ[x 7→ d] |= �ϕ

M,w, σ |= �x1···xnϕ iff there is d1, . . . ,dn ∈ D such that
M,wσ[x 7→ d] |= �ϕ

Eric Pacuit 34

�xϕ ↔ ^x(�ϕ ∨ �¬ϕ)

�∀xϕ ↔ ^x�ϕ

�xϕ ↔ �x1 · · ·�xnϕ

Eric Pacuit 35

�xϕ ↔ ^x(�ϕ ∨ �¬ϕ)

�∀xϕ ↔ ^x�ϕ

�xϕ ↔ �x1 · · ·�xnϕ

Eric Pacuit 35

�xϕ ↔ ^x(�ϕ ∨ �¬ϕ)

�∀xϕ ↔ ^x�ϕ

�xϕ ↔ �x1 · · ·�xnϕ

Eric Pacuit 35

�x(ϕ→ ψ)→ (�xϕ→ �xψ) is not valid.
So, �x is a non-normal modality.

Eric Pacuit 36

I Taut: all axioms of propositional logic
I DISTK: �(ϕ→ ψ)→ (�ϕ→ �ψ)

I T: �ϕ→ ϕ

I 4MS: �xϕ→ ��xϕ

I 5MS: ¬�xϕ→ �¬�xϕ

I KtoMS: �(ϕ[y/x])→ �xϕ (if ϕ[y/x] is admissible)
I MStoK: �xϕ→ �ϕ (if x < FV(ϕ))
I MStoMSK: �xϕ→ �x�ϕ

I KT: �>

I MP:
ϕ,ϕ→ ψ

ψ

I MONOMS:
ϕ→ ψ
�xϕ→ �xψ

Eric Pacuit 37

Theorem. (Wang) MLMSK is strongly complete over S5
models.

Theorem. (Wang) MLMSK≈ is strongly complete over S5
models.

Theorem. (Wang) MLMSK is undecidable over S5 models.

Eric Pacuit 38

A. Baltag. To Know is to Know the Value of a Variable. AiML, 2016.

Eric Pacuit 39

Knowing the value of a variable:
w |= Kix iff for all v, if w ∼i v, then w(x) = v(x)

When D is finite, this is equivalent to
∨

d∈D Ki(x = d)

[!ϕ]ψ: after publicly announcing ϕ, ψ is true.

Completeness needs Kϕ
i x (“conditionally knowing what”), with

the intuitive meaning that agent i could find the value of x if
given the additional information that ϕ was the case.

Eric Pacuit 40

Axiomatization for a logic that combines the operators for
“knowledge that” (Kϕ) K, “knowledge of a value” (Kx),
propositional public announcements [!ϕ] and public
announcements of values [!x].

Eric Pacuit 41

w |= K x1,...,xn
i y iff for all v ∼i w(if w(x) = v(x), then w(y) = v(y))

Eric Pacuit 42

Constants: (x = c)→ (Kix ↔ Ki(x = c))

When the value of x is c, then knowing the value of x is the
same as knowing that this value is c

Fluctuating variables: ?ϕ stores the truth value of formula ϕ.
Terms of the form ?ϕ are even “more non-rigid” than the generic
variables x, in that they can change their value while this value
is being learnt: while x keeps its value when that value is
publicly announced, terms ?ϕ corresponding to Moore
sentences (such as “x = 0 but you don’t know it”) may change
their values after being learnt.

Kiϕ↔ (ϕ ∧ Ki?ϕ)

Eric Pacuit 43

Constants: (x = c)→ (Kix ↔ Ki(x = c))

When the value of x is c, then knowing the value of x is the
same as knowing that this value is c

Fluctuating variables: ?ϕ stores the truth value of formula ϕ.
Terms of the form ?ϕ are even “more non-rigid” than the generic
variables x, in that they can change their value while this value
is being learnt: while x keeps its value when that value is
publicly announced, terms ?ϕ corresponding to Moore
sentences (such as “x = 0 but you don’t know it”) may change
their values after being learnt.

Kiϕ↔ (ϕ ∧ Ki?ϕ)

Eric Pacuit 43

ϕ ::= p | R(t) | ϕ→ ϕ | K t
i t

t ::= x | c | ?phi | f(t)

where x ∈ Var , c ∈ Const , i ∈ A, R ∈ R (the set of predicate
symbols including =), and f ∈ F (the set of function symbols).

Eric Pacuit 44

M = (W ,D,0,1,∼i , [[•]], •(•), f,R)i∈A ,f∈F ,R∈R

I W is a nonempty set of worlds
I D is a nonempty domain with 0,1 ∈ D and 0 , 1
I ∼i are equivalence relations
I ∼i are equivalence relations
I [[•]] maps atomic propositions to sets of worlds
I •(•) : W × (Var ∪ Const)→ D
I For each f ∈ F , f : Dn

→ D
I For each R ∈ R, R ⊆ Dn

Eric Pacuit 45

M = (W ,D,0,1,∼i , [[•]], •(•), f,R)i∈A ,f∈F ,R∈R

I [[R(t)]]M = {w | w(t) ∈ R}
I [[ϕ→ ψ]]M = W \ [[ϕ]]M ∪ [[ψ]]M

I [[K t t]]M = {w | ∀v ∈W(if w ∼i v and w(t) = v(t),
then w(t) = v(t)}

I w(?ϕ) = 1 iff w ∈ [[ϕ]]M
I w(?ϕ) = 0 iff w < [[ϕ]]M

I w(f(t)) = f(w(t))

Eric Pacuit 46

K t
i ϕ := ϕ ∧ K t

i ?ϕ

〈K t
i 〉ϕ := ¬K t

i ¬ϕ

Kiϕ := Kλ
i ϕ, where λ is the empty sequence

Kϕ
i ψ := Ki(ϕ→ ψ)

Eric Pacuit 47

Alice and Bob have each a natural number written on their
foreheads. It is common knowledge that Alice?s number xa is
the immediate successor of Bob?s number xb . Both are
blindfolded, so nobody can see the numbers.

The model has: Var = {xa , xb }, D = C =N is the set of natural
numbers; F = {+,×} and R = {=, >} contain the usual
operations and relations onN; the set W of worlds consists of
all functions w : Var →N satisfying w(xa)→ w(xb) + 1; the
epistemic relations are given by the universal relations:
∼a=∼b= W ×W .

Eric Pacuit 48

¬Kaxa ∧ ¬Kbxb ∧ Ka(xa > xb) ∧ Kb(xa > xb) ∧ K xb
a xa ∧ K xa

b xb

is true in all worlds.

So nobody knows his/her number, but both know that Alice?s
number is larger, and both could come to know the numbers if
given only the other?s number.

Eric Pacuit 49

I Propositional substitution: From ϕ infer ϕ[p/θ]

I Variable substitution: From ϕ infer ϕ[x/t]

I Modus Ponens: From ϕ and ϕ→ ψ infer ψ
I Necessitation: From ϕ infer Kiϕ

I Existence-of-Value Rule (EVR): From (x = c)→ ϕ, infer ϕ,
provided that c does not occur in ϕ

Eric Pacuit 50

I All classical propositional tautologies
I All S5 axioms for Ki

I Knowedge De Re:

(x = c ∧ y = d)→ (K x
i y ↔ K x=c

i y = d)

I Equality Axioms x = x (x = y)→ (y = x)
((x = y) ∧ (y = z))→ (x = z) (x = y)→ f(x) = f(x)
(x = y ∧ R(z, x , y))→ R(z, y , y)

I Characteristic Functions:
?ϕ = 1↔ ϕ
?ϕ = 0↔ ¬ϕ

I Knowledge of Functions: K x
i f(x)

Eric Pacuit 51

Theorem (Baltag) The logic is sound and strongly complete

Theorem (Baltag) The logic has the finite model property (and
is decidable)

Eric Pacuit 52

ϕ ::= p | R(t) | ϕ→ ϕ | K t
i t | 〈!t〉ϕ

t ::= x | c | ?phi | f(t) | 〈!t〉t

[[〈!t〉ϕ]]M = [[ϕ]]
Mt

w(〈!t〉t ′)M = w(t ′)
Mt

M
t = (W ,D,0,1,∼t

i , [[•]], •(•), f,R)i∈A ,f∈F ,R∈R

∼
M

t

i = {(w, s) ∈W ×W | w ∼i s,w(t)M = s(t)M}

Eric Pacuit 53

ϕ ::= p | R(t) | ϕ→ ϕ | K t
i t | 〈!t〉ϕ

t ::= x | c | ?phi | f(t) | 〈!t〉t

[[〈!t〉ϕ]]M = [[ϕ]]
Mt

w(〈!t〉t ′)M = w(t ′)
Mt

M
t = (W ,D,0,1,∼t

i , [[•]], •(•), f,R)i∈A ,f∈F ,R∈R

∼
M

t

i = {(w, s) ∈W ×W | w ∼i s,w(t)M = s(t)M}

Eric Pacuit 53

ϕ ::= p | R(t) | ϕ→ ϕ | K t
i t | 〈!t〉ϕ

t ::= x | c | ?phi | f(t) | 〈!t〉t

[[〈!t〉ϕ]]M = [[ϕ]]
Mt

w(〈!t〉t ′)M = w(t ′)
Mt

M
t = (W ,D,0,1,∼t

i , [[•]], •(•), f,R)i∈A ,f∈F ,R∈R

∼
M

t

i = {(w, s) ∈W ×W | w ∼i s,w(t)M = s(t)M}

Eric Pacuit 53

In the previous example, 〈!xa〉(Kaxb ∧Kbxb) is true at all worlds.

Eric Pacuit 54

〈!t〉p ↔ p

〈!t〉R(t1, . . . , tn)↔ R(〈!t〉t1, . . . , 〈!t〉tn)

〈!t〉(ϕ→ ψ)↔ (〈!t〉ϕ→ 〈!t〉ψ)

〈!t〉K t1,...,tn
i t ′ ↔ K 〈!t〉t1,...,〈!t〉tni 〈!t〉t ′

〈!t〉c = c

〈!t〉x = x

〈!t〉?ϕ =?
〈!t〉ϕ

〈!t〉f(t1, . . . , tn) = f(〈!t〉t1, . . . , 〈!t〉tn)

Eric Pacuit 55

〈!t〉p ↔ p

〈!t〉R(t1, . . . , tn)↔ R(〈!t〉t1, . . . , 〈!t〉tn)

〈!t〉(ϕ→ ψ)↔ (〈!t〉ϕ→ 〈!t〉ψ)

〈!t〉K t1,...,tn
i t ′ ↔ K 〈!t〉t1,...,〈!t〉tni 〈!t〉t ′

〈!t〉c = c

〈!t〉x = x

〈!t〉?ϕ =?
〈!t〉ϕ

〈!t〉f(t1, . . . , tn) = f(〈!t〉t1, . . . , 〈!t〉tn)

Eric Pacuit 55

Theorem (Baltag) The above proof system is sound and
weakly complete and has the same expressivity as LED.

Eric Pacuit 56

Epistemizing logics of action and ability

Eric Pacuit 57

Actions and Agency in Branching Time
Alternative accounts of agency do not include explicit
description of the actions:

t0 t1 t2 t3

· · ·

· · ·

Eric Pacuit 58

STIT

I Each node represents a choice point for the agent.

I A history is a maximal branch in the above tree.

I Formulas are interpreted at history moment pairs.

I At each moment there is a choice available to the agent
(partition of the histories through that moment)

I The key modality is [i stit]ϕ which is intended to mean that
the agent i can “see to it that ϕ is true”.

• [i stit]ϕ is true at a history moment pair provided the agent
can choose a (set of) branch(es) such that every future
history-moment pair satisfies ϕ

Eric Pacuit 59

STIT

I Each node represents a choice point for the agent.

I A history is a maximal branch in the above tree.

I Formulas are interpreted at history moment pairs.

I At each moment there is a choice available to the agent
(partition of the histories through that moment)

I The key modality is [i stit]ϕ which is intended to mean that
the agent i can “see to it that ϕ is true”.

• [i stit]ϕ is true at a history moment pair provided the agent
can choose a (set of) branch(es) such that every future
history-moment pair satisfies ϕ

Eric Pacuit 59

STIT

I Each node represents a choice point for the agent.

I A history is a maximal branch in the above tree.

I Formulas are interpreted at history moment pairs.

I At each moment there is a choice available to the agent
(partition of the histories through that moment)

I The key modality is [i stit]ϕ which is intended to mean that
the agent i can “see to it that ϕ is true”.

• [i stit]ϕ is true at a history moment pair provided the agent
can choose a (set of) branch(es) such that every future
history-moment pair satisfies ϕ

Eric Pacuit 59

STIT

I Each node represents a choice point for the agent.

I A history is a maximal branch in the above tree.

I Formulas are interpreted at history moment pairs.

I At each moment there is a choice available to the agent
(partition of the histories through that moment)

I The key modality is [i stit]ϕ which is intended to mean that
the agent i can “see to it that ϕ is true”.

• [i stit]ϕ is true at a history moment pair provided the agent
can choose a (set of) branch(es) such that every future
history-moment pair satisfies ϕ

Eric Pacuit 59

STIT

I Each node represents a choice point for the agent.

I A history is a maximal branch in the above tree.

I Formulas are interpreted at history moment pairs.

I At each moment there is a choice available to the agent
(partition of the histories through that moment)

I The key modality is [i stit]ϕ which is intended to mean that
the agent i can “see to it that ϕ is true”.

• [i stit]ϕ is true at a history moment pair provided the agent
can choose a (set of) branch(es) such that every future
history-moment pair satisfies ϕ

Eric Pacuit 59

STIT

We use the modality ‘^’ to mean historic possibility.

^[i stit]ϕ: “the agent has the ability to bring about ϕ”.

Eric Pacuit 60

STIT Model
A STIT models isM = 〈T , <,Choice,V〉 where

I 〈T , <〉: T a set of moments, < a tree-like ordering on T
(irreflexive, transitive, linear-past)

I Let Hist be the set of all histories, and
Ht = {h ∈ Hist | t ∈ h} the histories through t .

I Choice : A× T → ℘(℘(H)) is a function mapping each
agent to a partition of Ht
• Choicet

i , ∅

• K , ∅ for each K ∈ Choicet
i

• For all t and mappings st : A→ ℘(Ht) such that
st (i) ∈ Choicet

i , we have
⋂

i∈A st (i) , ∅

I V : At→ ℘(T × Hist) is a valuation function assigning to
each atomic proposition

Eric Pacuit 61

STIT Model
A STIT models isM = 〈T , <,Choice,V〉 where

I 〈T , <〉: T a set of moments, < a tree-like ordering on T
(irreflexive, transitive, linear-past)

I Let Hist be the set of all histories, and
Ht = {h ∈ Hist | t ∈ h} the histories through t .

I Choice : A× T → ℘(℘(H)) is a function mapping each
agent to a partition of Ht
• Choicet

i , ∅

• K , ∅ for each K ∈ Choicet
i

• For all t and mappings st : A→ ℘(Ht) such that
st (i) ∈ Choicet

i , we have
⋂

i∈A st (i) , ∅

I V : At→ ℘(T × Hist) is a valuation function assigning to
each atomic proposition

Eric Pacuit 61

STIT Model
A STIT models isM = 〈T , <,Choice,V〉 where

I 〈T , <〉: T a set of moments, < a tree-like ordering on T
(irreflexive, transitive, linear-past)

I Let Hist be the set of all histories, and
Ht = {h ∈ Hist | t ∈ h} the histories through t .

I Choice : A× T → ℘(℘(H)) is a function mapping each
agent to a partition of Ht
• Choicet

i , ∅

• K , ∅ for each K ∈ Choicet
i

• For all t and mappings st : A→ ℘(Ht) such that
st (i) ∈ Choicet

i , we have
⋂

i∈A st (i) , ∅

I V : At→ ℘(T × Hist) is a valuation function assigning to
each atomic proposition

Eric Pacuit 61

STIT Model
A STIT models isM = 〈T , <,Choice,V〉 where

I 〈T , <〉: T a set of moments, < a tree-like ordering on T
(irreflexive, transitive, linear-past)

I Let Hist be the set of all histories, and
Ht = {h ∈ Hist | t ∈ h} the histories through t .

I Choice : A× T → ℘(℘(H)) is a function mapping each
agent to a partition of Ht
• Choicet

i , ∅

• K , ∅ for each K ∈ Choicet
i

• For all t and mappings st : A→ ℘(Ht) such that
st (i) ∈ Choicet

i , we have
⋂

i∈A st (i) , ∅

I V : At→ ℘(T × Hist) is a valuation function assigning to
each atomic proposition

Eric Pacuit 61

STIT Model
A STIT models isM = 〈T , <,Choice,V〉 where

I 〈T , <〉: T a set of moments, < a tree-like ordering on T
(irreflexive, transitive, linear-past)

I Let Hist be the set of all histories, and
Ht = {h ∈ Hist | t ∈ h} the histories through t .

I Choice : A× T → ℘(℘(H)) is a function mapping each
agent to a partition of Ht
• Choicet

i , ∅

• K , ∅ for each K ∈ Choicet
i

• For all t and mappings st : A→ ℘(Ht) such that
st (i) ∈ Choicet

i , we have
⋂

i∈A st (i) , ∅

I V : At→ ℘(T × Hist) is a valuation function assigning to
each atomic proposition

Eric Pacuit 61

STIT Model
A STIT models isM = 〈T , <,Choice,V〉 where

I 〈T , <〉: T a set of moments, < a tree-like ordering on T
(irreflexive, transitive, linear-past)

I Let Hist be the set of all histories, and
Ht = {h ∈ Hist | t ∈ h} the histories through t .

I Choice : A× T → ℘(℘(H)) is a function mapping each
agent to a partition of Ht
• Choicet

i , ∅

• K , ∅ for each K ∈ Choicet
i

• For all t and mappings st : A→ ℘(Ht) such that
st (i) ∈ Choicet

i , we have
⋂

i∈A st (i) , ∅

I V : At→ ℘(T × Hist) is a valuation function assigning to
each atomic proposition

Eric Pacuit 61

Many Agents
The previous model assumes there is one agent that “controls”
the transition system.

What if there is more than one agent?

Eric Pacuit 62

Many Agents
The previous model assumes there is one agent that “controls”
the transition system.

What if there is more than one agent?

Eric Pacuit 62

Many Agents
The previous model assumes there is one agent that “controls”
the transition system.

What if there is more than one agent? Independence of agents

Eric Pacuit 62

Many Agents
The previous model assumes there is one agent that “controls”
the transition system.

What if there is more than one agent? Independence of agents

Eric Pacuit 62

Many Agents
The previous model assumes there is one agent that “controls”
the transition system.

What if there is more than one agent? Independence of agents

Eric Pacuit 62

STIT Language

ϕ = p | ¬ϕ | ϕ ∧ ψ | [i stit]ϕ | [i dstit : ϕ] | �ϕ

I M, t/h |= p iff t/h ∈ V(p)

I M, t/h |= ¬ϕ iffM, t/h 6|= ϕ

I M, t/h |= ϕ ∧ ψ iffM, t/h |= ϕ andM, t/h |= ψ

I M, t/h |= �ϕ iffM, t/h′ |= ϕ for all h′ ∈ Ht

I M, t/h |= [i stit]ϕ iffM, t/h′ |= ϕ for all h′ ∈ Choicet
i (h)

I M, t/h |= [i dstit]ϕ iffM, t/h′ |= ϕ for all h′ ∈ Choicet
i (h)

and there is a h′′ ∈ Ht such thatM, t/h |= ¬ϕ

Eric Pacuit 63

STIT Language

ϕ = p | ¬ϕ | ϕ ∧ ψ | [i stit]ϕ | [i dstit : ϕ] | �ϕ

I M, t/h |= p iff t/h ∈ V(p)

I M, t/h |= ¬ϕ iffM, t/h 6|= ϕ

I M, t/h |= ϕ ∧ ψ iffM, t/h |= ϕ andM, t/h |= ψ

I M, t/h |= �ϕ iffM, t/h′ |= ϕ for all h′ ∈ Ht

I M, t/h |= [i stit]ϕ iffM, t/h′ |= ϕ for all h′ ∈ Choicet
i (h)

I M, t/h |= [i dstit]ϕ iffM, t/h′ |= ϕ for all h′ ∈ Choicet
i (h)

and there is a h′′ ∈ Ht such thatM, t/h |= ¬ϕ

Eric Pacuit 63

STIT Language

ϕ = p | ¬ϕ | ϕ ∧ ψ | [i stit]ϕ | [i dstit : ϕ] | �ϕ

I M, t/h |= p iff t/h ∈ V(p)

I M, t/h |= ¬ϕ iffM, t/h 6|= ϕ

I M, t/h |= ϕ ∧ ψ iffM, t/h |= ϕ andM, t/h |= ψ

I M, t/h |= �ϕ iffM, t/h′ |= ϕ for all h′ ∈ Ht

I M, t/h |= [i stit]ϕ iffM, t/h′ |= ϕ for all h′ ∈ Choicet
i (h)

I M, t/h |= [i dstit]ϕ iffM, t/h′ |= ϕ for all h′ ∈ Choicet
i (h)

and there is a h′′ ∈ Ht such thatM, t/h |= ¬ϕ

Eric Pacuit 63

STIT Language

ϕ = p | ¬ϕ | ϕ ∧ ψ | [i stit]ϕ | [i dstit : ϕ] | �ϕ

I M, t/h |= p iff t/h ∈ V(p)

I M, t/h |= ¬ϕ iffM, t/h 6|= ϕ

I M, t/h |= ϕ ∧ ψ iffM, t/h |= ϕ andM, t/h |= ψ

I M, t/h |= �ϕ iffM, t/h′ |= ϕ for all h′ ∈ Ht

I M, t/h |= [i stit]ϕ iffM, t/h′ |= ϕ for all h′ ∈ Choicet
i (h)

I M, t/h |= [i dstit]ϕ iffM, t/h′ |= ϕ for all h′ ∈ Choicet
i (h)

and there is a h′′ ∈ Ht such thatM, t/h |= ¬ϕ

Eric Pacuit 63

STIT Language

ϕ = p | ¬ϕ | ϕ ∧ ψ | [i stit]ϕ | [i dstit : ϕ] | �ϕ

I M, t/h |= p iff t/h ∈ V(p)

I M, t/h |= ¬ϕ iffM, t/h 6|= ϕ

I M, t/h |= ϕ ∧ ψ iffM, t/h |= ϕ andM, t/h |= ψ

I M, t/h |= �ϕ iffM, t/h′ |= ϕ for all h′ ∈ Ht

I M, t/h |= [i stit]ϕ iffM, t/h′ |= ϕ for all h′ ∈ Choicet
i (h)

I M, t/h |= [i dstit]ϕ iffM, t/h′ |= ϕ for all h′ ∈ Choicet
i (h)

and there is a h′′ ∈ Ht such thatM, t/h |= ¬ϕ

Eric Pacuit 63

STIT Language

ϕ = p | ¬ϕ | ϕ ∧ ψ | [i stit]ϕ | [i dstit : ϕ] | �ϕ

I M, t/h |= p iff t/h ∈ V(p)

I M, t/h |= ¬ϕ iffM, t/h 6|= ϕ

I M, t/h |= ϕ ∧ ψ iffM, t/h |= ϕ andM, t/h |= ψ

I M, t/h |= �ϕ iffM, t/h′ |= ϕ for all h′ ∈ Ht

I M, t/h |= [i stit]ϕ iffM, t/h′ |= ϕ for all h′ ∈ Choicet
i (h)

I M, t/h |= [i dstit]ϕ iffM, t/h′ |= ϕ for all h′ ∈ Choicet
i (h)

and there is a h′′ ∈ Ht such thatM, t/h |= ¬ϕ

Eric Pacuit 63

STIT Language

ϕ = p | ¬ϕ | ϕ ∧ ψ | [i stit]ϕ | [i dstit : ϕ] | �ϕ

I M, t/h |= p iff t/h ∈ V(p)

I M, t/h |= ¬ϕ iffM, t/h 6|= ϕ

I M, t/h |= ϕ ∧ ψ iffM, t/h |= ϕ andM, t/h |= ψ

I M, t/h |= �ϕ iffM, t/h′ |= ϕ for all h′ ∈ Ht

I M, t/h |= [i stit]ϕ iffM, t/h′ |= ϕ for all h′ ∈ Choicet
i (h)

I M, t/h |= [i dstit]ϕ iffM, t/h′ |= ϕ for all h′ ∈ Choicet
i (h)

and there is a h′′ ∈ Ht such thatM, t/h |= ¬ϕ

Eric Pacuit 63

STIT: Example

The following are false: A → ^[stit]A and
^[stit](A ∨ B)→ ^[stit]A ∨^[stit]B.

h1 h2 h3

K1 K2

A
¬B

¬A
B

¬A
¬B

t

J. Horty. Agency and Deontic Logic. 2001.

Eric Pacuit 64

STIT: Axiomatics
I S5 for �: �(ϕ→ ψ)→ (�ϕ→ �ψ), �ϕ→ ϕ, �ϕ→ ��ϕ,
¬�ϕ→ �¬�ϕ

I S5 for [i stit]: [i stit](ϕ→ ψ)→ ([i stit]ϕ→ [i stit]ψ),
[i stit]ϕ→ ϕ, [i stit]ϕ→ [i stit][i stit]ϕ,
¬[i stit]ϕ→ [i stit]¬[i stit]ϕ

I �ϕ→ [i stit]ϕ

I (
∧

i∈A^[i stit]ϕi)→ ^(
∧

i∈A[i stit]ϕi)

I Modus Ponens and Necessitation for �

M. Xu. Axioms for deliberative STIT. Journal of Philosophical Logic,
Volume 27, pp. 505 - 552, 1998.

P. Balbiani, A. Herzig and N. Troquard. Alternative axiomatics and
complexity of deliberative STIT theories. Journal of Philosophical
Logic, 37:4, pp. 387 - 406, 2008.

Eric Pacuit 65

STIT: Axiomatics
I S5 for �: �(ϕ→ ψ)→ (�ϕ→ �ψ), �ϕ→ ϕ, �ϕ→ ��ϕ,
¬�ϕ→ �¬�ϕ

I S5 for [i stit]: [i stit](ϕ→ ψ)→ ([i stit]ϕ→ [i stit]ψ),
[i stit]ϕ→ ϕ, [i stit]ϕ→ [i stit][i stit]ϕ,
¬[i stit]ϕ→ [i stit]¬[i stit]ϕ

I �ϕ→ [i stit]ϕ

I (
∧

i∈A^[i stit]ϕi)→ ^(
∧

i∈A[i stit]ϕi)

I Modus Ponens and Necessitation for �

M. Xu. Axioms for deliberative STIT. Journal of Philosophical Logic,
Volume 27, pp. 505 - 552, 1998.

P. Balbiani, A. Herzig and N. Troquard. Alternative axiomatics and
complexity of deliberative STIT theories. Journal of Philosophical
Logic, 37:4, pp. 387 - 406, 2008.

Eric Pacuit 65

STIT: Axiomatics
I S5 for �: �(ϕ→ ψ)→ (�ϕ→ �ψ), �ϕ→ ϕ, �ϕ→ ��ϕ,
¬�ϕ→ �¬�ϕ

I S5 for [i stit]: [i stit](ϕ→ ψ)→ ([i stit]ϕ→ [i stit]ψ),
[i stit]ϕ→ ϕ, [i stit]ϕ→ [i stit][i stit]ϕ,
¬[i stit]ϕ→ [i stit]¬[i stit]ϕ

I �ϕ→ [i stit]ϕ

I (
∧

i∈A^[i stit]ϕi)→ ^(
∧

i∈A[i stit]ϕi)

I Modus Ponens and Necessitation for �

M. Xu. Axioms for deliberative STIT. Journal of Philosophical Logic,
Volume 27, pp. 505 - 552, 1998.

P. Balbiani, A. Herzig and N. Troquard. Alternative axiomatics and
complexity of deliberative STIT theories. Journal of Philosophical
Logic, 37:4, pp. 387 - 406, 2008.

Eric Pacuit 65

STIT: Axiomatics
I S5 for �: �(ϕ→ ψ)→ (�ϕ→ �ψ), �ϕ→ ϕ, �ϕ→ ��ϕ,
¬�ϕ→ �¬�ϕ

I S5 for [i stit]: [i stit](ϕ→ ψ)→ ([i stit]ϕ→ [i stit]ψ),
[i stit]ϕ→ ϕ, [i stit]ϕ→ [i stit][i stit]ϕ,
¬[i stit]ϕ→ [i stit]¬[i stit]ϕ

I �ϕ→ [i stit]ϕ

I (
∧

i∈A^[i stit]ϕi)→ ^(
∧

i∈A[i stit]ϕi)

I Modus Ponens and Necessitation for �

M. Xu. Axioms for deliberative STIT. Journal of Philosophical Logic,
Volume 27, pp. 505 - 552, 1998.

P. Balbiani, A. Herzig and N. Troquard. Alternative axiomatics and
complexity of deliberative STIT theories. Journal of Philosophical
Logic, 37:4, pp. 387 - 406, 2008.

Eric Pacuit 65

STIT: Axiomatics
I S5 for �: �(ϕ→ ψ)→ (�ϕ→ �ψ), �ϕ→ ϕ, �ϕ→ ��ϕ,
¬�ϕ→ �¬�ϕ

I S5 for [i stit]: [i stit](ϕ→ ψ)→ ([i stit]ϕ→ [i stit]ψ),
[i stit]ϕ→ ϕ, [i stit]ϕ→ [i stit][i stit]ϕ,
¬[i stit]ϕ→ [i stit]¬[i stit]ϕ

I �ϕ→ [i stit]ϕ

I (
∧

i∈A^[i stit]ϕi)→ ^(
∧

i∈A[i stit]ϕi)

I Modus Ponens and Necessitation for �

M. Xu. Axioms for deliberative STIT. Journal of Philosophical Logic,
Volume 27, pp. 505 - 552, 1998.

P. Balbiani, A. Herzig and N. Troquard. Alternative axiomatics and
complexity of deliberative STIT theories. Journal of Philosophical
Logic, 37:4, pp. 387 - 406, 2008.

Eric Pacuit 65

Recap: Logics of Action and Ability

I Fϕ: ϕ is true at some moment in the future

I ∃Fϕ: there is a history where ϕ is true some moment in
the future

I [α]ϕ: after doing action α, ϕ is true

I [δϕ]ψ: after bringing about ϕ, ψ is true

I [i stit]ϕ: the agent can “see to it that” ϕ is true

I ^[i stit]ϕ: the agent has the ability to bring about ϕ

Eric Pacuit 66

Recap: Logics of Action and Ability

I Fϕ: ϕ is true at some moment in the future

I ∃Fϕ: there is a history where ϕ is true some moment in
the future

I [α]ϕ: after doing action α, ϕ is true

I [δϕ]ψ: after bringing about ϕ, ψ is true

I [i stit]ϕ: the agent can “see to it that” ϕ is true

I ^[i stit]ϕ: the agent has the ability to bring about ϕ

Eric Pacuit 66

Recap: Logics of Action and Ability

I Fϕ: ϕ is true at some moment in the future

I ∃Fϕ: there is a history where ϕ is true some moment in
the future

I [α]ϕ: after doing action α, ϕ is true

I [δϕ]ψ: after bringing about ϕ, ψ is true

I [i stit]ϕ: the agent can “see to it that” ϕ is true

I ^[i stit]ϕ: the agent has the ability to bring about ϕ

Eric Pacuit 66

Recap: Logics of Action and Ability

I Fϕ: ϕ is true at some moment in the future

I ∃Fϕ: there is a history where ϕ is true some moment in
the future

I [α]ϕ: after doing action α, ϕ is true

I [δϕ]ψ: after bringing about ϕ, ψ is true

I [i stit]ϕ: the agent can “see to it that” ϕ is true

I ^[i stit]ϕ: the agent has the ability to bring about ϕ

Eric Pacuit 66

Recap: Logics of Action and Ability

I Fϕ: ϕ is true at some moment in the future

I ∃Fϕ: there is a history where ϕ is true some moment in
the future

I [α]ϕ: after doing action α, ϕ is true

I [δϕ]ψ: after bringing about ϕ, ψ is true

I [i stit]ϕ: the agent can “see to it that” ϕ is true

I ^[i stit]ϕ: the agent has the ability to bring about ϕ

Eric Pacuit 66

Recap: Logics of Action and Ability

I Fϕ: ϕ is true at some moment in the future

I ∃Fϕ: there is a history where ϕ is true some moment in
the future

I [α]ϕ: after doing action α, ϕ is true

I [δϕ]ψ: after bringing about ϕ, ψ is true

I [i stit]ϕ: the agent can “see to it that” ϕ is true

I ^[i stit]ϕ: the agent has the ability to bring about ϕ

Eric Pacuit 66

Epistemic Temporal Logic

R. Parikh and R. Ramanujam. A Knowledge Based Semantics of Mes-
sages. Journal of Logic, Language and Information, 12: 453 – 467,
1985, 2003.

FHMV. Reasoning about Knowledge. MIT Press, 1995.

Eric Pacuit 67

The ‘Playground’

t = 0

t = 1

t = 2

t = 3

e2 e4

e1 e5

e1 e3

e2 e6

e7 e3

e2 e1 e2

e4 e2

e1 e3

e7

Eric Pacuit 68

The ‘Playground’

t = 0

t = 1

t = 2

t = 3

e2 e4

e1 e5

e1 e3

e2 e6

e7 e3

e2 e1 e2

e4 e2

e1 e3

e7

Eric Pacuit 68

The ‘Playground’

t = 0

t = 1

t = 2

t = 3

e2 e4

e1 e5

e1 e3

e2 e6

e7 e3

i

i i

j

j

e2 e1 e2

e4 e2

e1 e3

e7

Eric Pacuit 68

The ‘Playground’: Notation

I Let Σ be any set. The elements of Σ are called events.

I Given any set X , X ∗ is the set of finite strings over X and
Xω the set of infinite strings over X . Elements of Σ∗ ∪ Σω

will be called histories.

I Given H ∈ Σ∗ ∪ Σω, len(H) is the length of H.

I Given H,H′ ∈ Σ∗ ∪ Σω, we write H � H′ if H is a finite prefix
of H′.

I FinPre(H) = {H | ∃H′ ∈ H such that H � H′} is the set of
finite prefixes of the elements of H .

I ε is the empty string and FinPre−ε(H) = FinPre(H) − {ε}.

Eric Pacuit 69

The ‘Playground’: Notation

I Let Σ be any set. The elements of Σ are called events.

I Given any set X , X ∗ is the set of finite strings over X and
Xω the set of infinite strings over X . Elements of Σ∗ ∪ Σω

will be called histories.

I Given H ∈ Σ∗ ∪ Σω, len(H) is the length of H.

I Given H,H′ ∈ Σ∗ ∪ Σω, we write H � H′ if H is a finite prefix
of H′.

I FinPre(H) = {H | ∃H′ ∈ H such that H � H′} is the set of
finite prefixes of the elements of H .

I ε is the empty string and FinPre−ε(H) = FinPre(H) − {ε}.

Eric Pacuit 69

The ‘Playground’: Notation

I Let Σ be any set. The elements of Σ are called events.

I Given any set X , X ∗ is the set of finite strings over X and
Xω the set of infinite strings over X . Elements of Σ∗ ∪ Σω

will be called histories.

I Given H ∈ Σ∗ ∪ Σω, len(H) is the length of H.

I Given H,H′ ∈ Σ∗ ∪ Σω, we write H � H′ if H is a finite prefix
of H′.

I FinPre(H) = {H | ∃H′ ∈ H such that H � H′} is the set of
finite prefixes of the elements of H .

I ε is the empty string and FinPre−ε(H) = FinPre(H) − {ε}.

Eric Pacuit 69

The ‘Playground’: Notation

I Let Σ be any set. The elements of Σ are called events.

I Given any set X , X ∗ is the set of finite strings over X and
Xω the set of infinite strings over X . Elements of Σ∗ ∪ Σω

will be called histories.

I Given H ∈ Σ∗ ∪ Σω, len(H) is the length of H.

I Given H,H′ ∈ Σ∗ ∪ Σω, we write H � H′ if H is a finite prefix
of H′.

I FinPre(H) = {H | ∃H′ ∈ H such that H � H′} is the set of
finite prefixes of the elements of H .

I ε is the empty string and FinPre−ε(H) = FinPre(H) − {ε}.

Eric Pacuit 69

The ‘Playground’: Notation

I Let Σ be any set. The elements of Σ are called events.

I Given any set X , X ∗ is the set of finite strings over X and
Xω the set of infinite strings over X . Elements of Σ∗ ∪ Σω

will be called histories.

I Given H ∈ Σ∗ ∪ Σω, len(H) is the length of H.

I Given H,H′ ∈ Σ∗ ∪ Σω, we write H � H′ if H is a finite prefix
of H′.

I FinPre(H) = {H | ∃H′ ∈ H such that H � H′} is the set of
finite prefixes of the elements of H .

I ε is the empty string and FinPre−ε(H) = FinPre(H) − {ε}.

Eric Pacuit 69

The ‘Playground’: Notation

I Let Σ be any set. The elements of Σ are called events.

I Given any set X , X ∗ is the set of finite strings over X and
Xω the set of infinite strings over X . Elements of Σ∗ ∪ Σω

will be called histories.

I Given H ∈ Σ∗ ∪ Σω, len(H) is the length of H.

I Given H,H′ ∈ Σ∗ ∪ Σω, we write H � H′ if H is a finite prefix
of H′.

I FinPre(H) = {H | ∃H′ ∈ H such that H � H′} is the set of
finite prefixes of the elements of H .

I ε is the empty string and FinPre−ε(H) = FinPre(H) − {ε}.

Eric Pacuit 69

The ‘Playground’: Notation

I Let Σ be any set. The elements of Σ are called events.

I Given any set X , X ∗ is the set of finite strings over X and
Xω the set of infinite strings over X . Elements of Σ∗ ∪ Σω

will be called histories.

I Given H ∈ Σ∗ ∪ Σω, len(H) is the length of H.

I Given H,H′ ∈ Σ∗ ∪ Σω, we write H � H′ if H is a finite prefix
of H′.

I FinPre(H) = {H | ∃H′ ∈ H such that H � H′} is the set of
finite prefixes of the elements of H .

I ε is the empty string and FinPre−ε(H) = FinPre(H) − {ε}.

Eric Pacuit 69

History-based Frames

Definition
Let Σ be any set of events. A set H ⊆ Σ∗ ∪ Σω is called a
protocol provided FinPre−ε(H) ⊆ H . A rooted protocol is any
set H ⊆ Σ∗ ∪ Σω where FinPre(H) ⊆ H .

Definition
An ETL frame is a tuple 〈Σ,H , {∼i}i∈A〉 where Σ is a (finite or
infinite) set of events, H is a protocol, and for each i ∈ A, ∼i is
an equivalence relation on the set of finite strings in H .

Some assumptions:

1. If Σ is assumed to be finite, then we say that F is finitely
branching.

2. If H is a rooted protocol, F is a tree frame.

Eric Pacuit 70

History-based Frames

Definition
Let Σ be any set of events. A set H ⊆ Σ∗ ∪ Σω is called a
protocol provided FinPre−ε(H) ⊆ H . A rooted protocol is any
set H ⊆ Σ∗ ∪ Σω where FinPre(H) ⊆ H .

Definition
An ETL frame is a tuple 〈Σ,H , {∼i}i∈A〉 where Σ is a (finite or
infinite) set of events, H is a protocol, and for each i ∈ A, ∼i is
an equivalence relation on the set of finite strings in H .

Some assumptions:

1. If Σ is assumed to be finite, then we say that F is finitely
branching.

2. If H is a rooted protocol, F is a tree frame.

Eric Pacuit 70

History-based Frames

Definition
Let Σ be any set of events. A set H ⊆ Σ∗ ∪ Σω is called a
protocol provided FinPre−ε(H) ⊆ H . A rooted protocol is any
set H ⊆ Σ∗ ∪ Σω where FinPre(H) ⊆ H .

Definition
An ETL frame is a tuple 〈Σ,H , {∼i}i∈A〉 where Σ is a (finite or
infinite) set of events, H is a protocol, and for each i ∈ A, ∼i is
an equivalence relation on the set of finite strings in H .

Some assumptions:

1. If Σ is assumed to be finite, then we say that F is finitely
branching.

2. If H is a rooted protocol, F is a tree frame.

Eric Pacuit 70

Formal Languages

I Pϕ (ϕ is true sometime in the past),

I Fϕ (ϕ is true sometime in the future),

I Yϕ (ϕ is true at the previous moment),

I Nϕ (ϕ is true at the next moment),

I Neϕ (ϕ is true after event e)

I Kiϕ (agent i knows ϕ) and

I CBϕ (the group B ⊆ A commonly knows ϕ).

Eric Pacuit 71

History-based Models

An ETL model is a structure 〈H , {∼i}i∈A,V〉 where 〈H , {∼i}i∈A〉

is an ETL frame and

V : At→ 2finite(H) is a valuation function.

Formulas are interpreted at pairs H, t :

H, t |= ϕ

Eric Pacuit 72

Truth in a Model

I H, t |= Pϕ iff there exists t ′ ≤ t such that H, t ′ |= ϕ

I H, t |= Fϕ iff there exists t ′ ≥ t such that H, t ′ |= ϕ

I H, t |= Nϕ iff H, t + 1 |= ϕ

I H, t |= Yϕ iff t > 1 and H, t − 1 |= ϕ

I H, t |= Kiϕ iff for each H′ ∈ H and m ≥ 0 if Ht ∼i H′m then
H′,m |= ϕ

I H, t |= Cϕ iff for each H′ ∈ H and m ≥ 0 if Ht ∼∗ H′m then
H′,m |= ϕ.

where ∼∗ is the reflexive transitive closure of the union of the ∼i .

Eric Pacuit 73

Truth in a Model

I H, t |= Pϕ iff there exists t ′ ≤ t such that H, t ′ |= ϕ

I H, t |= Fϕ iff there exists t ′ ≥ t such that H, t ′ |= ϕ

I H, t |= Nϕ iff H, t + 1 |= ϕ

I H, t |= Yϕ iff t > 1 and H, t − 1 |= ϕ

I H, t |= Kiϕ iff for each H′ ∈ H and m ≥ 0 if Ht ∼i H′m then
H′,m |= ϕ

I H, t |= Cϕ iff for each H′ ∈ H and m ≥ 0 if Ht ∼∗ H′m then
H′,m |= ϕ.

where ∼∗ is the reflexive transitive closure of the union of the ∼i .

Eric Pacuit 73

t = 0

t = 1

t = 2

t = 3

e2 e4

e1 e5

e1 e3

e2 e6

e7 e3

i

i i

j e2 e1 e2

e4 e2

e1 e3

e7

Eric Pacuit 74

An Example

Ann would like Bob to attend her talk; however, she only wants
Bob to attend if he is interested in the subject of her talk, not
because he is just being polite.

There is a very simple procedure to solve Ann’s problem: have
a (trusted) friend tell Bob the time and subject of her talk.

Is this procedure correct?

Eric Pacuit 75

An Example

Ann would like Bob to attend her talk; however, she only wants
Bob to attend if he is interested in the subject of her talk, not
because he is just being polite.

There is a very simple procedure to solve Ann’s problem: have
a (trusted) friend tell Bob the time and subject of her talk.

Is this procedure correct?

Eric Pacuit 75

An Example

Ann would like Bob to attend her talk; however, she only wants
Bob to attend if he is interested in the subject of her talk, not
because he is just being polite.

There is a very simple procedure to solve Ann’s problem: have
a (trusted) friend tell Bob the time and subject of her talk.

Is this procedure correct?

Eric Pacuit 75

An Example

Yes, if
1. Ann knows about the talk.

2. Bob knows about the talk.
3. Ann knows that Bob knows about the talk.
4. Bob does not know that Ann knows that he knows about

the talk.
5. And nothing else.

Eric Pacuit 76

An Example

Yes, if
1. Ann knows about the talk.
2. Bob knows about the talk.

3. Ann knows that Bob knows about the talk.
4. Bob does not know that Ann knows that he knows about

the talk.
5. And nothing else.

Eric Pacuit 76

An Example

Yes, if
1. Ann knows about the talk.
2. Bob knows about the talk.
3. Ann knows that Bob knows about the talk.

4. Bob does not know that Ann knows that he knows about
the talk.

5. And nothing else.

Eric Pacuit 76

An Example

Yes, if
1. Ann knows about the talk.
2. Bob knows about the talk.
3. Ann knows that Bob knows about the talk.
4. Bob does not know that Ann knows that he knows about

the talk.

5. And nothing else.

Eric Pacuit 76

An Example

Yes, if
1. Ann knows about the talk.
2. Bob knows about the talk.
3. Ann knows that Bob knows about the talk.
4. Bob does not know that Ann knows that he knows about

the talk.
5. And nothing else.

Eric Pacuit 76

t = 0

t = 1

t = 2

t = 3

m2PM m3PM

mA→C t mA→C t

mC→B

t
mC→B

t
mC→B

t
mC→B

t

t = 0

t = 1

t = 2

t = 3

m2PM m3PM

mA→C t mA→C t

mC→B

t
mC→B

t
mC→B

t
mC→B

t

H,3 |= ϕ

t = 0

t = 1

t = 2

t = 3

m2PM m3PM

mA→C t mA→C t

mC→B

t
mC→B

t
mC→B

t
mC→B

t

Bob’s uncertainty: H,3 |= ¬KBP2PM

t = 0

t = 1

t = 2

t = 3

m2PM m3PM

mA→C t t

mC→B

t
mC→B

t t

Bob’s uncertainty + ‘Protocol information’: H,3 |= KBP2PM

t = 0

t = 1

t = 2

t = 3

m2PM m3PM

mA→C t t

mC→B

t
mC→B

t t

Bob’s uncertainty + ‘Protocol information’:
H,3 |= ¬KBKA KBP2PM

t = 0

t = 1

t = 2

t = 3

m2PM m3PM

mA→C t t

mC→B

t
mC→B

t t

Bob’s uncertainty + ‘Protocol information’:
H,3 |= ¬KBKA KBP2PM

t = 0

t = 1

t = 2

t = 3

m2PM m3PM

mA→C t t

mC→B

t
mC→B

t t

Bob’s uncertainty + ‘Protocol information’:
H,3 |= ¬KBKA KBP2PM

t = 0

t = 1

t = 2

t = 3

m2PM m3PM

mA→C t t

mC→B

t
mC→B

t t

Bob’s uncertainty + ‘Protocol information’:
H,3 |= ¬KBKA KBP2PM

Living at the Edge of Decidability

1. Expressivity of the formal language. Does the language
include a common knowledge operator? A future operator?
Both?

2. Structural conditions on the underlying event structure. Do
we restrict to protocol frames (finitely branching trees)?
Finitely branching forests? Or, arbitrary ETL frames?

3. Conditions on the reasoning abilities of the agents. Do the
agents satisfy perfect recall? No miracles? Do they agents’
know what time it is?

Eric Pacuit 78

Living at the Edge of Decidability

1. Expressivity of the formal language. Does the language
include a common knowledge operator? A future operator?
Both?

2. Structural conditions on the underlying event structure. Do
we restrict to protocol frames (finitely branching trees)?
Finitely branching forests? Or, arbitrary ETL frames?

3. Conditions on the reasoning abilities of the agents. Do the
agents satisfy perfect recall? No miracles? Do they agents’
know what time it is?

Eric Pacuit 78

Living at the Edge of Decidability

1. Expressivity of the formal language. Does the language
include a common knowledge operator? A future operator?
Both?

2. Structural conditions on the underlying event structure. Do
we restrict to protocol frames (finitely branching trees)?
Finitely branching forests? Or, arbitrary ETL frames?

3. Conditions on the reasoning abilities of the agents. Do the
agents satisfy perfect recall? No miracles? Do they agents’
know what time it is?

Eric Pacuit 78

Living at the Edge of Decidability

1. Expressivity of the formal language. Does the language
include a common knowledge operator? A future operator?
Both?

2. Structural conditions on the underlying event structure. Do
we restrict to protocol frames (finitely branching trees)?
Finitely branching forests? Or, arbitrary ETL frames?

3. Conditions on the reasoning abilities of the agents. Do the
agents satisfy perfect recall? No miracles? Do they agents’
know what time it is?

Eric Pacuit 78

Agent Oriented Properties:

I No Miracles: For all finite histories H,H′ ∈ H and events
e ∈ Σ such that He ∈ H and H′e ∈ H , if H ∼i H′ then
He ∼i H′e.

I Perfect Recall: For all finite histories H,H′ ∈ H and events
e ∈ Σ such that He ∈ H and H′e ∈ H , if He ∼i H′e then
H ∼i H′.

I Synchronous: For all finite histories H,H′ ∈ H , if H ∼i H′

then len(H) = len(H′).

Eric Pacuit 79

Decidability in the Purely Temporal Setting

Theorem (Rabin)
The satisfiable problem for monadic second-order logic of the
k-ary tree is decidable.

M. O. Rabin. Decidability of Second-Order Theories and Automata on
Infinite Trees. Transactions of the American Mathematical Society,
141, 1969.

Theorem
The satisfiability problem for LTL with respect to TL tree models
(without epistemic structure) is decidable.

Eric Pacuit 80

Arbitrary Agents

Theorem
The satisfiability problem (with respect to a language LETL with
C,F, etc.) is decidable — EXPTIME-complete).

I The theorem holds if we restrict to tree models.

Eric Pacuit 81

Arbitrary Agents

Theorem
The satisfiability problem (with respect to a language LETL with
C,F, etc.) is decidable — EXPTIME-complete).

I The theorem holds if we restrict to tree models.

Eric Pacuit 81

Ideal Agents
Assume there are two agents

Theorem
The satisfiability problem for LETL is highly undecidable under
certain idealizations.

For example,

Theorem (Halpern & Vardi)
On interpreted systems that satisfy perfect recall or no learning,
the satisfiability problem for LETL is Σ1

1-complete.
(no learning: For H,H′ ∈ H , if Ht ∼i H′t ′ then for all k ≥ t there exists
k ′ ≥ t ′ such that Hk ∼i H′k ′ .)

J. Halpern and M. Vardi.. The Complexity of Reasoning abut Knowl-
edge and Time. J. Computer and Systems Sciences, 38, 1989.

Eric Pacuit 82

Ideal Agents
Assume there are two agents

Theorem
The satisfiability problem for LETL is highly undecidable under
certain idealizations.

For example,

Theorem (Halpern & Vardi)
On interpreted systems that satisfy perfect recall or no learning,
the satisfiability problem for LETL is Σ1

1-complete.
(no learning: For H,H′ ∈ H , if Ht ∼i H′t ′ then for all k ≥ t there exists
k ′ ≥ t ′ such that Hk ∼i H′k ′ .)

J. Halpern and M. Vardi.. The Complexity of Reasoning abut Knowl-
edge and Time. J. Computer and Systems Sciences, 38, 1989.

Eric Pacuit 82

J. Horty and EP. Action Types in Stit Semantics. Review of Symbolic
Logic, 2017.

Eric Pacuit 83

Stit model

〈Tree, <,Agent ,Choice ,V〉

Eric Pacuit 84

Stit model

〈Tree, <,Agent ,Choice ,V〉

m1

m2 m3

A

h1

¬A

h2

¬A

h3

A

h4

m/h denotes (m,h) with
m ∈ h is called an index

Hm = {h | m ∈ h}

Eric Pacuit 84

Stit model

〈Tree, <,Agent ,Choice ,V〉

m1

m2 m3

A

h1

¬A

h2

¬A

h3

A

h4

m/h denotes (m,h) with
m ∈ h is called an index

Hm = {h | m ∈ h}

Eric Pacuit 84

Stit model

〈Tree, <,Agent ,Choice ,V〉

m1

m2 m3

A

h1

¬A

h2

¬A

h3

A

h4

m/h denotes (m,h) with
m ∈ h is called an index

Hm = {h | m ∈ h}

Eric Pacuit 84

Stit model

〈Tree, <,Agent ,Choice ,V〉

m1 K1 K2

m2 K3 K4
m3K5 K6

A

h1

¬A

h2

¬A

h3

A

h4
For α ∈ Agent , Choicem

α is a
partition on Hm

Choicem
α (h) is the particular

action at m that contains h

Eric Pacuit 84

Stit model

〈Tree, <,Agent ,Choice ,V〉

m1 K1 K2

m2 K3 K4
m3K5 K6

A

h1

¬A

h2

¬A

h3

A

h4
For α ∈ Agent , Choicem

α is a
partition on Hm

Choicem
α (h) is the particular

action at m that contains h

Eric Pacuit 84

Stit model

〈Tree, <,Agent ,Choice ,V〉

m1 K1 K2

m2 K3 K4
m3K5 K6

A

h1

¬A

h2

¬A

h3

A

h4
For α ∈ Agent , Choicem

α is a
partition on Hm

Choicem
α (h) is the particular

action at m that contains h

Eric Pacuit 84

Stit model

〈Tree, <,Agent ,Choice ,V〉

m1 K1 K2

m2 K3 K4
m3K5 K6

A

h1

¬A

h2

¬A

h3

A

h4

V assigns sets of indices to
atomic propositions.

m2/h1 |= A m2/h2 6|= A

Eric Pacuit 84

m

K1 K2 K3

h1 h2 h3 h4 h5

I M,m/h |= �A if and only ifM,m/h′ |= A for all h′ ∈ Hm,

M,m/h |= [α stit: A] if and only if Choicem
α (h) ⊆ |A |m

M
,

Eric Pacuit 85

m

K1 K2 K3

h1 h2 h3 h4 h5

I M,m/h |= �A if and only ifM,m/h′ |= A for all h′ ∈ Hm,

I M,m/h |= [α stit: A] if and only if Choicem
α (h) ⊆ |A |m

M

asdfa sdfasdfasdf

Eric Pacuit 85

m

K1 K2 K3

h1

B

h2

B

h3

¬B

h4

B

h5

¬B

I M,m/h |= �A if and only ifM,m/h′ |= A for all h′ ∈ Hm,

I M,m/h |= [α stit: A] if and only if Choicem
α (h) ⊆ |A |m

M

m/h1 |= [α stit: B], m/h3 6|= [α stit: B], m/h5 |= [α stit: ¬B]

Eric Pacuit 85

m

K1 K2 K3

h1

B

h2

B

h3

¬B

h4

B

h5

¬B

I M,m/h |= �A if and only ifM,m/h′ |= A for all h′ ∈ Hm,

I M,m/h |= [α stit: A] if and only if Choicem
α (h) ⊆ |A |m

M

I Temporal modalities (P, F, . . .)

Eric Pacuit 85

Ability: ^[α stit: A]

m

K1 K2

h1

A
¬B

h2

¬A
B

h3

¬A
¬B

I m/h1 6|= A ⊃ ^[α stit: A]

I m/h1 6|= ^[α stit: A ∨ B] ⊃

^[α stit: A] ∨^[α stit: B]

Eric Pacuit 86

^[α stit: A] is a “causal sense” of ability. But, there is also an
“epistemic sense” of ability...

What needs to be added to stit models?

I Indistinguishability relation(s)
I Action types

Eric Pacuit 87

^[α stit: A] is a “causal sense” of ability. But, there is also an
“epistemic sense” of ability...

What needs to be added to stit models?

I Indistinguishability relation(s)

I Action types

Eric Pacuit 87

^[α stit: A] is a “causal sense” of ability. But, there is also an
“epistemic sense” of ability...

What needs to be added to stit models?

I Indistinguishability relation(s)
I Action types

Eric Pacuit 87

Epistemic stit models

A. Herzig. Logics of knowledge and action: critical analysis and chal-
lenges. Autonomous Agent and Multi-Agent Systems, 2014.

V. Goranko and EP. Temporal aspects of the dynamics of knowledge.
in Johan van Benthem on Logic and Information Dynamics, Outstand-
ing Contributions to Logic, (eds. Alexandru Baltag and Sonja Smets),
pp. 235 - 266, 2014.

J. Broeresen, A. Herzig and N. Troquard. What groups do, can do
and know they can do: An analysis in normal modal logics. Journal of
Applied and Non-Classical Logics, 19:3, pgs. 261 - 289, 2009.

W. van der Hoek and M. Wooldridge. Cooperation, knowledge and
time: Alternating-time temporal epistemic logic and its applications.
Studia Logica, 75, pgs. 125 - 157, 2003.

Eric Pacuit 88

Epistemic stit models

〈Tree, <,Agent ,Choice , {∼α}α∈Agent ,V〉

m1 K1 K2

m2 K3 K4
m3K5 K6

A

h1

¬A

h2

¬A

h3

A

h4
∼α is an equivalence relation
on indices

m/h ∼α m′/h′: nothing
α knows distinguishes m/h
from m′/h′, or m/h and
m′/h′ are indistinguishable

Eric Pacuit 88

Epistemic stit models

〈Tree, <,Agent ,Choice , {∼α}α∈Agent ,V〉

m1 K1 K2

m2 K3 K4
m3K5 K6

A

h1

¬A

h2

¬A

h3

A

h4
∼α is an equivalence relation
on indices

m/h ∼α m′/h′: nothing
α knows distinguishes m/h
from m′/h′, or m/h and
m′/h′ are indistinguishable

Eric Pacuit 88

Epistemic stit models

〈Tree, <,Agent ,Choice , {∼α}α∈Agent ,V〉

m1 K1 K2

m2 K3 K4
m3K5 K6

A

h1

¬A

h2

¬A

h3

A

h4
∼α is an equivalence relation
on indices

m/h ∼α m′/h′: nothing
α knows distinguishes m/h
from m′/h′, or m/h and
m′/h′ are indistinguishable

Eric Pacuit 88

Epistemic stit models

〈Tree, <,Agent ,Choice , {∼α}α∈Agent ,V〉

m1 K1 K2

m2 K3 K4
m3K5 K6

A

h1

¬A

h2

¬A

h3

A

h4
∼α is an equivalence relation
on indices

m/h ∼α m′/h′: nothing
α knows distinguishes m/h
from m′/h′, or m/h and
m′/h′ are indistinguishable

Eric Pacuit 88

Epistemic stit models

m
K1 K2

m2K3 K4

I M,m/h |= KαA if and only if, for all m′/h′, if m/h ∼α m′/h′,
thenM,m′/h′ |= A

Eric Pacuit 88

Coin game

m1

K1 K2

m2

K3 K4

m3

K5 K6

A

h1

¬A

h2

¬A

h3

A

h4

Eric Pacuit 89

Coin game 1

m1

K1 K2

m2

K3 K4

m3

K5 K6

A

h1

¬A

h2

¬A

h3

A

h4

Eric Pacuit 90

Coin game 2

m1

K1 K2

m2

K3 K4

m3

K5 K6

A

h1

¬A

h2

¬A

h3

A

h4

Eric Pacuit 91

Ability

m1

K1 K2

m2

K3 K4

m3

K5 K6

A
h1

¬A
h2

¬A
h3

A
h4

m1

K1 K2

m2

K3 K4

m3

K5 K6

A
h1

¬A
h2

¬A
h3

A
h4

^[α stit: A] is settled true in at m2 and m3 in both models.

Eric Pacuit 92

Ability

m1

K1 K2

m2

K3 K4

m3

K5 K6

A
h1

¬A
h2

¬A
h3

A
h4

m1

K1 K2

m2

K3 K4

m3

K5 K6

A
h1

¬A
h2

¬A
h3

A
h4

^[α stit: A] is settled true in at m2 and m3 in both models.

Eric Pacuit 92

Ability

m1

K1 K2

m2

K3 K4

m3

K5 K6

A
h1

¬A
h2

¬A
h3

A
h4

m1

K1 K2

m2

K3 K4

m3

K5 K6

A
h1

¬A
h2

¬A
h3

A
h4

Kα^[α stit: A] is settled true in at m2 and m3 in both models.

Eric Pacuit 92

Ability

m1

K1 K2

m2

K3 K4

m3

K5 K6

A
h1

¬A
h2

¬A
h3

A
h4

m1

K1 K2

m2

K3 K4

m3

K5 K6

A
h1

¬A
h2

¬A
h3

A
h4

^Kα[α stit: A] is settled false in at m2 and m3 in both models.

Eric Pacuit 92

Ability

α has the ability to see to it that A in the epistemic sense just in
case there is some action available to α that is known by α to
guarantee the truth of A .

Eric Pacuit 92

Ability

m1

K1 K2

m2

K3 K4

m3

K5 K6

bh bt

A
h1

¬A
h2

¬A
h3

A
h4

m1

K1 K2

m2

K3 K4

m3

K5 K6

bh bt

A
h1

¬A
h2

¬A
h3

A
h4

Eric Pacuit 92

Coin game 3

m1

K1 K2 K3 K4

m2

K5 K6

m3

K7 K8

A

h1

¬A

h2

A

h3

¬A

h4

Eric Pacuit 93

Labeled stit model

〈Tree, <,Agent ,Choice , {∼α}α∈Agent ,Type, [],Label,V〉

Type = {τ1, τ2, . . .} is a finite set of action types—general kinds
of action, as opposed to the concrete action tokens already
present in stit logics.

[] is a partial function mapping types to the particular action
token [τ]mα that results when τ is executed by α at m.

I [τ]mα ∈ Choicem
α

Label is a 1-1 function mapping Choicem
α to action types.

I If K ∈ Choicem
α , then [Label(K)]αm = K

I If τ ∈ Type and [τ]mα is defined, then Label([τ]mα) = τ

Eric Pacuit 94

Labeled stit model

〈Tree, <,Agent ,Choice , {∼α}α∈Agent ,Type, [],Label,V〉

Type = {τ1, τ2, . . .} is a finite set of action types—general kinds
of action, as opposed to the concrete action tokens already
present in stit logics.

[] is a partial function mapping types to the particular action
token [τ]mα that results when τ is executed by α at m.

I [τ]mα ∈ Choicem
α

Label is a 1-1 function mapping Choicem
α to action types.

I If K ∈ Choicem
α , then [Label(K)]αm = K

I If τ ∈ Type and [τ]mα is defined, then Label([τ]mα) = τ

Eric Pacuit 94

Labeled stit model

〈Tree, <,Agent ,Choice , {∼α}α∈Agent ,Type, [],Label,V〉

Type = {τ1, τ2, . . .} is a finite set of action types—general kinds
of action, as opposed to the concrete action tokens already
present in stit logics.

[] is a partial function mapping types to the particular action
token [τ]mα that results when τ is executed by α at m.

I [τ]mα ∈ Choicem
α

Label is a 1-1 function mapping Choicem
α to action types.

I If K ∈ Choicem
α , then [Label(K)]αm = K

I If τ ∈ Type and [τ]mα is defined, then Label([τ]mα) = τ

Eric Pacuit 94

Labeled stit model

〈Tree, <,Agent ,Choice , {∼α}α∈Agent ,Type, [],Label,V〉

Type = {τ1, τ2, . . .} is a finite set of action types—general kinds
of action, as opposed to the concrete action tokens already
present in stit logics.

[] is a partial function mapping types to the particular action
token [τ]mα that results when τ is executed by α at m.

I [τ]mα ∈ Choicem
α

Label is a 1-1 function mapping Choicem
α to action types.

I If K ∈ Choicem
α , then [Label(K)]αm = K

I If τ ∈ Type and [τ]mα is defined, then Label([τ]mα) = τ

Eric Pacuit 94

Labeled stit model

〈Tree, <,Agent ,Choice , {∼α}α∈Agent ,Type, [],Label,V〉

Type = {τ1, τ2, . . .} is a finite set of action types—general kinds
of action, as opposed to the concrete action tokens already
present in stit logics.

[] is a partial function mapping types to the particular action
token [τ]mα that results when τ is executed by α at m.

I [τ]mα ∈ Choicem
α

Label is a 1-1 function mapping Choicem
α to action types.

I If K ∈ Choicem
α , then [Label(K)]αm = K

I If τ ∈ Type and [τ]mα is defined, then Label([τ]mα) = τ

Eric Pacuit 94

Labeled stit model, continued

〈Tree, <,Agent ,Choice , {∼α}α∈Agent ,Type, [],Label,V〉

Typem
α = {Label(K) | K ∈ Choicem

α }

Typem
α (h) = Label(Choicem

α (h))

Eric Pacuit 95

kstit

m
K1 K2

m2K3 K4

τ

I M,m/h |= [α kstit: A] if and only if [Typem
α (h)]m

′

α ⊆ |A |m
′

M
for

all m′/h′ such that m′/h′ ∼α m/h.

Eric Pacuit 96

The difference between C1 and C2

(C1) If m/h ∼α m′/h′, then Typem
α = Typem′

α

(C2) If m/h ∼α m′/h′, then [Typem
α (h)]m

′

α is defined.

Eric Pacuit 97

Minimal Constraint

m1

K1

τ1

K2

τ2
m2

K3

τ1

h1 h2 h3

Eric Pacuit 98

Knowledge of action types

Let Aτ
α be an atomic proposition carrying the intuitive meaning

that the agent α executes the action type τ.

I M,m/h |= Aτ
α if and only if Typem

α (h) = τ

C2 is satisfied iff ^Aτ
α ⊃ Kα^Aτ

α is valid.

Eric Pacuit 99

Knowledge of action types

Let Aτ
α be an atomic proposition carrying the intuitive meaning

that the agent α executes the action type τ.

I M,m/h |= Aτ
α if and only if Typem

α (h) = τ

C2 is satisfied iff ^Aτ
α ⊃ Kα^Aτ

α is valid.

Eric Pacuit 99

m1

K1

τ1

K2

τ2
m2

K3

τ1

h1 h2

Aτ2
α

h3

m1/h1 |= ^Aτ2
α m1/h1 6|= Kα^Aτ2

α

Eric Pacuit 100

Epistemic sense of ability

m1

K1 K2

m2

K3 K4

τ1 τ2
m3

K5 K6

τ1 τ2

A

h1

¬A

h2

¬A

h3

A

h4

^[α kstit: A] is settled true at m2 and m3.

Eric Pacuit 101

Epistemic sense of ability

m1

K1 K2

m2

K3 K4

τ2τ1
m3

K5 K6

τ1 τ2

A

h1

¬A

h2

¬A

h3

A

h4

^[α kstit: A] is settled true at m2 and m3.

Eric Pacuit 101

Epistemic sense of ability

m1

K1 K2

m2

K3 K4

τ1 τ2
m3

K5 K6

τ1 τ2

A

h1

¬A

h2

¬A

h3

A

h4

^[α kstit: A] is settled true at m2 and m3.

Eric Pacuit 101

Epistemic sense of ability

m1

K1 K2

m2

K3 K4

τ1 τ2
m3

K5 K6

τ1 τ2

A

h1

¬A

h2

¬A

h3

A

h4

^[α kstit: A] is settled false at m2 and m3.

Eric Pacuit 101

Epistemic sense of ability

m1

K1 K2

m2

K3 K4

τ1 τ2
m3

K5 K6

τ2τ1

A

h1

¬A

h2

¬A

h3

A

h4

^[α kstit: A] is settled false at m2 and m3.

Eric Pacuit 101

Discussion: Related Work
A. Herzig and N. Troquard. Knowing how to play: uniform choices in
logics of agency. In Proceedings of the Fifth International Joint Confer-
ence on Autonomous Agents and Multi-agent Systems (AAMAS-06),
pages 209 - 216. 2006..

J. Broersen. Deontic epistemic stit logic distinguishing modes of mens
rea. Journal of Applied Logic, 9(2):127 - 152, 2011.

A. Herzig and E. Lorini. A Dynamic Logic of Agency I: STIT, Capabil-
ities and Powers. Journal of Logic, Language and Information 19(1):
89-121, 2010.

EP, R. Parikh, and E. Cogan. The logic of knowledge based obligation.
Synthese, 149:2, pp. 311 - 341, 2006.

M. Xu. Combinations of stit and actions. Journal of Logic, Language,
and Information, 19:485 - 503, 2010.

Eric Pacuit 102

Discussion

Validities:

I Kα[α stit: A] ⊃ [α kstit: A]

I [α kstit: A] ⊃ [α stit: A]

Non-Validities:

I ^[α kstit: A] ⊃ Kα^[α kstit: A]

Eric Pacuit 103

Discussion

Validities:

I Kα[α stit: A] ⊃ [α kstit: A]

I [α kstit: A] ⊃ [α stit: A]

Non-Validities:

I ^[α kstit: A] ⊃ Kα^[α kstit: A]

Eric Pacuit 103

Constraints

(C3) If m/h ∼α m′/h′, then m = m′

(C3) is satisfied iff [α stit: A] ≡ [α kstit: A] is valid.

Eric Pacuit 104

(C4) If m/h ∼α m′/h′, then Typem
α (h) = Typem′

α (h′)

(C4) is satisfied iff Aτ
α ⊃ KαAτ

α is valid.

Eric Pacuit 105

Deliberative perspective

(C5) If m/h ∼α m′/h′, then m/h′′ ∼α m′/h′′′ for all
h′′ ∈ Hm and h′′′ ∈ Hm′

Indistinguishability between moments: m ∼α m′ iff
m/h ∼α m′/h′ for all h ∈ Hm and h′ ∈ Hm′ .

Eric Pacuit 106

Discussion

I Language/validities

�A ⊃ [α stit: A]
Kα�A ⊃ [α kstit: A]
[α kstit: A] ≡ Kact

α [α stit: A]
. . .

I What do the agents know vs. What do the agents know
given what they are doing.

I Equivalence between labeled stit models (cf. Thompson
transformations specifying when two imperfect information
games reduce to the same Normal form)

Eric Pacuit 107

