
Introduction to Logics of Knowledge and
Belief

Eric Pacuit

University of Maryland
pacuit.org

epacuit@umd.edu

May 6, 2019

Eric Pacuit 1

pacuit.org
epacuit@umd.edu

Knowledge, Questions and Issues

J. van Benthem and S. Minica. Toward a Dynamic Logic of Questions.
Journal of Philosophical Logic, 41(4), pp. 633 - 669, 2012.

A. Baltag, R. Boddy and S. Smets. Group Knowledge in Interrog-
ative Epistemology. in Jaakko Hintikka on Knowledge and Game-
Theoretical Semantics, pp. 131-164.

Eric Pacuit 2

Questions

Suppose that W is a set of states.

A question is a partition on W .

QuestW = {≈Q | ≈Q is a partition on W }

Given P ⊆W , a binary question is the partition {P,W \ P}, so
s ≈P t iff either s, t ∈ P or s, t < P

Every family of questions Quest ⊆ QuestW can be
‘compressed’ into one big ‘conjunctive’ question: this is the
least refined partition that refines every question in Quest ,
≈Quest =

⋂
{≈Q | Q ∈ Quest}

Eric Pacuit 3

Questions

Suppose that W is a set of states.

A question is a partition on W .

QuestW = {≈Q | ≈Q is a partition on W }

Given P ⊆W , a binary question is the partition {P,W \ P}, so
s ≈P t iff either s, t ∈ P or s, t < P

Every family of questions Quest ⊆ QuestW can be
‘compressed’ into one big ‘conjunctive’ question: this is the
least refined partition that refines every question in Quest ,
≈Quest =

⋂
{≈Q | Q ∈ Quest}

Eric Pacuit 3

Questions

Suppose that W is a set of states.

A question is a partition on W .

QuestW = {≈Q | ≈Q is a partition on W }

Given P ⊆W , a binary question is the partition {P,W \ P}, so
s ≈P t iff either s, t ∈ P or s, t < P

Every family of questions Quest ⊆ QuestW can be
‘compressed’ into one big ‘conjunctive’ question: this is the
least refined partition that refines every question in Quest ,
≈Quest =

⋂
{≈Q | Q ∈ Quest}

Eric Pacuit 3

For i ∈ A, let ≈i represent i’s, total question.

“van Benthem and Minica call ≈i the agent i’s issue relation.... it
essentially captures agent i’s conceptual indistinguishability
relation, since it specifies the finest relevant world-distinctions
that agent i makes....Two worlds s ≈i t are conceptually
indistinguishable for agent i (since the answers to all i’s
questions are the same in both worlds): one can say that s and
t will correspond to the same world in agent i’s own “subjective
model”.” (Baltag et al.)

Eric Pacuit 4

Epistemic Issue Model

M = 〈W , {→i}i∈A, {≈i}i∈A,V〉, where

I W is a non-empty set of states
I For i ∈ A, ≈i⊆W ×W is an equivalence relation (the issue

relation)
I For i ∈ A,→i⊆W ×W is reflexive (the epistemic

alternative relation)
I V : At→ ℘(W) is a valuation funciton

Eric Pacuit 5

For s ∈W , s(i) = {s′ | s →i s′} is the set of epistemic
possibilities for i at s.

Open questions: The restriction ≈i|s(a)
=≈i ∩(s(a) × s(a))

represents i’s current open isues at world s.

Suppose that P ⊆W is a proposition. Then,

KiP = {s | s ∈W , s(i) ⊆ P}

CP = {s | for all t , if s(
⋃

i →i)
+t , then t ∈ P}

DP = {s | for all t , if s(
⋂

i →i)t , then t ∈ P}

QiP = {s | for all t , if s ≈i t , then t ∈ P}

Eric Pacuit 6

For s ∈W , s(i) = {s′ | s →i s′} is the set of epistemic
possibilities for i at s.

Open questions: The restriction ≈i|s(a)
=≈i ∩(s(a) × s(a))

represents i’s current open isues at world s.

Suppose that P ⊆W is a proposition. Then,

KiP = {s | s ∈W , s(i) ⊆ P}

CP = {s | for all t , if s(
⋃

i →i)
+t , then t ∈ P}

DP = {s | for all t , if s(
⋂

i →i)t , then t ∈ P}

QiP = {s | for all t , if s ≈i t , then t ∈ P}

Eric Pacuit 6

Conceptual indistinguishability implies epistemic
indistinguishability: For all i ∈ A, ≈i⊆→i .

For all ϕ, Kiϕ⇒ Qiϕ

To know is to know the answer to a question: For all i ∈ A,
→i≈i⊆→i

For all ϕ, Kiϕ⇒ KiQiϕ

Eric Pacuit 7

Selective Public Announcement

Principle of Selective Learning. When confronted with
information, agents come to know only the information that is
relevant for their issues.

For any proposition P ⊆W and i ∈ A, let Pi the strongest
i-relevant proposition entailed by P:

Pi = {s ∈W | s ≈i s′ for some s′ ∈ P}

Eric Pacuit 8

Selective Public Announcement

Suppose thatM = 〈W , {→i}i∈A, {≈i}i∈A,V〉 is an epistemic
issue model and P ⊆W is a proposition. A selective public
announcement !P is an action that changesM to
M

P = 〈WP , {→P
i }i∈A, {≈

P
i }i∈A,V〉, where

I WP = W
I →P

i =→i ∩ ≈
Pi

I ≈P
i =≈i

I For all p ∈ At, VP(p) = V(p).

Eric Pacuit 9

w0 w1

w2 w3

Eric Pacuit 10

w1

w3

w0

w2

Eric Pacuit 10

w1

w3

w0

w2

Eric Pacuit 10

A. Baltag, R. Boddy and S. Smets. Group Knowledge in Interrog-
ative Epistemology. in Jaakko Hintikka on Knowledge and Game-
Theoretical Semantics, pp. 131-164.

Eric Pacuit 11

I. Ciardelli and F. Roelofsen. Inquisitive dynamic epistemic logic. Syn-
these, 2015.

I. Ciardelli. Modalities in the realm of questions: axiomatizing inquisi-
tive epistemic logic. Advances in Modal Logic, 2014.

Ivano Ciardelli, Jeroen Groenendijk, and Floris Roelofsen. Inquisitive
Semantics. Oxford University Press, 2018.

Eric Pacuit 12

An issue is a non-empty, downward closed set of information
states. We say that an information state t settles an issue I in
case t ∈ I.

Let Π be the set of all issues.

An inquisitive model is a tuple 〈W , (Σi)i∈A,V〉 where
I W is a non-empty set of possible worlds
I V : W → ℘(At) is a valuation function
I Σi : W → Π where Σi(w) is an issue, satisfying:

Factivity For all w ∈W , w ∈ σi(w)
Introspection For any w, v ∈W if v ∈ σi(w), then
Σi(v) = Σi(w).

where σi(w) := Σi(w) represents the information state of
agent i in w.

Eric Pacuit 13

An issue is a non-empty, downward closed set of information
states. We say that an information state t settles an issue I in
case t ∈ I.

Let Π be the set of all issues.

An inquisitive model is a tuple 〈W , (Σi)i∈A,V〉 where
I W is a non-empty set of possible worlds
I V : W → ℘(At) is a valuation function
I Σi : W → Π where Σi(w) is an issue, satisfying:

Factivity For all w ∈W , w ∈ σi(w)
Introspection For any w, v ∈W if v ∈ σi(w), then
Σi(v) = Σi(w).

where σi(w) := Σi(w) represents the information state of
agent i in w.

Eric Pacuit 13

1650 Synthese (2015) 192:1643–1687

(a) (b) (c) (d)

Fig. 1 Issues over the state {w1, w2, w3, w4}

It is only possible to truthfully resolve an issue I if the actual world is contained in at
least one t ∈ I , i.e., if the actual world is contained in

⋃
I . Therefore, we say that an

issue I assumes the information that the actual world is located in
⋃

I . Moreover, if
s is an information state, then we say that I is an issue over s just in case

⋃
I = s.

The set of all issues over a state s is denoted by !s , and the set
⋃

s⊆W !s of issues
over some state is denoted by !. Finally, if I is an issue and s a state, then we define
the restriction of I to s as the issue I ! s := {t ∈ I | t ⊆ s}.

Figure 1 depicts four issues over the state s = {w1, w2, w3, w4}. In order to keep
the figures neat, we have depicted only the maximal elements of these issues. The
issue in (a) can only be settled by specifying precisely which world in s is the actual
one. The issue in (b) can be settled either by locating the actual world in {w1, w2}, or
by locating it in {w3, w4}. The issue in (c) can be settled either by locating the actual
world in {w1, w3, w4}, or by locating it in {w2, w3, w4}. Finally, the issue in (d) is the
trivial issue over s, which is already settled by s itself.

This notion of issues is precisely what we need to give epistemic logic an inquisitive
dimension. Recall that in epistemic logic, every agent a is assigned an information state
σa(w) in every world w, determining the range of worlds that she considers possible
candidates for the actual one. Now, every agent will also be assigned an inquisitive
state Σa(w), which will be modeled as an issue over σa(w), reflecting the agent’s
desire to locate the actual world more precisely inside her information state.

Since Σa(w) will be modeled as an issue over σa(w), we will always have that
σa(w) = ⋃

Σa(w). This means that from the inquisitive state Σa(w) of an agent
a in a world w, we can always derive the information state σa(w) of that agent in
that world, simply by taking the union of Σa(w). Thus, in effect, Σa(w) encodes
both the information available to a and the issues entertained by a at w. This means
that the map Σa suffices as a specification of the state of the agent a at each world,
encompassing both information and issues. We do not have to list σa explicitly as an
independent component in the definition of an inquisitive epistemic model: we can
simply use σa(w) as an abbreviation for

⋃
Σa(w), keeping in mind that this set of

worlds represents the information state of agent a inw. We thus arrive at the following
definition.

Definition 3 (Inquisitive epistemic models)
An inquisitive epistemic model is a triple M = ⟨W, V,ΣA⟩ where:
– W is a set, whose elements will be called possible worlds.
– V : W → ℘ (P) is a valuation map that specifies for every world w which atomic
sentences are true at w.

123

Eric Pacuit 14

1. For all p ∈ At, p ∈ L!

2. For all ⊥ ∈ L!

3. If α1, . . . , αn ∈ L!, then ?{α1, . . . , αn} ∈ L?

4. If ϕ ∈ L◦ and ψ ∈ L◦, then ϕ ∧ ψ ∈ L◦
5. If α ∈ L! and ψ ∈ L◦, then α→ ψ ∈ L◦

6. If ϕ ∈ L◦, then Eiϕ ∈ L!

7. If ϕ ∈ L◦, then Kiϕ ∈ L!

Eric Pacuit 15

Interrogative: ?{α1, . . . , αn}.

?p means ?{p,¬p}

Kiϕ: i knows that ϕ is true

Eiϕ: i entertains ϕ being true

Ki?p means “i knows whether p is true

Ki?Kj?p “i knows whether j knows whether p is true

Eric Pacuit 16

The following definition specifies recursively when a sentence
is supported by a state s. Intuitively, for declaratives being
supported amounts to being established, or true everywhere in
s, while for interrogatives it amounts to being resolved in s.

Eric Pacuit 17

1. M, s |= p iff p ∈ V(w) for all w ∈ s.
2. M, s |= ⊥ iff s = ∅.
3. M, s |=?{α1, . . . , αn} iffM, s |= αi for some 1 ≤ i ≤ n.
4. M, s |= ϕ ∧ ψ iffM, s |= ϕ andM, s |= ψ.
5. M, s |= α→ ϕ iff for any t ⊆ s, ifM, t |= α, thenM, t |= ϕ.
6. M, s |= Kiϕ iff for any w ∈ s,M, σi(w) |= ϕ.
7. M, s |= Eiϕ iff for any w ∈ s, for any t ∈ Σi(w),M, t |= ϕ.

Eric Pacuit 18

Fact 1 (Persistency of support) IfM, s |= ϕ and t ⊆ s, then
M, t |= ϕ.

Fact 2 (The empty state supports everything) For anyM and
any ϕ,M, ∅ |= ϕ

Fact 3 (Support for negation, disjunction, and polar
interrogatives)
I M, s |= ¬α iff for any non-empty t ⊆ s,M, t 6|= α

I M, s |= α ∨ β iff there are t1, t2 such that s = t1 ∪ t2, and
M, t1 |= α andM, t2 |= β

I M, s |=?α iffM, t |= α orM, t |= ¬α

Eric Pacuit 19

We say that a sentence ϕ entails ψ, notation ϕ |= ψ, just in
case for all modelsM and states s, ifM, s |= ϕ thenM, s |= ψ.

We say that a sentence ϕ is valid in case it is supported by all
states in all models.

We say that two sentences ϕ and ψ are equivalent, notation
ϕ ≡ ψ, just in case for all modelsM and states s,M, s |= ϕ iff
M, s |= ψ.

Eric Pacuit 20

ϕ is true at w inM iff ϕ is supported by {w} inM

The truth set of a sentence ϕ in a modelM, denoted |ϕ|M , is
defined as the set of worlds inM where ϕ is true:
|ϕ|M := {w ∈W | M,w |= ϕ}

The proposition [ϕ]M expressed by a sentence ϕ in a model
M is the set of all states inM that support ϕ:
[ϕ]M := {s ⊆W | M, s |= ϕ}

We have that |?p|M = |?q|M, but [?p]M , [?q]M

Fact: For any ϕ and any modelM, |ϕ|M =
⋃

[ϕ]M

Eric Pacuit 21

ϕ is true at w inM iff ϕ is supported by {w} inM

The truth set of a sentence ϕ in a modelM, denoted |ϕ|M , is
defined as the set of worlds inM where ϕ is true:
|ϕ|M := {w ∈W | M,w |= ϕ}

The proposition [ϕ]M expressed by a sentence ϕ in a model
M is the set of all states inM that support ϕ:
[ϕ]M := {s ⊆W | M, s |= ϕ}

We have that |?p|M = |?q|M, but [?p]M , [?q]M

Fact: For any ϕ and any modelM, |ϕ|M =
⋃

[ϕ]M

Eric Pacuit 21

Fact (Truth and support) For any modelM, any state s and any
declarative α, the following holds:

M, s |= α iffM,w |= α for all w ∈ s

Eric Pacuit 22

M, s |= α→ ϕ iffM, s ∩ |α|M |= ϕ

If Ann invites Bill to the party, will he go? (p →?q)

Answers:
I Yes, if Ann invites Bill, he will go. (p → q)
I No, if Ann invites Bill, he will not go. (p → ¬q)

Eric Pacuit 23

M, s |= α→ ϕ iffM, s ∩ |α|M |= ϕ

If Ann invites Bill to the party, will he go? (p →?q)

Answers:
I Yes, if Ann invites Bill, he will go. (p → q)
I No, if Ann invites Bill, he will not go. (p → ¬q)

Eric Pacuit 23

Knowledge

For declaratives α, Kiα boils down to the usual definition of truth
of a modality familiar from modal logic.

For interrogatives µ, Kiµ holds when µ is resolved in σi(w),
which means that Kiµ expresses the fact that i has sufficient
information to resolve µ at w.

For instance, Ki?p is true at w just in case that σi(w) supports
either p or ¬p. That is, when i knows whether p is true.

Eric Pacuit 24

Entertaining

Eiϕ is true at w just in case ϕ is supported by any state
t ∈ Σi(w)

Fact. For any ϕ, Kiϕ |= Eiϕ

Fact. For any declarative α, Kiα ≡ Eiα

Wiϕ means “i wonders about ϕ: Wiϕ := ¬Kiϕ ∧ Eiϕ

Eric Pacuit 25

I M,w |= Kiϕ iff
⋃

Σi(w) ∈ [ϕ]M
I M,w |= Eiϕ iff Σi(w) ⊆ [ϕ]M

Eric Pacuit 26

Public Announcement

GivenM = 〈W , (Σi)i∈A,V〉, the public announcement of ϕ
transformM toMϕ = 〈Wϕ, (Σ

ϕ
i)i∈A,Vϕ

〉, where
I Wϕ = W ∩ |ϕ|M
I Vϕ = V|Wϕ

I For all w ∈Wϕ, Σ
ϕ
i (w) = Σi(w) ∩ [ϕ]M

For any ϕ, σϕi (w) = σi(w) ∩ |ϕ|M

Eric Pacuit 27

1666 Synthese (2015) 192:1643–1687

(a) (b)

(d) (e)

(c)

Fig. 2 The effects of a series of simple announcements on a state

Let us illustrate the effects of public announcements graphically for some very
simple cases. Consider a language with just two atomic sentences, p and q, and a
model consisting of just four worlds, W = {11, 10, 01, 00}, such that 11 makes both
p and q true, 10 makes p true and q false, 01 makes p false and q true, and 00 makes
both p and q false. Suppose that there is just one agent, a, and suppose that initially, in
anyw ∈W , a’s inquisitive stateΣa(w) is embodied by the trivial issue overW , which
is depicted in Fig. 2a. Throughout this example, a’s inquisitive state will always be
the same for any w ∈W , so we will simply denote it by Σa . We visualize inquisitive
states by depicting only their maximal elements (just as we did for issues in Fig. 1 on
p. 8). In this case, since Σa is embodied by the trivial issue over W , there is just one
maximal element, which is W itself. This means that initially a has no (non-trivial)
information and no (non-trivial) issues.

Now suppose that a polar interrogative ?p is publicly announced. To capture the
effect of this announcement,Σa needs to be intersected with the proposition expressed
by ?p, which consist of all information states that support either p or¬p. The resulting
inquisitive state is depicted in Fig. 2b.

Next suppose that another polar interrogative, ?q, is publicly announced. To capture
the effect of this announcement,Σa needs to be further intersectedwith the proposition
expressed by ?q, which consists of all information states that support either q or ¬q.
The resulting inquisitive state is depicted in Fig. 2c. Notice that a’s information state,
i.e., σa = ⋃

Σa , has not changed: no worlds have been eliminated, which means that
no information has been gained. However, a’s inquisitive state has been enhanced in a
non-trivial way, capturing the fact that two issues have been raised: the issue whether
p, and the issue whether q. The resulting inquisitive state consists precisely of those
information states that resolve both these issues.

Now suppose that the declarative sentence p is publicly announced. The effect of
this announcement is depicted in Fig. 2d. Now a’s information state σa does change:
all worlds where p is false are eliminated. This resolves one of the open issues, i.e.,
whether p. However, the resulting inquisitive state reflects that the other public issue,
whether q, is still open.

123

Eric Pacuit 28

Y. Wang. Beyond knowing that: A new generation of epistemic logics.
2016.

Eric Pacuit 29

We have been studying “knowing that” expressions, but we
often use the verb “know” with an embedded question such as:
I I know whether the claim is true.
I I know what your password is.
I I know how to swim.
I I know why he was late.
I I know who proved this theorem.
I I know where she has been.

Eric Pacuit 30

Knowing Whether

Kwiϕ means that i knows whether ϕ is true.

Kwiϕ↔ Kwi¬ϕ is valid
KwiKwjϕ→ Kwiϕ is not valid

4ϕ := �ϕ ∨ �¬ϕ means that ϕ is not contingent

Eric Pacuit 31

Knowing Whether

Kwiϕ means that i knows whether ϕ is true.

Kwiϕ↔ Kwi¬ϕ is valid
KwiKwjϕ→ Kwiϕ is not valid

4ϕ := �ϕ ∨ �¬ϕ means that ϕ is not contingent

Eric Pacuit 31

S. Hart, A. Heifetz, and D. Samet. Knowing whether, knowing that, and
the cardinality of state spaces. Journal of Economic Theory, 70(1):249
- 256, 1996.

L. Humberstone. The logic of non-contingency. Notre Dame Journal
of Formal Logic, 36(2):214 - 229, 1995.

S. Kuhn. Minimal non-contingency logic. Notre Dame Journal of For-
mal Logic, 36(2):230 - 234, 1995..

H. van Ditmarsch, J. Fan and Y. Wang. Contingency and knowing
whether. Review of Symbolic Logic 8(1):75-107, 2015.

Eric Pacuit 32

NCL Logic

ϕ ::= > | p | ¬ϕ | (ϕ ∧ ϕ) | 4i ϕ

M = 〈W , (Ri)i∈A,V〉 where

M,w |= 4iϕ iff for all v1, v2, if wRiv1 and wRiv2, thenM, v1 |= ϕ
iffM, v2 |= ϕ

Eric Pacuit 33

ps p t

M1

p s′

M2

M1, s andM2, s′ satisfy the NCL formulas, but can be
distinguished by formulas of modal logic.

Eric Pacuit 34

I ¬ 4i ψ→ (�iϕ↔ (4iϕ ∧ 4i(ψ→ ϕ))) is valid

I It is impossible to use NCL formulas to capture frame
properties.

I NCL is not normal, e.g., (4i(ϕ→ ψ) ∧ 4iϕ)→ 4iψ is not
valid.

I NCL is not strictly weaker than modal logic, 4iϕ↔ 4i¬ϕ is
valid.

Eric Pacuit 35

I ¬ 4i ψ→ (�iϕ↔ (4iϕ ∧ 4i(ψ→ ϕ))) is valid

I It is impossible to use NCL formulas to capture frame
properties.

I NCL is not normal, e.g., (4i(ϕ→ ψ) ∧ 4iϕ)→ 4iψ is not
valid.

I NCL is not strictly weaker than modal logic, 4iϕ↔ 4i¬ϕ is
valid.

Eric Pacuit 35

I ¬ 4i ψ→ (�iϕ↔ (4iϕ ∧ 4i(ψ→ ϕ))) is valid

I It is impossible to use NCL formulas to capture frame
properties.

I NCL is not normal, e.g., (4i(ϕ→ ψ) ∧ 4iϕ)→ 4iψ is not
valid.

I NCL is not strictly weaker than modal logic, 4iϕ↔ 4i¬ϕ is
valid.

Eric Pacuit 35

I ¬ 4i ψ→ (�iϕ↔ (4iϕ ∧ 4i(ψ→ ϕ))) is valid

I It is impossible to use NCL formulas to capture frame
properties.

I NCL is not normal, e.g., (4i(ϕ→ ψ) ∧ 4iϕ)→ 4iψ is not
valid.

I NCL is not strictly weaker than modal logic, 4iϕ↔ 4i¬ϕ is
valid.

Eric Pacuit 35

I all instances of tautologies
I (4i(q → p) ∧ 4i(¬q → p))→ 4ip
I (4ip → (4i(p → q) ∨ 4i(¬p → q))

I 4ip ↔ 4i¬p
I from ϕ,ϕ→ ψ, infer ψ
I from ϕ, infer 4iϕ

I from ϕ, infer ϕ[p/ψ]

I from ϕ↔ ψ, infer 4iϕ↔ 4iψ

Theorem. (Fan et al (2015)). The above axioms are sound and
strongly complete over the class of arbitrary frames.

Eric Pacuit 36

Public announcement logic is defined as usual.

[ϕ] 4i ψ↔ (ϕ→ (4i[ϕ]ψ ∨ 4i[ϕ]¬ψ))

[?ϕ]ψ↔ ([ϕ]ψ ∧ [¬ϕ]ψ)

Eric Pacuit 37

Knowing what

i knows what the value of c

∃xKi(c = x)

Eric Pacuit 38

Knowing what

ϕ ::= > | p | ¬ϕ | (ϕ ∧ ϕ) | Kiϕ | Kvic

where p ∈ At and c ∈ C (a set of constant symbols)

M = 〈W ,D, (Ri)i∈A,V ,VC〉

where W , ∅, each Ri is a relation on W , V : At→ ℘(W), D is
the constant domain and VC : C ×W → D assigns to each
c ∈ C and world w a value d ∈ D.

M,w |= Kvic iff for any v1, v2, if wRiv1 and wRiv2,

then VC(v1, c) = vC(c, v2)

Eric Pacuit 39

KiKvjc ∧ ¬Kvjc vs. KiKjp ∧ ¬Kip

ϕ ::= > | p | ¬ϕ | (ϕ ∧ ϕ) | Kiϕ | Kvic | [ϕ]ϕ

(〈p〉Kvic ∧ 〈q〉Kvic)→ 〈p ∨ c〉Kvic is not derivable is S5 with
recursion axioms.

Y. Wang and J. Fan. Knowing that, knowing what, and public communi-
cation: Public announcement logic with Kv operators. In: Proceedings
of IJCAI?13, pp 1139 - 1146, 2013.

Eric Pacuit 40

KiKvjc ∧ ¬Kvjc vs. KiKjp ∧ ¬Kip

ϕ ::= > | p | ¬ϕ | (ϕ ∧ ϕ) | Kiϕ | Kvic | [ϕ]ϕ

(〈p〉Kvic ∧ 〈q〉Kvic)→ 〈p ∨ c〉Kvic is not derivable is S5 with
recursion axioms.

Y. Wang and J. Fan. Knowing that, knowing what, and public communi-
cation: Public announcement logic with Kv operators. In: Proceedings
of IJCAI?13, pp 1139 - 1146, 2013.

Eric Pacuit 40

A. Baltag. To Know is to Know the Value of a Variable. AiML, 2016.

Y. Wang. A New Modal Framework for Epistemic Logic. TARK 2017.

Eric Pacuit 41

Know how

J. Fantl. Knowing-how and knowing-that. Philosophy Compass, 3
(2008), 451 470.

M.P. Singh. Know-how. In Foundations of Rational Agency (1999), M.
Woodridge and A. Rao, Eds., pp. 105 132.

Eric Pacuit 42

Actions

1. Actions as transitions between states, or situations:

s t

a

2. Actions restrict the set of possible future histories.

Eric Pacuit 43

Actions

1. Actions as transitions between states, or situations:

s t

a

2. Actions restrict the set of possible future histories.

Eric Pacuit 43

Actions

1. Actions as transitions between states, or situations:

s t

a

2. Actions restrict the set of possible future histories.

Eric Pacuit 43

J. van Benthem, H. van Ditmarsch, J. van Eijck and J. Jaspers. Chap-
ter 6: Propositional Dynamic Logic. Logic in Action Online Course
Project, 2011.

Eric Pacuit 44

http://www.logicinaction.org/docs/ch6.pdf
http://www.logicinaction.org/docs/ch6.pdf
http://staff.science.uva.nl/~jaspars/logicinaction/
http://staff.science.uva.nl/~jaspars/logicinaction/

6-10 CHAPTER 6. LOGIC AND ACTION

Converse Some actions can be undone by reversing them: the reverse of opening a
window is closing it. Other actions are much harder to undo: if you smash a piece of
china then it is sometimes hard to mend it again. So here we have a choice: do we assume
that basic actions can be undone? If we do, we need an operation for this, for taking the
converse of an action. If, in some context, we assume that undoing an action is generally
impossible we should omit the converse operation in that context.

Exercise 6.1 Suppose ˇ is used for reversing basic actions. So ǎ is the converse of action a, and
b̌ is the converse of action b. Let a; b be the sequential composition of a and b, i.e., the action that
consists of first doing a and then doing b. What is the converse of a; b?

6.3 Viewing Actions as Relations

As an exercise in abstraction, we will now view actions as binary relations on a set S of
states. The intuition behind this is as follows. Suppose we are in some state s in S. Then
performing some action a will result in a new state that is a member of some set of new
states {s1, . . . , sn}.

If this set is empty, this means that the action a has aborted in state s. If the set has a
single element s0, this means that the action a is deterministic on state s, and if the set
has two or more elements, this means that action a is non-deterministic on state s. The
general picture is:

s

s1

s2

s3

sn

Clearly, when we extend this picture to the whole set S, what emerges is a binary relation
on S, with an arrow from s to s0 (or equivalently, a pair (s, s0) in the relation) just in case
performing action a in state s may have s0 as result. Thus, we can view binary relations
on S as the interpretations of basic action symbols a.

The set of all pairs taken from S is called S ⇥ S, or S2. A binary relation on S is simply
a set of pairs taken from S, i.e., a subset of S2.

Given this abstract interpretation of basic relations, it makes sense to ask what corresponds
to the operations on actions that we encountered in Section 6.2. Let’s consider them in
turn.

Eric Pacuit 45

Propositional Dynamic Logic

Language: The language of propositional dynamic logic is
generated by the following grammar:

p | ¬ϕ | ϕ ∧ ψ | [α]ϕ

where p ∈ At and α is generated by the following grammar:

a | α ∪ β | α; β | α∗ | ϕ?

where a ∈ Act and ϕ is a formula.

Semantics: M = 〈W , {Ra | a ∈ P},V〉 where for each a ∈ P,
Ra ⊆W ×W and V : At→ ℘(W)

[α]ϕ means “after doing α, ϕ will be true”

〈α〉ϕ means “after doing α, ϕ may be true”

Eric Pacuit 46

Propositional Dynamic Logic

Language: The language of propositional dynamic logic is
generated by the following grammar:

p | ¬ϕ | ϕ ∧ ψ | [α]ϕ

where p ∈ At and α is generated by the following grammar:

a | α ∪ β | α; β | α∗ | ϕ?

where a ∈ Act and ϕ is a formula.

Semantics: M = 〈W , {Ra | a ∈ P},V〉 where for each a ∈ P,
Ra ⊆W ×W and V : At→ ℘(W)

[α]ϕ means “after doing α, ϕ will be true”

〈α〉ϕ means “after doing α, ϕ may be true”

Eric Pacuit 46

Propositional Dynamic Logic

Language: The language of propositional dynamic logic is
generated by the following grammar:

p | ¬ϕ | ϕ ∧ ψ | [α]ϕ

where p ∈ At and α is generated by the following grammar:

a | α ∪ β | α; β | α∗ | ϕ?

where a ∈ Act and ϕ is a formula.

Semantics: M = 〈W , {Ra | a ∈ P},V〉 where for each a ∈ P,
Ra ⊆W ×W and V : At→ ℘(W)

[α]ϕ means “after doing α, ϕ will be true”

〈α〉ϕ means “after doing α, ϕ may be true”

Eric Pacuit 46

M,w |= [α]ϕ iff for each v, if wRαv thenM, v |= ϕ

M,w |= 〈α〉ϕ iff there is a v such that wRαv andM, v |= ϕ

Eric Pacuit 47

Union
Rα∪β := Rα ∪ Rβ

6-12 CHAPTER 6. LOGIC AND ACTION

s

s1

s2

s3

sn

s01
s02
s03

s0m

Then performing action a [b (the choice between a and b) in s will get you in one of the
states in {. . . , sn} [{s01, . . . , s

0
m}. More generally, if action symbol a is interpreted as

the relation Ra, and action symbol b is interpreted as the relation Rb, then a [b will be
interpreted as the relation Ra [Rb (the union of the two relations).

Test A notation that is often used for the equality relation (or: identity relation is I . The
binary relation I on S is by definition the set of pairs given by:

I = {(s, s) | s 2 S}.

A test ?' is interpreted as a subset of the identity relation, namely as the following set of
pairs:

R?' = {(s, s) | s 2 S, s |= '}

From this we can see that a test does not change the state, but checks whether the state
satisfies a condition.

To see the result of combining a test with another action:

Eric Pacuit 48

Sequence

Rα;β := Rα ◦ Rβ

6.3. VIEWING ACTIONS AS RELATIONS 6-11

Sequence Given that action symbol a is interpreted as binary relation Ra on S, and that
action symbol b is interpreted as binary relation Rb on S, what should be the interpretation
of the action sequence a; b? Intuitively, one can move from state s to state s0 just in case
there is some intermediate state s0 with the property that a gets you from s to s0 and b gets
you from s0 to s0. This is a well-known operation on binary relations, called relational
composition. If Ra and Rb are binary relations on the same set S, then Ra � Rb is the
binary relation on S given by:

Ra � Rb = {(s, s0) | there is some s0 2 S : (s, s0) 2 Raand (s0, s
0) 2 Rb}.

If basic action symbol a is interpreted as relation Ra, and basic action symbol b is inter-
preted as relation Rb, then the sequence action a; b is interpreted as Ra � Rb. Here is a
picture:

s

s1

s2

s3

sn

s11

s12

s13

s1m

If the solid arrows interpret action symbol a and the dashed arrows interpret action sym-
bol b, then the arrows consisting of a solid part followed by a dashed part interpret the
sequence a; b.

Choice Now suppose again that we are in state s, and that performing action a will get
us in one of the states in {s1, . . . , sn}. And supposse that in that same state s, performing
action b will get us in one of the states in {s01, . . . , s

0
m}.

Eric Pacuit 49

Test
Rϕ? = {(w,w) | M,w |= ϕ}

6.4. OPERATIONS ON RELATIONS 6-13

s

s1

s2

s3

sn

t

t1

t2

t3

tm

The solid arrow interprets a test ?' that succeeds in state s but fails in state t. If the
dashed arrows interpret a basic action symbol a, then, for instance, (s, s1) will be in the
interpretation of ?'; a, but (t, t1) will not.

Since > is true in any situation, we have that ?> will get interpreted as I (the identity
relation on S). Therefore, ?>; a will always receive the same interpretation as a.

Since ? is false in any situation, we have that ?? will get interpreted as ; (the empty
relation on S). Therefore, ??; a will always receive the same interpretation as ??.

Before we handle repetition, it is useful to switch to a more gereral perspective.

6.4 Operations on Relations

Relations were introduced in Chapter 4 on predicate logic. In this chapter we view actions
as binary relations on a set S of situations. Such a binary relation is a subset of S ⇥ S,
the set of all pairs (s, t) with s and t taken from S. It makes sense to develop the general
topic of operations on binary relations. Which operations suggest themselves, and what
are the corresponding operations on actions?

In the first place, there are the usual set-theoretic operations. Binary relations are sets of
pairs, so taking unions, intersections and complements makes sense (also see Appendix
A). We have already seen that taking unions corresponds to choice between actions.

Example 6.2 The union of the relations ‘mother’ and ‘father’ is the relation ‘parent’.

Example 6.3 The intersection of the relations ✓ and ◆ is the equality relation =.

Eric Pacuit 50

Iteration

Rα∗ := ∪n≥0Rn
α

Eric Pacuit 51

Propositional Dynamic Logic

1. Axioms of propositional logic

2. [α](ϕ→ ψ)→ ([α]ϕ→ [α]ψ)

3. [α ∪ β]ϕ↔ [α]ϕ ∧ [β]ϕ

4. [α; β]ϕ↔ [α][β]ϕ

5. [ψ?]ϕ↔ (ψ→ ϕ)

6. ϕ ∧ [α][α∗]ϕ↔ [α∗]ϕ

7. ϕ ∧ [α∗](ϕ→ [α]ϕ)→ [α∗]ϕ

8. Modus Ponens and Necessitation (for each program α)

Eric Pacuit 52

Propositional Dynamic Logic

1. Axioms of propositional logic

2. [α](ϕ→ ψ)→ ([α]ϕ→ [α]ψ)

3. [α ∪ β]ϕ↔ [α]ϕ ∧ [β]ϕ

4. [α; β]ϕ↔ [α][β]ϕ

5. [ψ?]ϕ↔ (ψ→ ϕ)

6. ϕ ∧ [α][α∗]ϕ↔ [α∗]ϕ (Fixed-Point Axiom)

7. ϕ ∧ [α∗](ϕ→ [α]ϕ)→ [α∗]ϕ (Induction Axiom)

8. Modus Ponens and Necessitation (for each program α)

Eric Pacuit 53

Actions and Ability

An early approach to interpret PDL as logic of actions was put
forward by Krister Segerberg.

Segerberg adds an “agency” program to the PDL language δA
where A is a formula.

K. Segerberg. Bringing it about. JPL, 1989.

Eric Pacuit 54

Actions and Agency

The intended meaning of the program ‘δA ’ is that the agent
“brings it about that A ’: formally, δA is the set of all paths p
such that

1. p is the computation according to some program α, and
2. α only terminates at states in which it is true that A

Interestingly, Segerberg also briefly considers a third condition:

3. p is optimal (in some sense: shortest, maximally efficient,
most convenient, etc.) in the set of computations satisfying
conditions (1) and (2).

The axioms:
1. [δA]A
2. [δA]B → ([δB]C → [δA]C)

Eric Pacuit 55

Actions and Agency

The intended meaning of the program ‘δA ’ is that the agent
“brings it about that A ’: formally, δA is the set of all paths p
such that

1. p is the computation according to some program α, and
2. α only terminates at states in which it is true that A

Interestingly, Segerberg also briefly considers a third condition:

3. p is optimal (in some sense: shortest, maximally efficient,
most convenient, etc.) in the set of computations satisfying
conditions (1) and (2).

The axioms:
1. [δA]A
2. [δA]B → ([δB]C → [δA]C)

Eric Pacuit 55

Actions and Agency

The intended meaning of the program ‘δA ’ is that the agent
“brings it about that A ’: formally, δA is the set of all paths p
such that

1. p is the computation according to some program α, and
2. α only terminates at states in which it is true that A

Interestingly, Segerberg also briefly considers a third condition:

3. p is optimal (in some sense: shortest, maximally efficient,
most convenient, etc.) in the set of computations satisfying
conditions (1) and (2).

The axioms:
1. [δA]A
2. [δA]B → ([δB]C → [δA]C)

Eric Pacuit 55

Actions and Agency

The intended meaning of the program ‘δA ’ is that the agent
“brings it about that A ’: formally, δA is the set of all paths p
such that

1. p is the computation according to some program α, and
2. α only terminates at states in which it is true that A

Interestingly, Segerberg also briefly considers a third condition:

3. p is optimal (in some sense: shortest, maximally efficient,
most convenient, etc.) in the set of computations satisfying
conditions (1) and (2).

The axioms:
1. [δA]A
2. [δA]B → ([δB]C → [δA]C)

Eric Pacuit 55

Actions and Agency in Branching Time
Alternative accounts of agency do not include explicit
description of the actions:

t0 t1 t2 t3

· · ·

· · ·

Eric Pacuit 56

STIT

I Each node represents a choice point for the agent.

I A history is a maximal branch in the above tree.

I Formulas are interpreted at history moment pairs.

I At each moment there is a choice available to the agent
(partition of the histories through that moment)

I The key modality is [i stit]ϕ which is intended to mean that
the agent i can “see to it that ϕ is true”.

• [i stit]ϕ is true at a history moment pair provided the agent
can choose a (set of) branch(es) such that every future
history-moment pair satisfies ϕ

Eric Pacuit 57

STIT

I Each node represents a choice point for the agent.

I A history is a maximal branch in the above tree.

I Formulas are interpreted at history moment pairs.

I At each moment there is a choice available to the agent
(partition of the histories through that moment)

I The key modality is [i stit]ϕ which is intended to mean that
the agent i can “see to it that ϕ is true”.

• [i stit]ϕ is true at a history moment pair provided the agent
can choose a (set of) branch(es) such that every future
history-moment pair satisfies ϕ

Eric Pacuit 57

STIT

I Each node represents a choice point for the agent.

I A history is a maximal branch in the above tree.

I Formulas are interpreted at history moment pairs.

I At each moment there is a choice available to the agent
(partition of the histories through that moment)

I The key modality is [i stit]ϕ which is intended to mean that
the agent i can “see to it that ϕ is true”.

• [i stit]ϕ is true at a history moment pair provided the agent
can choose a (set of) branch(es) such that every future
history-moment pair satisfies ϕ

Eric Pacuit 57

STIT

I Each node represents a choice point for the agent.

I A history is a maximal branch in the above tree.

I Formulas are interpreted at history moment pairs.

I At each moment there is a choice available to the agent
(partition of the histories through that moment)

I The key modality is [i stit]ϕ which is intended to mean that
the agent i can “see to it that ϕ is true”.

• [i stit]ϕ is true at a history moment pair provided the agent
can choose a (set of) branch(es) such that every future
history-moment pair satisfies ϕ

Eric Pacuit 57

STIT

I Each node represents a choice point for the agent.

I A history is a maximal branch in the above tree.

I Formulas are interpreted at history moment pairs.

I At each moment there is a choice available to the agent
(partition of the histories through that moment)

I The key modality is [i stit]ϕ which is intended to mean that
the agent i can “see to it that ϕ is true”.

• [i stit]ϕ is true at a history moment pair provided the agent
can choose a (set of) branch(es) such that every future
history-moment pair satisfies ϕ

Eric Pacuit 57

STIT

We use the modality ‘^’ to mean historic possibility.

^[i stit]ϕ: “the agent has the ability to bring about ϕ”.

Eric Pacuit 58

STIT Model
A STIT models isM = 〈T , <,Choice,V〉 where

I 〈T , <〉: T a set of moments, < a tree-like ordering on T
(irreflexive, transitive, linear-past)

I Let Hist be the set of all histories, and
Ht = {h ∈ Hist | t ∈ h} the histories through t .

I Choice : A× T → ℘(℘(H)) is a function mapping each
agent to a partition of Ht
• Choicet

i , ∅

• K , ∅ for each K ∈ Choicet
i

• For all t and mappings st : A→ ℘(Ht) such that
st (i) ∈ Choicet

i , we have
⋂

i∈A st (i) , ∅

I V : At→ ℘(T × Hist) is a valuation function assigning to
each atomic proposition

Eric Pacuit 59

STIT Model
A STIT models isM = 〈T , <,Choice,V〉 where

I 〈T , <〉: T a set of moments, < a tree-like ordering on T
(irreflexive, transitive, linear-past)

I Let Hist be the set of all histories, and
Ht = {h ∈ Hist | t ∈ h} the histories through t .

I Choice : A× T → ℘(℘(H)) is a function mapping each
agent to a partition of Ht
• Choicet

i , ∅

• K , ∅ for each K ∈ Choicet
i

• For all t and mappings st : A→ ℘(Ht) such that
st (i) ∈ Choicet

i , we have
⋂

i∈A st (i) , ∅

I V : At→ ℘(T × Hist) is a valuation function assigning to
each atomic proposition

Eric Pacuit 59

STIT Model
A STIT models isM = 〈T , <,Choice,V〉 where

I 〈T , <〉: T a set of moments, < a tree-like ordering on T
(irreflexive, transitive, linear-past)

I Let Hist be the set of all histories, and
Ht = {h ∈ Hist | t ∈ h} the histories through t .

I Choice : A× T → ℘(℘(H)) is a function mapping each
agent to a partition of Ht
• Choicet

i , ∅

• K , ∅ for each K ∈ Choicet
i

• For all t and mappings st : A→ ℘(Ht) such that
st (i) ∈ Choicet

i , we have
⋂

i∈A st (i) , ∅

I V : At→ ℘(T × Hist) is a valuation function assigning to
each atomic proposition

Eric Pacuit 59

STIT Model
A STIT models isM = 〈T , <,Choice,V〉 where

I 〈T , <〉: T a set of moments, < a tree-like ordering on T
(irreflexive, transitive, linear-past)

I Let Hist be the set of all histories, and
Ht = {h ∈ Hist | t ∈ h} the histories through t .

I Choice : A× T → ℘(℘(H)) is a function mapping each
agent to a partition of Ht
• Choicet

i , ∅

• K , ∅ for each K ∈ Choicet
i

• For all t and mappings st : A→ ℘(Ht) such that
st (i) ∈ Choicet

i , we have
⋂

i∈A st (i) , ∅

I V : At→ ℘(T × Hist) is a valuation function assigning to
each atomic proposition

Eric Pacuit 59

STIT Model
A STIT models isM = 〈T , <,Choice,V〉 where

I 〈T , <〉: T a set of moments, < a tree-like ordering on T
(irreflexive, transitive, linear-past)

I Let Hist be the set of all histories, and
Ht = {h ∈ Hist | t ∈ h} the histories through t .

I Choice : A× T → ℘(℘(H)) is a function mapping each
agent to a partition of Ht
• Choicet

i , ∅

• K , ∅ for each K ∈ Choicet
i

• For all t and mappings st : A→ ℘(Ht) such that
st (i) ∈ Choicet

i , we have
⋂

i∈A st (i) , ∅

I V : At→ ℘(T × Hist) is a valuation function assigning to
each atomic proposition

Eric Pacuit 59

STIT Model
A STIT models isM = 〈T , <,Choice,V〉 where

I 〈T , <〉: T a set of moments, < a tree-like ordering on T
(irreflexive, transitive, linear-past)

I Let Hist be the set of all histories, and
Ht = {h ∈ Hist | t ∈ h} the histories through t .

I Choice : A× T → ℘(℘(H)) is a function mapping each
agent to a partition of Ht
• Choicet

i , ∅

• K , ∅ for each K ∈ Choicet
i

• For all t and mappings st : A→ ℘(Ht) such that
st (i) ∈ Choicet

i , we have
⋂

i∈A st (i) , ∅

I V : At→ ℘(T × Hist) is a valuation function assigning to
each atomic proposition

Eric Pacuit 59

Many Agents
The previous model assumes there is one agent that “controls”
the transition system.

What if there is more than one agent?

Eric Pacuit 60

Many Agents
The previous model assumes there is one agent that “controls”
the transition system.

What if there is more than one agent?

Eric Pacuit 60

Many Agents
The previous model assumes there is one agent that “controls”
the transition system.

What if there is more than one agent? Independence of agents

Eric Pacuit 60

Many Agents
The previous model assumes there is one agent that “controls”
the transition system.

What if there is more than one agent? Independence of agents

Eric Pacuit 60

Many Agents
The previous model assumes there is one agent that “controls”
the transition system.

What if there is more than one agent? Independence of agents

Eric Pacuit 60

STIT Language

ϕ = p | ¬ϕ | ϕ ∧ ψ | [i stit]ϕ | [i dstit : ϕ] | �ϕ

I M, t/h |= p iff t/h ∈ V(p)

I M, t/h |= ¬ϕ iffM, t/h 6|= ϕ

I M, t/h |= ϕ ∧ ψ iffM, t/h |= ϕ andM, t/h |= ψ

I M, t/h |= �ϕ iffM, t/h′ |= ϕ for all h′ ∈ Ht

I M, t/h |= [i stit]ϕ iffM, t/h′ |= ϕ for all h′ ∈ Choicet
i (h)

I M, t/h |= [i dstit]ϕ iffM, t/h′ |= ϕ for all h′ ∈ Choicet
i (h)

and there is a h′′ ∈ Ht such thatM, t/h |= ¬ϕ

Eric Pacuit 61

STIT Language

ϕ = p | ¬ϕ | ϕ ∧ ψ | [i stit]ϕ | [i dstit : ϕ] | �ϕ

I M, t/h |= p iff t/h ∈ V(p)

I M, t/h |= ¬ϕ iffM, t/h 6|= ϕ

I M, t/h |= ϕ ∧ ψ iffM, t/h |= ϕ andM, t/h |= ψ

I M, t/h |= �ϕ iffM, t/h′ |= ϕ for all h′ ∈ Ht

I M, t/h |= [i stit]ϕ iffM, t/h′ |= ϕ for all h′ ∈ Choicet
i (h)

I M, t/h |= [i dstit]ϕ iffM, t/h′ |= ϕ for all h′ ∈ Choicet
i (h)

and there is a h′′ ∈ Ht such thatM, t/h |= ¬ϕ

Eric Pacuit 61

STIT Language

ϕ = p | ¬ϕ | ϕ ∧ ψ | [i stit]ϕ | [i dstit : ϕ] | �ϕ

I M, t/h |= p iff t/h ∈ V(p)

I M, t/h |= ¬ϕ iffM, t/h 6|= ϕ

I M, t/h |= ϕ ∧ ψ iffM, t/h |= ϕ andM, t/h |= ψ

I M, t/h |= �ϕ iffM, t/h′ |= ϕ for all h′ ∈ Ht

I M, t/h |= [i stit]ϕ iffM, t/h′ |= ϕ for all h′ ∈ Choicet
i (h)

I M, t/h |= [i dstit]ϕ iffM, t/h′ |= ϕ for all h′ ∈ Choicet
i (h)

and there is a h′′ ∈ Ht such thatM, t/h |= ¬ϕ

Eric Pacuit 61

STIT Language

ϕ = p | ¬ϕ | ϕ ∧ ψ | [i stit]ϕ | [i dstit : ϕ] | �ϕ

I M, t/h |= p iff t/h ∈ V(p)

I M, t/h |= ¬ϕ iffM, t/h 6|= ϕ

I M, t/h |= ϕ ∧ ψ iffM, t/h |= ϕ andM, t/h |= ψ

I M, t/h |= �ϕ iffM, t/h′ |= ϕ for all h′ ∈ Ht

I M, t/h |= [i stit]ϕ iffM, t/h′ |= ϕ for all h′ ∈ Choicet
i (h)

I M, t/h |= [i dstit]ϕ iffM, t/h′ |= ϕ for all h′ ∈ Choicet
i (h)

and there is a h′′ ∈ Ht such thatM, t/h |= ¬ϕ

Eric Pacuit 61

STIT Language

ϕ = p | ¬ϕ | ϕ ∧ ψ | [i stit]ϕ | [i dstit : ϕ] | �ϕ

I M, t/h |= p iff t/h ∈ V(p)

I M, t/h |= ¬ϕ iffM, t/h 6|= ϕ

I M, t/h |= ϕ ∧ ψ iffM, t/h |= ϕ andM, t/h |= ψ

I M, t/h |= �ϕ iffM, t/h′ |= ϕ for all h′ ∈ Ht

I M, t/h |= [i stit]ϕ iffM, t/h′ |= ϕ for all h′ ∈ Choicet
i (h)

I M, t/h |= [i dstit]ϕ iffM, t/h′ |= ϕ for all h′ ∈ Choicet
i (h)

and there is a h′′ ∈ Ht such thatM, t/h |= ¬ϕ

Eric Pacuit 61

STIT Language

ϕ = p | ¬ϕ | ϕ ∧ ψ | [i stit]ϕ | [i dstit : ϕ] | �ϕ

I M, t/h |= p iff t/h ∈ V(p)

I M, t/h |= ¬ϕ iffM, t/h 6|= ϕ

I M, t/h |= ϕ ∧ ψ iffM, t/h |= ϕ andM, t/h |= ψ

I M, t/h |= �ϕ iffM, t/h′ |= ϕ for all h′ ∈ Ht

I M, t/h |= [i stit]ϕ iffM, t/h′ |= ϕ for all h′ ∈ Choicet
i (h)

I M, t/h |= [i dstit]ϕ iffM, t/h′ |= ϕ for all h′ ∈ Choicet
i (h)

and there is a h′′ ∈ Ht such thatM, t/h |= ¬ϕ

Eric Pacuit 61

STIT Language

ϕ = p | ¬ϕ | ϕ ∧ ψ | [i stit]ϕ | [i dstit : ϕ] | �ϕ

I M, t/h |= p iff t/h ∈ V(p)

I M, t/h |= ¬ϕ iffM, t/h 6|= ϕ

I M, t/h |= ϕ ∧ ψ iffM, t/h |= ϕ andM, t/h |= ψ

I M, t/h |= �ϕ iffM, t/h′ |= ϕ for all h′ ∈ Ht

I M, t/h |= [i stit]ϕ iffM, t/h′ |= ϕ for all h′ ∈ Choicet
i (h)

I M, t/h |= [i dstit]ϕ iffM, t/h′ |= ϕ for all h′ ∈ Choicet
i (h)

and there is a h′′ ∈ Ht such thatM, t/h |= ¬ϕ

Eric Pacuit 61

STIT: Example

The following are false: A → ^[stit]A and
^[stit](A ∨ B)→ ^[stit]A ∨^[stit]B.

h1 h2 h3

K1 K2

A
¬B

¬A
B

¬A
¬B

t

J. Horty. Agency and Deontic Logic. 2001.

Eric Pacuit 62

STIT: Axiomatics
I S5 for �: �(ϕ→ ψ)→ (�ϕ→ �ψ), �ϕ→ ϕ, �ϕ→ ��ϕ,
¬�ϕ→ �¬�ϕ

I S5 for [i stit]: [i stit](ϕ→ ψ)→ ([i stit]ϕ→ [i stit]ψ),
[i stit]ϕ→ ϕ, [i stit]ϕ→ [i stit][i stit]ϕ,
¬[i stit]ϕ→ [i stit]¬[i stit]ϕ

I �ϕ→ [i stit]ϕ

I (
∧

i∈A^[i stit]ϕi)→ ^(
∧

i∈A[i stit]ϕi)

I Modus Ponens and Necessitation for �

M. Xu. Axioms for deliberative STIT. Journal of Philosophical Logic,
Volume 27, pp. 505 - 552, 1998.

P. Balbiani, A. Herzig and N. Troquard. Alternative axiomatics and
complexity of deliberative STIT theories. Journal of Philosophical
Logic, 37:4, pp. 387 - 406, 2008.

Eric Pacuit 63

STIT: Axiomatics
I S5 for �: �(ϕ→ ψ)→ (�ϕ→ �ψ), �ϕ→ ϕ, �ϕ→ ��ϕ,
¬�ϕ→ �¬�ϕ

I S5 for [i stit]: [i stit](ϕ→ ψ)→ ([i stit]ϕ→ [i stit]ψ),
[i stit]ϕ→ ϕ, [i stit]ϕ→ [i stit][i stit]ϕ,
¬[i stit]ϕ→ [i stit]¬[i stit]ϕ

I �ϕ→ [i stit]ϕ

I (
∧

i∈A^[i stit]ϕi)→ ^(
∧

i∈A[i stit]ϕi)

I Modus Ponens and Necessitation for �

M. Xu. Axioms for deliberative STIT. Journal of Philosophical Logic,
Volume 27, pp. 505 - 552, 1998.

P. Balbiani, A. Herzig and N. Troquard. Alternative axiomatics and
complexity of deliberative STIT theories. Journal of Philosophical
Logic, 37:4, pp. 387 - 406, 2008.

Eric Pacuit 63

STIT: Axiomatics
I S5 for �: �(ϕ→ ψ)→ (�ϕ→ �ψ), �ϕ→ ϕ, �ϕ→ ��ϕ,
¬�ϕ→ �¬�ϕ

I S5 for [i stit]: [i stit](ϕ→ ψ)→ ([i stit]ϕ→ [i stit]ψ),
[i stit]ϕ→ ϕ, [i stit]ϕ→ [i stit][i stit]ϕ,
¬[i stit]ϕ→ [i stit]¬[i stit]ϕ

I �ϕ→ [i stit]ϕ

I (
∧

i∈A^[i stit]ϕi)→ ^(
∧

i∈A[i stit]ϕi)

I Modus Ponens and Necessitation for �

M. Xu. Axioms for deliberative STIT. Journal of Philosophical Logic,
Volume 27, pp. 505 - 552, 1998.

P. Balbiani, A. Herzig and N. Troquard. Alternative axiomatics and
complexity of deliberative STIT theories. Journal of Philosophical
Logic, 37:4, pp. 387 - 406, 2008.

Eric Pacuit 63

STIT: Axiomatics
I S5 for �: �(ϕ→ ψ)→ (�ϕ→ �ψ), �ϕ→ ϕ, �ϕ→ ��ϕ,
¬�ϕ→ �¬�ϕ

I S5 for [i stit]: [i stit](ϕ→ ψ)→ ([i stit]ϕ→ [i stit]ψ),
[i stit]ϕ→ ϕ, [i stit]ϕ→ [i stit][i stit]ϕ,
¬[i stit]ϕ→ [i stit]¬[i stit]ϕ

I �ϕ→ [i stit]ϕ

I (
∧

i∈A^[i stit]ϕi)→ ^(
∧

i∈A[i stit]ϕi)

I Modus Ponens and Necessitation for �

M. Xu. Axioms for deliberative STIT. Journal of Philosophical Logic,
Volume 27, pp. 505 - 552, 1998.

P. Balbiani, A. Herzig and N. Troquard. Alternative axiomatics and
complexity of deliberative STIT theories. Journal of Philosophical
Logic, 37:4, pp. 387 - 406, 2008.

Eric Pacuit 63

STIT: Axiomatics
I S5 for �: �(ϕ→ ψ)→ (�ϕ→ �ψ), �ϕ→ ϕ, �ϕ→ ��ϕ,
¬�ϕ→ �¬�ϕ

I S5 for [i stit]: [i stit](ϕ→ ψ)→ ([i stit]ϕ→ [i stit]ψ),
[i stit]ϕ→ ϕ, [i stit]ϕ→ [i stit][i stit]ϕ,
¬[i stit]ϕ→ [i stit]¬[i stit]ϕ

I �ϕ→ [i stit]ϕ

I (
∧

i∈A^[i stit]ϕi)→ ^(
∧

i∈A[i stit]ϕi)

I Modus Ponens and Necessitation for �

M. Xu. Axioms for deliberative STIT. Journal of Philosophical Logic,
Volume 27, pp. 505 - 552, 1998.

P. Balbiani, A. Herzig and N. Troquard. Alternative axiomatics and
complexity of deliberative STIT theories. Journal of Philosophical
Logic, 37:4, pp. 387 - 406, 2008.

Eric Pacuit 63

Recap: Logics of Action and Ability

I Fϕ: ϕ is true at some moment in the future

I ∃Fϕ: there is a history where ϕ is true some moment in
the future

I [α]ϕ: after doing action α, ϕ is true

I [δϕ]ψ: after bringing about ϕ, ψ is true

I [i stit]ϕ: the agent can “see to it that” ϕ is true

I ^[i stit]ϕ: the agent has the ability to bring about ϕ

Eric Pacuit 64

Recap: Logics of Action and Ability

I Fϕ: ϕ is true at some moment in the future

I ∃Fϕ: there is a history where ϕ is true some moment in
the future

I [α]ϕ: after doing action α, ϕ is true

I [δϕ]ψ: after bringing about ϕ, ψ is true

I [i stit]ϕ: the agent can “see to it that” ϕ is true

I ^[i stit]ϕ: the agent has the ability to bring about ϕ

Eric Pacuit 64

Recap: Logics of Action and Ability

I Fϕ: ϕ is true at some moment in the future

I ∃Fϕ: there is a history where ϕ is true some moment in
the future

I [α]ϕ: after doing action α, ϕ is true

I [δϕ]ψ: after bringing about ϕ, ψ is true

I [i stit]ϕ: the agent can “see to it that” ϕ is true

I ^[i stit]ϕ: the agent has the ability to bring about ϕ

Eric Pacuit 64

Recap: Logics of Action and Ability

I Fϕ: ϕ is true at some moment in the future

I ∃Fϕ: there is a history where ϕ is true some moment in
the future

I [α]ϕ: after doing action α, ϕ is true

I [δϕ]ψ: after bringing about ϕ, ψ is true

I [i stit]ϕ: the agent can “see to it that” ϕ is true

I ^[i stit]ϕ: the agent has the ability to bring about ϕ

Eric Pacuit 64

Recap: Logics of Action and Ability

I Fϕ: ϕ is true at some moment in the future

I ∃Fϕ: there is a history where ϕ is true some moment in
the future

I [α]ϕ: after doing action α, ϕ is true

I [δϕ]ψ: after bringing about ϕ, ψ is true

I [i stit]ϕ: the agent can “see to it that” ϕ is true

I ^[i stit]ϕ: the agent has the ability to bring about ϕ

Eric Pacuit 64

Recap: Logics of Action and Ability

I Fϕ: ϕ is true at some moment in the future

I ∃Fϕ: there is a history where ϕ is true some moment in
the future

I [α]ϕ: after doing action α, ϕ is true

I [δϕ]ψ: after bringing about ϕ, ψ is true

I [i stit]ϕ: the agent can “see to it that” ϕ is true

I ^[i stit]ϕ: the agent has the ability to bring about ϕ

Eric Pacuit 64

Epistemizing logics of action and ability

Eric Pacuit 65

Related Work: Knowing How to Execute a Plan

J. van Benthem. Games in dynamic epistemic logic. Bulletin of Eco-
nomics Research 53, 4 (2001), 219 248..

J. Broersen. A logical analysis of the interaction between Obligation-
to- do and knowingly doing. In Proceedings of DEON 2008.

Y. Lesperance, H. Levesque, F. Lin and R. Scherl. Ability and Knowing
How in the Situation Calculus. Studia Logica 65, pgs. 165 - 186, 2000.

W. Jamroga and T. Agotnes. Constructive Knowledge: What Agents
can Achieve under Imperfect Information. Journal of Applied Non-
Classical Logics 17(4):423–425, 2007.

Eric Pacuit 66

Knowledge, action, abilities

A. Herzig and N. Troquard. Knowing how to play: uniform choices in
logics of agency. Proceedings of AAMAS 2006, pgs. 209 - 216.

A. Herzig. Logics of knowledge and action: critical analysis and chal-
lenges. Autonomous Agent and Multi-Agent Systems, 2014.

J. Broeresen, A. Herzig and N. Troquard. What groups do, can do
and know they can do: An analysis in normal modal logics. Journal of
Applied and Non-Classical Logics, 19:3, pgs. 261 - 289, 2009.

W. van der Hoek and M. Wooldridge. Cooperation, knowledge and
time: Alternating-time temporal epistemic logic and its applications.
Studia Logica, 75, pgs. 125 - 157, 2003.

Eric Pacuit 67

Example

A. Herzig and N. Troquard. Knowing how to play: uniform choices in
logics of agency. In Proceedings of AAMAS 2006.

Eric Pacuit 68

Example

Ann, who is blind, is standing with her hand on a light switch.
She has two options: toggle the switch (t) or do nothing (s):

fw1 o w2

o w6f w5fw4ow3

t s t s

Does she have the ability to turn the light on? Is she capable of
turning the light on? Does she know how to turn the light on?

Eric Pacuit 69

Example

Ann, who is blind, is standing with her hand on a light switch.
She has two options: toggle the switch (t) or do nothing (s):

fw1 o w2

o w6f w5fw4ow3

t s t s

Does she have the ability to turn the light on? Is she capable of
turning the light on? Does she know how to turn the light on?

Eric Pacuit 69

Example

Ann, who is blind, is standing with her hand on a light switch.
She has two options: toggle the switch (t) or do nothing (s):

fw1 o w2

o w6f w5fw4ow3

t s t s

Does she have the ability to turn the light on? Is she capable of
turning the light on? Does she know how to turn the light on?

Eric Pacuit 69

Example

fw1 o w2

o w6f w5fw4ow3
t s t s

w1 |= ¬�f : “Ann does not know the light is on”

Eric Pacuit 70

Example

fw1 o w2

o w6f w5fw4ow3
t s t s

w1 |= 〈t〉o “after toggling the light switch, the light will be on”

Eric Pacuit 70

Example

fw1 o w2

o w6f w5fw4ow3
t s t s

w1 |= ¬�〈t〉o: “Ann does not know that after toggling the light
switch, the light will be on”

Eric Pacuit 70

Example

fw1 o w2

o w6f w5fw4ow3
t s t s

w1 |= �(〈t〉> ∧ 〈s〉>): “Ann knows that she can toggle the
switch and she can do nothing”

Eric Pacuit 70

Example

fw1 o w2

o w6f w5fw4ow3
t s t s

w1 |= 〈t〉¬�o: “after toggling the switch Ann does not know that
the light is on”

Eric Pacuit 70

Example

fw1 o w2

o w6f w5fw4ow3
t s t s

Let l be “turn the light on”: a choice between t and s

Eric Pacuit 70

Example

fw1 o w2

o w6f w5fw4ow3
t s t s

w1 |= 〈l〉∃o ∧ ¬〈l〉∀o: executing l can lead to a situation where
the light is on, but this is not guaranteed (i.e., the plan may fail)

Eric Pacuit 70

Example

fw1 o w2

o w6f w5fw4ow3
t s t s

w1 |= �〈l〉∃o: Ann knows that she is capable of turning the light
on. She has de re knowledge that she can turn the light on.

Eric Pacuit 70

Example

fw1 o w2

o w6f w5fw4ow3
t s t s

w1 |= ¬〈l〉^o: Ann cannot knowingly turn on the light: there is
no subjective path leading to states satisfying o (note that all
elements of the last element of the subject path must satisfy o).

Eric Pacuit 70

Knowing How to Win

w0

w1 w2

pA w6pB w5pBw4pAw3

x y
a b a b

x y

a b

“the plan is a winning strategy for Ann.”

Eric Pacuit 71

Knowing How to Win

w0

w1 w2

pA w6pB w5pBw4pAw3

x y
a b a b

x y

a b

“Ann knows that the plan is a winning strategy.”

Eric Pacuit 71

Knowing How to Win

w0

w1 w2

pA w6pB w5pBw4pAw3

x y
a b a b

x y

a b

“ the plan can be executed, but Ann does not know how to use
it to win.”

Eric Pacuit 71

Epistemic Temporal Logic

R. Parikh and R. Ramanujam. A Knowledge Based Semantics of Mes-
sages. Journal of Logic, Language and Information, 12: 453 – 467,
1985, 2003.

FHMV. Reasoning about Knowledge. MIT Press, 1995.

Eric Pacuit 72

The ‘Playground’

t = 0

t = 1

t = 2

t = 3

e2 e4

e1 e5

e1 e3

e2 e6

e7 e3

e2 e1 e2

e4 e2

e1 e3

e7

Eric Pacuit 73

The ‘Playground’

t = 0

t = 1

t = 2

t = 3

e2 e4

e1 e5

e1 e3

e2 e6

e7 e3

e2 e1 e2

e4 e2

e1 e3

e7

Eric Pacuit 73

The ‘Playground’

t = 0

t = 1

t = 2

t = 3

e2 e4

e1 e5

e1 e3

e2 e6

e7 e3

i

i i

j

j

e2 e1 e2

e4 e2

e1 e3

e7

Eric Pacuit 73

The ‘Playground’: Notation

I Let Σ be any set. The elements of Σ are called events.

I Given any set X , X ∗ is the set of finite strings over X and
Xω the set of infinite strings over X . Elements of Σ∗ ∪ Σω

will be called histories.

I Given H ∈ Σ∗ ∪ Σω, len(H) is the length of H.

I Given H,H′ ∈ Σ∗ ∪ Σω, we write H � H′ if H is a finite prefix
of H′.

I FinPre(H) = {H | ∃H′ ∈ H such that H � H′} is the set of
finite prefixes of the elements of H .

I ε is the empty string and FinPre−ε(H) = FinPre(H) − {ε}.

Eric Pacuit 74

The ‘Playground’: Notation

I Let Σ be any set. The elements of Σ are called events.

I Given any set X , X ∗ is the set of finite strings over X and
Xω the set of infinite strings over X . Elements of Σ∗ ∪ Σω

will be called histories.

I Given H ∈ Σ∗ ∪ Σω, len(H) is the length of H.

I Given H,H′ ∈ Σ∗ ∪ Σω, we write H � H′ if H is a finite prefix
of H′.

I FinPre(H) = {H | ∃H′ ∈ H such that H � H′} is the set of
finite prefixes of the elements of H .

I ε is the empty string and FinPre−ε(H) = FinPre(H) − {ε}.

Eric Pacuit 74

The ‘Playground’: Notation

I Let Σ be any set. The elements of Σ are called events.

I Given any set X , X ∗ is the set of finite strings over X and
Xω the set of infinite strings over X . Elements of Σ∗ ∪ Σω

will be called histories.

I Given H ∈ Σ∗ ∪ Σω, len(H) is the length of H.

I Given H,H′ ∈ Σ∗ ∪ Σω, we write H � H′ if H is a finite prefix
of H′.

I FinPre(H) = {H | ∃H′ ∈ H such that H � H′} is the set of
finite prefixes of the elements of H .

I ε is the empty string and FinPre−ε(H) = FinPre(H) − {ε}.

Eric Pacuit 74

The ‘Playground’: Notation

I Let Σ be any set. The elements of Σ are called events.

I Given any set X , X ∗ is the set of finite strings over X and
Xω the set of infinite strings over X . Elements of Σ∗ ∪ Σω

will be called histories.

I Given H ∈ Σ∗ ∪ Σω, len(H) is the length of H.

I Given H,H′ ∈ Σ∗ ∪ Σω, we write H � H′ if H is a finite prefix
of H′.

I FinPre(H) = {H | ∃H′ ∈ H such that H � H′} is the set of
finite prefixes of the elements of H .

I ε is the empty string and FinPre−ε(H) = FinPre(H) − {ε}.

Eric Pacuit 74

The ‘Playground’: Notation

I Let Σ be any set. The elements of Σ are called events.

I Given any set X , X ∗ is the set of finite strings over X and
Xω the set of infinite strings over X . Elements of Σ∗ ∪ Σω

will be called histories.

I Given H ∈ Σ∗ ∪ Σω, len(H) is the length of H.

I Given H,H′ ∈ Σ∗ ∪ Σω, we write H � H′ if H is a finite prefix
of H′.

I FinPre(H) = {H | ∃H′ ∈ H such that H � H′} is the set of
finite prefixes of the elements of H .

I ε is the empty string and FinPre−ε(H) = FinPre(H) − {ε}.

Eric Pacuit 74

The ‘Playground’: Notation

I Let Σ be any set. The elements of Σ are called events.

I Given any set X , X ∗ is the set of finite strings over X and
Xω the set of infinite strings over X . Elements of Σ∗ ∪ Σω

will be called histories.

I Given H ∈ Σ∗ ∪ Σω, len(H) is the length of H.

I Given H,H′ ∈ Σ∗ ∪ Σω, we write H � H′ if H is a finite prefix
of H′.

I FinPre(H) = {H | ∃H′ ∈ H such that H � H′} is the set of
finite prefixes of the elements of H .

I ε is the empty string and FinPre−ε(H) = FinPre(H) − {ε}.

Eric Pacuit 74

The ‘Playground’: Notation

I Let Σ be any set. The elements of Σ are called events.

I Given any set X , X ∗ is the set of finite strings over X and
Xω the set of infinite strings over X . Elements of Σ∗ ∪ Σω

will be called histories.

I Given H ∈ Σ∗ ∪ Σω, len(H) is the length of H.

I Given H,H′ ∈ Σ∗ ∪ Σω, we write H � H′ if H is a finite prefix
of H′.

I FinPre(H) = {H | ∃H′ ∈ H such that H � H′} is the set of
finite prefixes of the elements of H .

I ε is the empty string and FinPre−ε(H) = FinPre(H) − {ε}.

Eric Pacuit 74

History-based Frames

Definition
Let Σ be any set of events. A set H ⊆ Σ∗ ∪ Σω is called a
protocol provided FinPre−ε(H) ⊆ H . A rooted protocol is any
set H ⊆ Σ∗ ∪ Σω where FinPre(H) ⊆ H .

Definition
An ETL frame is a tuple 〈Σ,H , {∼i}i∈A〉 where Σ is a (finite or
infinite) set of events, H is a protocol, and for each i ∈ A, ∼i is
an equivalence relation on the set of finite strings in H .

Some assumptions:

1. If Σ is assumed to be finite, then we say that F is finitely
branching.

2. If H is a rooted protocol, F is a tree frame.

Eric Pacuit 75

History-based Frames

Definition
Let Σ be any set of events. A set H ⊆ Σ∗ ∪ Σω is called a
protocol provided FinPre−ε(H) ⊆ H . A rooted protocol is any
set H ⊆ Σ∗ ∪ Σω where FinPre(H) ⊆ H .

Definition
An ETL frame is a tuple 〈Σ,H , {∼i}i∈A〉 where Σ is a (finite or
infinite) set of events, H is a protocol, and for each i ∈ A, ∼i is
an equivalence relation on the set of finite strings in H .

Some assumptions:

1. If Σ is assumed to be finite, then we say that F is finitely
branching.

2. If H is a rooted protocol, F is a tree frame.

Eric Pacuit 75

History-based Frames

Definition
Let Σ be any set of events. A set H ⊆ Σ∗ ∪ Σω is called a
protocol provided FinPre−ε(H) ⊆ H . A rooted protocol is any
set H ⊆ Σ∗ ∪ Σω where FinPre(H) ⊆ H .

Definition
An ETL frame is a tuple 〈Σ,H , {∼i}i∈A〉 where Σ is a (finite or
infinite) set of events, H is a protocol, and for each i ∈ A, ∼i is
an equivalence relation on the set of finite strings in H .

Some assumptions:

1. If Σ is assumed to be finite, then we say that F is finitely
branching.

2. If H is a rooted protocol, F is a tree frame.

Eric Pacuit 75

Formal Languages

I Pϕ (ϕ is true sometime in the past),

I Fϕ (ϕ is true sometime in the future),

I Yϕ (ϕ is true at the previous moment),

I Nϕ (ϕ is true at the next moment),

I Neϕ (ϕ is true after event e)

I Kiϕ (agent i knows ϕ) and

I CBϕ (the group B ⊆ A commonly knows ϕ).

Eric Pacuit 76

History-based Models

An ETL model is a structure 〈H , {∼i}i∈A,V〉 where 〈H , {∼i}i∈A〉

is an ETL frame and

V : At→ 2finite(H) is a valuation function.

Formulas are interpreted at pairs H, t :

H, t |= ϕ

Eric Pacuit 77

Truth in a Model

I H, t |= Pϕ iff there exists t ′ ≤ t such that H, t ′ |= ϕ

I H, t |= Fϕ iff there exists t ′ ≥ t such that H, t ′ |= ϕ

I H, t |= Nϕ iff H, t + 1 |= ϕ

I H, t |= Yϕ iff t > 1 and H, t − 1 |= ϕ

I H, t |= Kiϕ iff for each H′ ∈ H and m ≥ 0 if Ht ∼i H′m then
H′,m |= ϕ

I H, t |= Cϕ iff for each H′ ∈ H and m ≥ 0 if Ht ∼∗ H′m then
H′,m |= ϕ.

where ∼∗ is the reflexive transitive closure of the union of the ∼i .

Eric Pacuit 78

Truth in a Model

I H, t |= Pϕ iff there exists t ′ ≤ t such that H, t ′ |= ϕ

I H, t |= Fϕ iff there exists t ′ ≥ t such that H, t ′ |= ϕ

I H, t |= Nϕ iff H, t + 1 |= ϕ

I H, t |= Yϕ iff t > 1 and H, t − 1 |= ϕ

I H, t |= Kiϕ iff for each H′ ∈ H and m ≥ 0 if Ht ∼i H′m then
H′,m |= ϕ

I H, t |= Cϕ iff for each H′ ∈ H and m ≥ 0 if Ht ∼∗ H′m then
H′,m |= ϕ.

where ∼∗ is the reflexive transitive closure of the union of the ∼i .

Eric Pacuit 78

t = 0

t = 1

t = 2

t = 3

e2 e4

e1 e5

e1 e3

e2 e6

e7 e3

i

i i

j e2 e1 e2

e4 e2

e1 e3

e7

Eric Pacuit 79

An Example

Ann would like Bob to attend her talk; however, she only wants
Bob to attend if he is interested in the subject of her talk, not
because he is just being polite.

There is a very simple procedure to solve Ann’s problem: have
a (trusted) friend tell Bob the time and subject of her talk.

Is this procedure correct?

Eric Pacuit 80

An Example

Ann would like Bob to attend her talk; however, she only wants
Bob to attend if he is interested in the subject of her talk, not
because he is just being polite.

There is a very simple procedure to solve Ann’s problem: have
a (trusted) friend tell Bob the time and subject of her talk.

Is this procedure correct?

Eric Pacuit 80

An Example

Ann would like Bob to attend her talk; however, she only wants
Bob to attend if he is interested in the subject of her talk, not
because he is just being polite.

There is a very simple procedure to solve Ann’s problem: have
a (trusted) friend tell Bob the time and subject of her talk.

Is this procedure correct?

Eric Pacuit 80

An Example

Yes, if
1. Ann knows about the talk.

2. Bob knows about the talk.
3. Ann knows that Bob knows about the talk.
4. Bob does not know that Ann knows that he knows about

the talk.
5. And nothing else.

Eric Pacuit 81

An Example

Yes, if
1. Ann knows about the talk.
2. Bob knows about the talk.

3. Ann knows that Bob knows about the talk.
4. Bob does not know that Ann knows that he knows about

the talk.
5. And nothing else.

Eric Pacuit 81

An Example

Yes, if
1. Ann knows about the talk.
2. Bob knows about the talk.
3. Ann knows that Bob knows about the talk.

4. Bob does not know that Ann knows that he knows about
the talk.

5. And nothing else.

Eric Pacuit 81

An Example

Yes, if
1. Ann knows about the talk.
2. Bob knows about the talk.
3. Ann knows that Bob knows about the talk.
4. Bob does not know that Ann knows that he knows about

the talk.

5. And nothing else.

Eric Pacuit 81

An Example

Yes, if
1. Ann knows about the talk.
2. Bob knows about the talk.
3. Ann knows that Bob knows about the talk.
4. Bob does not know that Ann knows that he knows about

the talk.
5. And nothing else.

Eric Pacuit 81

t = 0

t = 1

t = 2

t = 3

m2PM m3PM

mA→C t mA→C t

mC→B

t
mC→B

t
mC→B

t
mC→B

t

t = 0

t = 1

t = 2

t = 3

m2PM m3PM

mA→C t mA→C t

mC→B

t
mC→B

t
mC→B

t
mC→B

t

H,3 |= ϕ

t = 0

t = 1

t = 2

t = 3

m2PM m3PM

mA→C t mA→C t

mC→B

t
mC→B

t
mC→B

t
mC→B

t

Bob’s uncertainty: H,3 |= ¬KBP2PM

t = 0

t = 1

t = 2

t = 3

m2PM m3PM

mA→C t t

mC→B

t
mC→B

t t

Bob’s uncertainty + ‘Protocol information’: H,3 |= KBP2PM

t = 0

t = 1

t = 2

t = 3

m2PM m3PM

mA→C t t

mC→B

t
mC→B

t t

Bob’s uncertainty + ‘Protocol information’:
H,3 |= ¬KBKA KBP2PM

t = 0

t = 1

t = 2

t = 3

m2PM m3PM

mA→C t t

mC→B

t
mC→B

t t

Bob’s uncertainty + ‘Protocol information’:
H,3 |= ¬KBKA KBP2PM

t = 0

t = 1

t = 2

t = 3

m2PM m3PM

mA→C t t

mC→B

t
mC→B

t t

Bob’s uncertainty + ‘Protocol information’:
H,3 |= ¬KBKA KBP2PM

t = 0

t = 1

t = 2

t = 3

m2PM m3PM

mA→C t t

mC→B

t
mC→B

t t

Bob’s uncertainty + ‘Protocol information’:
H,3 |= ¬KBKA KBP2PM

Living at the Edge of Decidability

1. Expressivity of the formal language. Does the language
include a common knowledge operator? A future operator?
Both?

2. Structural conditions on the underlying event structure. Do
we restrict to protocol frames (finitely branching trees)?
Finitely branching forests? Or, arbitrary ETL frames?

3. Conditions on the reasoning abilities of the agents. Do the
agents satisfy perfect recall? No miracles? Do they agents’
know what time it is?

Eric Pacuit 83

Living at the Edge of Decidability

1. Expressivity of the formal language. Does the language
include a common knowledge operator? A future operator?
Both?

2. Structural conditions on the underlying event structure. Do
we restrict to protocol frames (finitely branching trees)?
Finitely branching forests? Or, arbitrary ETL frames?

3. Conditions on the reasoning abilities of the agents. Do the
agents satisfy perfect recall? No miracles? Do they agents’
know what time it is?

Eric Pacuit 83

Living at the Edge of Decidability

1. Expressivity of the formal language. Does the language
include a common knowledge operator? A future operator?
Both?

2. Structural conditions on the underlying event structure. Do
we restrict to protocol frames (finitely branching trees)?
Finitely branching forests? Or, arbitrary ETL frames?

3. Conditions on the reasoning abilities of the agents. Do the
agents satisfy perfect recall? No miracles? Do they agents’
know what time it is?

Eric Pacuit 83

Living at the Edge of Decidability

1. Expressivity of the formal language. Does the language
include a common knowledge operator? A future operator?
Both?

2. Structural conditions on the underlying event structure. Do
we restrict to protocol frames (finitely branching trees)?
Finitely branching forests? Or, arbitrary ETL frames?

3. Conditions on the reasoning abilities of the agents. Do the
agents satisfy perfect recall? No miracles? Do they agents’
know what time it is?

Eric Pacuit 83

Agent Oriented Properties:

I No Miracles: For all finite histories H,H′ ∈ H and events
e ∈ Σ such that He ∈ H and H′e ∈ H , if H ∼i H′ then
He ∼i H′e.

I Perfect Recall: For all finite histories H,H′ ∈ H and events
e ∈ Σ such that He ∈ H and H′e ∈ H , if He ∼i H′e then
H ∼i H′.

I Synchronous: For all finite histories H,H′ ∈ H , if H ∼i H′

then len(H) = len(H′).

Eric Pacuit 84

Decidability in the Purely Temporal Setting

Theorem (Rabin)
The satisfiable problem for monadic second-order logic of the
k-ary tree is decidable.

M. O. Rabin. Decidability of Second-Order Theories and Automata on
Infinite Trees. Transactions of the American Mathematical Society,
141, 1969.

Theorem
The satisfiability problem for LTL with respect to TL tree models
(without epistemic structure) is decidable.

Eric Pacuit 85

Arbitrary Agents

Theorem
The satisfiability problem (with respect to a language LETL with
C,F, etc.) is decidable — EXPTIME-complete).

I The theorem holds if we restrict to tree models.

Eric Pacuit 86

Arbitrary Agents

Theorem
The satisfiability problem (with respect to a language LETL with
C,F, etc.) is decidable — EXPTIME-complete).

I The theorem holds if we restrict to tree models.

Eric Pacuit 86

Ideal Agents
Assume there are two agents

Theorem
The satisfiability problem for LETL is highly undecidable under
certain idealizations.

For example,

Theorem (Halpern & Vardi)
On interpreted systems that satisfy perfect recall or no learning,
the satisfiability problem for LETL is Σ1

1-complete.
(no learning: For H,H′ ∈ H , if Ht ∼i H′t ′ then for all k ≥ t there exists
k ′ ≥ t ′ such that Hk ∼i H′k ′ .)

J. Halpern and M. Vardi.. The Complexity of Reasoning abut Knowl-
edge and Time. J. Computer and Systems Sciences, 38, 1989.

Eric Pacuit 87

Ideal Agents
Assume there are two agents

Theorem
The satisfiability problem for LETL is highly undecidable under
certain idealizations.

For example,

Theorem (Halpern & Vardi)
On interpreted systems that satisfy perfect recall or no learning,
the satisfiability problem for LETL is Σ1

1-complete.
(no learning: For H,H′ ∈ H , if Ht ∼i H′t ′ then for all k ≥ t there exists
k ′ ≥ t ′ such that Hk ∼i H′k ′ .)

J. Halpern and M. Vardi.. The Complexity of Reasoning abut Knowl-
edge and Time. J. Computer and Systems Sciences, 38, 1989.

Eric Pacuit 87

J. Horty and EP. Action Types in Stit Semantics. Review of Symbolic
Logic, 2017.

Eric Pacuit 88

Stit model

〈Tree, <,Agent ,Choice ,V〉

Eric Pacuit 89

Stit model

〈Tree, <,Agent ,Choice ,V〉

m1

m2 m3

A

h1

¬A

h2

¬A

h3

A

h4

m/h denotes (m,h) with
m ∈ h is called an index

Hm = {h | m ∈ h}

Eric Pacuit 89

Stit model

〈Tree, <,Agent ,Choice ,V〉

m1

m2 m3

A

h1

¬A

h2

¬A

h3

A

h4

m/h denotes (m,h) with
m ∈ h is called an index

Hm = {h | m ∈ h}

Eric Pacuit 89

Stit model

〈Tree, <,Agent ,Choice ,V〉

m1

m2 m3

A

h1

¬A

h2

¬A

h3

A

h4

m/h denotes (m,h) with
m ∈ h is called an index

Hm = {h | m ∈ h}

Eric Pacuit 89

Stit model

〈Tree, <,Agent ,Choice ,V〉

m1 K1 K2

m2 K3 K4
m3K5 K6

A

h1

¬A

h2

¬A

h3

A

h4
For α ∈ Agent , Choicem

α is a
partition on Hm

Choicem
α (h) is the particular

action at m that contains h

Eric Pacuit 89

Stit model

〈Tree, <,Agent ,Choice ,V〉

m1 K1 K2

m2 K3 K4
m3K5 K6

A

h1

¬A

h2

¬A

h3

A

h4
For α ∈ Agent , Choicem

α is a
partition on Hm

Choicem
α (h) is the particular

action at m that contains h

Eric Pacuit 89

Stit model

〈Tree, <,Agent ,Choice ,V〉

m1 K1 K2

m2 K3 K4
m3K5 K6

A

h1

¬A

h2

¬A

h3

A

h4
For α ∈ Agent , Choicem

α is a
partition on Hm

Choicem
α (h) is the particular

action at m that contains h

Eric Pacuit 89

Stit model

〈Tree, <,Agent ,Choice ,V〉

m1 K1 K2

m2 K3 K4
m3K5 K6

A

h1

¬A

h2

¬A

h3

A

h4

V assigns sets of indices to
atomic propositions.

m2/h1 |= A m2/h2 6|= A

Eric Pacuit 89

m

K1 K2 K3

h1 h2 h3 h4 h5

I M,m/h |= �A if and only ifM,m/h′ |= A for all h′ ∈ Hm,

M,m/h |= [α stit: A] if and only if Choicem
α (h) ⊆ |A |m

M
,

Eric Pacuit 90

m

K1 K2 K3

h1 h2 h3 h4 h5

I M,m/h |= �A if and only ifM,m/h′ |= A for all h′ ∈ Hm,

I M,m/h |= [α stit: A] if and only if Choicem
α (h) ⊆ |A |m

M

asdfa sdfasdfasdf

Eric Pacuit 90

m

K1 K2 K3

h1

B

h2

B

h3

¬B

h4

B

h5

¬B

I M,m/h |= �A if and only ifM,m/h′ |= A for all h′ ∈ Hm,

I M,m/h |= [α stit: A] if and only if Choicem
α (h) ⊆ |A |m

M

m/h1 |= [α stit: B], m/h3 6|= [α stit: B], m/h5 |= [α stit: ¬B]

Eric Pacuit 90

m

K1 K2 K3

h1

B

h2

B

h3

¬B

h4

B

h5

¬B

I M,m/h |= �A if and only ifM,m/h′ |= A for all h′ ∈ Hm,

I M,m/h |= [α stit: A] if and only if Choicem
α (h) ⊆ |A |m

M

I Temporal modalities (P, F, . . .)

Eric Pacuit 90

Ability: ^[α stit: A]

m

K1 K2

h1

A
¬B

h2

¬A
B

h3

¬A
¬B

I m/h1 6|= A ⊃ ^[α stit: A]

I m/h1 6|= ^[α stit: A ∨ B] ⊃

^[α stit: A] ∨^[α stit: B]

Eric Pacuit 91

^[α stit: A] is a “causal sense” of ability. But, there is also an
“epistemic sense” of ability...

What needs to be added to stit models?

I Indistinguishability relation(s)
I Action types

Eric Pacuit 92

^[α stit: A] is a “causal sense” of ability. But, there is also an
“epistemic sense” of ability...

What needs to be added to stit models?

I Indistinguishability relation(s)

I Action types

Eric Pacuit 92

^[α stit: A] is a “causal sense” of ability. But, there is also an
“epistemic sense” of ability...

What needs to be added to stit models?

I Indistinguishability relation(s)
I Action types

Eric Pacuit 92

Epistemic stit models

A. Herzig. Logics of knowledge and action: critical analysis and chal-
lenges. Autonomous Agent and Multi-Agent Systems, 2014.

V. Goranko and EP. Temporal aspects of the dynamics of knowledge.
in Johan van Benthem on Logic and Information Dynamics, Outstand-
ing Contributions to Logic, (eds. Alexandru Baltag and Sonja Smets),
pp. 235 - 266, 2014.

J. Broeresen, A. Herzig and N. Troquard. What groups do, can do
and know they can do: An analysis in normal modal logics. Journal of
Applied and Non-Classical Logics, 19:3, pgs. 261 - 289, 2009.

W. van der Hoek and M. Wooldridge. Cooperation, knowledge and
time: Alternating-time temporal epistemic logic and its applications.
Studia Logica, 75, pgs. 125 - 157, 2003.

Eric Pacuit 93

Epistemic stit models

〈Tree, <,Agent ,Choice , {∼α}α∈Agent ,V〉

m1 K1 K2

m2 K3 K4
m3K5 K6

A

h1

¬A

h2

¬A

h3

A

h4
∼α is an equivalence relation
on indices

m/h ∼α m′/h′: nothing
α knows distinguishes m/h
from m′/h′, or m/h and
m′/h′ are indistinguishable

Eric Pacuit 93

Epistemic stit models

〈Tree, <,Agent ,Choice , {∼α}α∈Agent ,V〉

m1 K1 K2

m2 K3 K4
m3K5 K6

A

h1

¬A

h2

¬A

h3

A

h4
∼α is an equivalence relation
on indices

m/h ∼α m′/h′: nothing
α knows distinguishes m/h
from m′/h′, or m/h and
m′/h′ are indistinguishable

Eric Pacuit 93

Epistemic stit models

〈Tree, <,Agent ,Choice , {∼α}α∈Agent ,V〉

m1 K1 K2

m2 K3 K4
m3K5 K6

A

h1

¬A

h2

¬A

h3

A

h4
∼α is an equivalence relation
on indices

m/h ∼α m′/h′: nothing
α knows distinguishes m/h
from m′/h′, or m/h and
m′/h′ are indistinguishable

Eric Pacuit 93

Epistemic stit models

〈Tree, <,Agent ,Choice , {∼α}α∈Agent ,V〉

m1 K1 K2

m2 K3 K4
m3K5 K6

A

h1

¬A

h2

¬A

h3

A

h4
∼α is an equivalence relation
on indices

m/h ∼α m′/h′: nothing
α knows distinguishes m/h
from m′/h′, or m/h and
m′/h′ are indistinguishable

Eric Pacuit 93

Epistemic stit models

m
K1 K2

m2K3 K4

I M,m/h |= KαA if and only if, for all m′/h′, if m/h ∼α m′/h′,
thenM,m′/h′ |= A

Eric Pacuit 93

Coin game

m1

K1 K2

m2

K3 K4

m3

K5 K6

A

h1

¬A

h2

¬A

h3

A

h4

Eric Pacuit 94

Coin game 1

m1

K1 K2

m2

K3 K4

m3

K5 K6

A

h1

¬A

h2

¬A

h3

A

h4

Eric Pacuit 95

Coin game 2

m1

K1 K2

m2

K3 K4

m3

K5 K6

A

h1

¬A

h2

¬A

h3

A

h4

Eric Pacuit 96

Ability

m1

K1 K2

m2

K3 K4

m3

K5 K6

A
h1

¬A
h2

¬A
h3

A
h4

m1

K1 K2

m2

K3 K4

m3

K5 K6

A
h1

¬A
h2

¬A
h3

A
h4

^[α stit: A] is settled true in at m2 and m3 in both models.

Eric Pacuit 97

Ability

m1

K1 K2

m2

K3 K4

m3

K5 K6

A
h1

¬A
h2

¬A
h3

A
h4

m1

K1 K2

m2

K3 K4

m3

K5 K6

A
h1

¬A
h2

¬A
h3

A
h4

^[α stit: A] is settled true in at m2 and m3 in both models.

Eric Pacuit 97

Ability

m1

K1 K2

m2

K3 K4

m3

K5 K6

A
h1

¬A
h2

¬A
h3

A
h4

m1

K1 K2

m2

K3 K4

m3

K5 K6

A
h1

¬A
h2

¬A
h3

A
h4

Kα^[α stit: A] is settled true in at m2 and m3 in both models.

Eric Pacuit 97

Ability

m1

K1 K2

m2

K3 K4

m3

K5 K6

A
h1

¬A
h2

¬A
h3

A
h4

m1

K1 K2

m2

K3 K4

m3

K5 K6

A
h1

¬A
h2

¬A
h3

A
h4

^Kα[α stit: A] is settled false in at m2 and m3 in both models.

Eric Pacuit 97

Ability

α has the ability to see to it that A in the epistemic sense just in
case there is some action available to α that is known by α to
guarantee the truth of A .

Eric Pacuit 97

Ability

m1

K1 K2

m2

K3 K4

m3

K5 K6

bh bt

A
h1

¬A
h2

¬A
h3

A
h4

m1

K1 K2

m2

K3 K4

m3

K5 K6

bh bt

A
h1

¬A
h2

¬A
h3

A
h4

Eric Pacuit 97

Coin game 3

m1

K1 K2 K3 K4

m2

K5 K6

m3

K7 K8

A

h1

¬A

h2

A

h3

¬A

h4

Eric Pacuit 98

Labeled stit model

〈Tree, <,Agent ,Choice , {∼α}α∈Agent ,Type, [],Label,V〉

Type = {τ1, τ2, . . .} is a finite set of action types—general kinds
of action, as opposed to the concrete action tokens already
present in stit logics.

[] is a partial function mapping types to the particular action
token [τ]mα that results when τ is executed by α at m.

I [τ]mα ∈ Choicem
α

Label is a 1-1 function mapping Choicem
α to action types.

I If K ∈ Choicem
α , then [Label(K)]αm = K

I If τ ∈ Type and [τ]mα is defined, then Label([τ]mα) = τ

Eric Pacuit 99

Labeled stit model

〈Tree, <,Agent ,Choice , {∼α}α∈Agent ,Type, [],Label,V〉

Type = {τ1, τ2, . . .} is a finite set of action types—general kinds
of action, as opposed to the concrete action tokens already
present in stit logics.

[] is a partial function mapping types to the particular action
token [τ]mα that results when τ is executed by α at m.

I [τ]mα ∈ Choicem
α

Label is a 1-1 function mapping Choicem
α to action types.

I If K ∈ Choicem
α , then [Label(K)]αm = K

I If τ ∈ Type and [τ]mα is defined, then Label([τ]mα) = τ

Eric Pacuit 99

Labeled stit model

〈Tree, <,Agent ,Choice , {∼α}α∈Agent ,Type, [],Label,V〉

Type = {τ1, τ2, . . .} is a finite set of action types—general kinds
of action, as opposed to the concrete action tokens already
present in stit logics.

[] is a partial function mapping types to the particular action
token [τ]mα that results when τ is executed by α at m.

I [τ]mα ∈ Choicem
α

Label is a 1-1 function mapping Choicem
α to action types.

I If K ∈ Choicem
α , then [Label(K)]αm = K

I If τ ∈ Type and [τ]mα is defined, then Label([τ]mα) = τ

Eric Pacuit 99

Labeled stit model

〈Tree, <,Agent ,Choice , {∼α}α∈Agent ,Type, [],Label,V〉

Type = {τ1, τ2, . . .} is a finite set of action types—general kinds
of action, as opposed to the concrete action tokens already
present in stit logics.

[] is a partial function mapping types to the particular action
token [τ]mα that results when τ is executed by α at m.

I [τ]mα ∈ Choicem
α

Label is a 1-1 function mapping Choicem
α to action types.

I If K ∈ Choicem
α , then [Label(K)]αm = K

I If τ ∈ Type and [τ]mα is defined, then Label([τ]mα) = τ

Eric Pacuit 99

Labeled stit model

〈Tree, <,Agent ,Choice , {∼α}α∈Agent ,Type, [],Label,V〉

Type = {τ1, τ2, . . .} is a finite set of action types—general kinds
of action, as opposed to the concrete action tokens already
present in stit logics.

[] is a partial function mapping types to the particular action
token [τ]mα that results when τ is executed by α at m.

I [τ]mα ∈ Choicem
α

Label is a 1-1 function mapping Choicem
α to action types.

I If K ∈ Choicem
α , then [Label(K)]αm = K

I If τ ∈ Type and [τ]mα is defined, then Label([τ]mα) = τ

Eric Pacuit 99

Labeled stit model, continued

〈Tree, <,Agent ,Choice , {∼α}α∈Agent ,Type, [],Label,V〉

Typem
α = {Label(K) | K ∈ Choicem

α }

Typem
α (h) = Label(Choicem

α (h))

Eric Pacuit 100

kstit

m
K1 K2

m2K3 K4

τ

I M,m/h |= [α kstit: A] if and only if [Typem
α (h)]m

′

α ⊆ |A |m
′

M
for

all m′/h′ such that m′/h′ ∼α m/h.

Eric Pacuit 101

The difference between C1 and C2

(C1) If m/h ∼α m′/h′, then Typem
α = Typem′

α

(C2) If m/h ∼α m′/h′, then [Typem
α (h)]m

′

α is defined.

Eric Pacuit 102

Minimal Constraint

m1

K1

τ1

K2

τ2
m2

K3

τ1

h1 h2 h3

Eric Pacuit 103

Knowledge of action types

Let Aτ
α be an atomic proposition carrying the intuitive meaning

that the agent α executes the action type τ.

I M,m/h |= Aτ
α if and only if Typem

α (h) = τ

C2 is satisfied iff ^Aτ
α ⊃ Kα^Aτ

α is valid.

Eric Pacuit 104

Knowledge of action types

Let Aτ
α be an atomic proposition carrying the intuitive meaning

that the agent α executes the action type τ.

I M,m/h |= Aτ
α if and only if Typem

α (h) = τ

C2 is satisfied iff ^Aτ
α ⊃ Kα^Aτ

α is valid.

Eric Pacuit 104

m1

K1

τ1

K2

τ2
m2

K3

τ1

h1 h2

Aτ2
α

h3

m1/h1 |= ^Aτ2
α m1/h1 6|= Kα^Aτ2

α

Eric Pacuit 105

Epistemic sense of ability

m1

K1 K2

m2

K3 K4

τ1 τ2
m3

K5 K6

τ1 τ2

A

h1

¬A

h2

¬A

h3

A

h4

^[α kstit: A] is settled true at m2 and m3.

Eric Pacuit 106

Epistemic sense of ability

m1

K1 K2

m2

K3 K4

τ2τ1
m3

K5 K6

τ1 τ2

A

h1

¬A

h2

¬A

h3

A

h4

^[α kstit: A] is settled true at m2 and m3.

Eric Pacuit 106

Epistemic sense of ability

m1

K1 K2

m2

K3 K4

τ1 τ2
m3

K5 K6

τ1 τ2

A

h1

¬A

h2

¬A

h3

A

h4

^[α kstit: A] is settled true at m2 and m3.

Eric Pacuit 106

Epistemic sense of ability

m1

K1 K2

m2

K3 K4

τ1 τ2
m3

K5 K6

τ1 τ2

A

h1

¬A

h2

¬A

h3

A

h4

^[α kstit: A] is settled false at m2 and m3.

Eric Pacuit 106

Epistemic sense of ability

m1

K1 K2

m2

K3 K4

τ1 τ2
m3

K5 K6

τ2τ1

A

h1

¬A

h2

¬A

h3

A

h4

^[α kstit: A] is settled false at m2 and m3.

Eric Pacuit 106

Discussion: Related Work
A. Herzig and N. Troquard. Knowing how to play: uniform choices in
logics of agency. In Proceedings of the Fifth International Joint Confer-
ence on Autonomous Agents and Multi-agent Systems (AAMAS-06),
pages 209 - 216. 2006..

J. Broersen. Deontic epistemic stit logic distinguishing modes of mens
rea. Journal of Applied Logic, 9(2):127 - 152, 2011.

A. Herzig and E. Lorini. A Dynamic Logic of Agency I: STIT, Capabil-
ities and Powers. Journal of Logic, Language and Information 19(1):
89-121, 2010.

EP, R. Parikh, and E. Cogan. The logic of knowledge based obligation.
Synthese, 149:2, pp. 311 - 341, 2006.

M. Xu. Combinations of stit and actions. Journal of Logic, Language,
and Information, 19:485 - 503, 2010.

Eric Pacuit 107

Discussion

Validities:

I Kα[α stit: A] ⊃ [α kstit: A]

I [α kstit: A] ⊃ [α stit: A]

Non-Validities:

I ^[α kstit: A] ⊃ Kα^[α kstit: A]

Eric Pacuit 108

Discussion

Validities:

I Kα[α stit: A] ⊃ [α kstit: A]

I [α kstit: A] ⊃ [α stit: A]

Non-Validities:

I ^[α kstit: A] ⊃ Kα^[α kstit: A]

Eric Pacuit 108

Constraints

(C3) If m/h ∼α m′/h′, then m = m′

(C3) is satisfied iff [α stit: A] ≡ [α kstit: A] is valid.

Eric Pacuit 109

(C4) If m/h ∼α m′/h′, then Typem
α (h) = Typem′

α (h′)

(C4) is satisfied iff Aτ
α ⊃ KαAτ

α is valid.

Eric Pacuit 110

Deliberative perspective

(C5) If m/h ∼α m′/h′, then m/h′′ ∼α m′/h′′′ for all
h′′ ∈ Hm and h′′′ ∈ Hm′

Indistinguishability between moments: m ∼α m′ iff
m/h ∼α m′/h′ for all h ∈ Hm and h′ ∈ Hm′ .

Eric Pacuit 111

Discussion

I Language/validities

�A ⊃ [α stit: A]
Kα�A ⊃ [α kstit: A]
[α kstit: A] ≡ Kact

α [α stit: A]
. . .

I What do the agents know vs. What do the agents know
given what they are doing.

I Equivalence between labeled stit models (cf. Thompson
transformations specifying when two imperfect information
games reduce to the same Normal form)

Eric Pacuit 112

