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I The agent’s (hard) information (i.e., the states consistent
with what the agent knows)

I The agent’s beliefs (soft information—-the states
consistent with what the agent believes)
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I The agent’s “contingency plan”: when the stronger beliefs
fail, go with the weaker ones.
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Plausibility Models

Epistemic Models: M = 〈W , {∼i}i∈A,V〉

Truth: M,w |= ϕ is defined as follows:

I M,w |= p iff w ∈ V(p) (with p ∈ At)
I M,w |= ¬ϕ ifM,w 6|= ϕ

I M,w |= ϕ ∧ ψ ifM,w |= ϕ andM,w |= ψ

I M,w |= Kiϕ if for each v ∈W , if w∼iv, thenM, v |= ϕ
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Plausibility Models
Epistemic-Plausibility Models: M = 〈W , {∼i}i∈A, {�i}i∈A,V〉

Plausibility Relation: �i⊆W ×W . w �i v means

“w is at least as plausible as v.”

Properties of �i : reflexive, transitive, complete and
well-founded.

Most Plausible: For X ⊆W , let

Min�i (X) = {v ∈W | v �i w for all w ∈ X }

Assumptions:
plausibility implies possibility: if w �i v then w ∼i v.
locally-connected: if w ∼i v then either w �i v or v �i w.
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Plausibility Models

Epistemic-Plausibility Models: M = 〈W , {∼i}i∈A, {�i}i∈A,V〉

Truth: M,w |= ϕ is defined as follows:

I M,w |= p iff w ∈ V(p) (with p ∈ At)
I M,w |= ¬ϕ ifM,w 6|= ϕ

I M,w |= ϕ ∧ ψ ifM,w |= ϕ andM,w |= ψ

I M,w |= Kiϕ if for each v ∈W , if w∼iv, thenM, v |= ϕ

I M,w |= Biϕ if for each v ∈ Min�i ([w]i),M, v |= ϕ
[w]i = {v | w ∼i v} is the agent’s information cell.
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Beliefs via Plausibility

I W = {w1,w2,w3}

w1 � w2 and w2 � w1 (w1 and w2
are equi-plausbile)
w1 ≺ w3 (w1 � w3 and w3 � w1)
w2 ≺ w3 (w2 � w3 and w3 � w2)
{w1,w2} ⊆ Min�([wi])

w3

w2w1

A

B

D

E

ϕ
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Beliefs via Plausibility

ψ

A

B

C

D

E

ϕ

Conditional Belief: Bϕψ

Min�([[ϕ]]M) ⊆ [[ψ]]M
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Beliefs via Plausibility

ψ

C

D

E

ϕ

Conditional Belief: Bϕψ

Min�([[ϕ]]M) ⊆ [[ψ]]M
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Example

w1 w2

a

w2 �a w1
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Group Knowledge

Eric Pacuit 6



P. Vanderschraaf and G. Sillari. “Common Knowledge”, The Stanford
Encyclopedia of Philosophy (2009).
http://plato.stanford.edu/entries/common-knowledge/.
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The “Standard” Account

E

W

R. Aumann. Agreeing to Disagree. Annals of Statistics
(1976).

R. Fagin, J. Halpern, Y. Moses and M. Vardi. Reasoning
about Knowledge. MIT Press, 1995.
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The “Standard” Account

E

W

W is a set of states or worlds.
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The “Standard” Account

E

W

An event/proposition is any (definable) subset E ⊆
W
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The “Standard” Account

E

W

At each state, agents are assigned a set of states
they consider possible (according to their informa-
tion).
The information may be (in)correct, partitional, ....
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The “Standard” Account

E

W

Knowledge Function: Ki : ℘(W) → ℘(W) where
Ki(E) = {w | Ri(w) ⊆ E}
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The “Standard” Account

E

W

w

w ∈ KA (E) and w < KB(E)
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The “Standard” Account

E

W

w

The model also describes the agents’ higher-order
knowledge/beliefs
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The “Standard” Account

E

W

w

Everyone Knows: K(E) =
⋂

i∈A Ki(E), K0(E) = E,
Km(E) = K(Km−1(E))
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The “Standard” Account

E

W

w

Common Knowledge: C : ℘(W)→ ℘(W) with

C(E) =
⋂
m≥0

Km(E)
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The “Standard” Account

E

W

w

w ∈ K(E) w < C(E)
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The “Standard” Account

E

W

w

w ∈ C(E)
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Fact. For all i ∈ A and E ⊆W , KiC(E) = C(E).
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Fact. For all i ∈ A and E ⊆W , KiC(E) = C(E).

Suppose you are told “Ann and Bob are going
together,”’ and respond “sure, that’s common
knowledge.” What you mean is not only that everyone
knows this, but also that the announcement is
pointless, occasions no surprise, reveals nothing new;
in effect, that the situation after the announcement
does not differ from that before. ...the event “Ann and
Bob are going together” — call it E — is common
knowledge if and only if some event — call it F —
happened that entails E and also entails all players’
knowing F (like all players met Ann and Bob at an
intimate party). (Aumann, pg. 271, footnote 8)
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Fact. For all i ∈ A and E ⊆W , KiC(E) = C(E).

An event F is self-evident if Ki(F) = F for all i ∈ A.

Fact. An event E is commonly known iff some self-evident
event that entails E obtains.
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Fact. For all i ∈ A and E ⊆W , KiC(E) = C(E).

An event F is self-evident if Ki(F) = F for all i ∈ A.

Fact. An event E is commonly known iff some self-evident
event that entails E obtains.

Fact. w ∈ C(E) if every finite path starting at w ends in a state
in E

The following axiomatize common knowledge:
I C(ϕ→ ψ)→ (Cϕ→ Cψ)

I Cϕ→ (ϕ ∧ ECϕ) (Fixed-Point)
I C(ϕ→ Eϕ)→ (ϕ→ Cϕ) (Induction)
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An Example

Two players Ann and Bob are told that the following will happen.
Some positive integer n will be chosen and one of n, n + 1 will
be written on Ann’s forehead, the other on Bob’s. Each will be
able to see the other’s forehead, but not his/her own.

Suppose the number are (2,3).

Do the agents know there numbers are less than 1000?

Is it common knowledge that their numbers are less than 1000?
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(0,1) (2,1)

(2,3) (4,3)

(4,5) (6,5)

(6,7)

A

B

A

B

A

B
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Some Issues

I What does a group know/believe/accept? vs. what can a
group (come to) know/believe/accept?

C. List. Group knowledge and group rationality: a judgment aggrega-
tion perspective. Episteme (2008).

I Other “group informational attitudes”: distributed
knowledge, common belief, . . .

I Where does common knowledge come from?
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Distributed Knowledge

DG(E) = {w |

⋂
i∈G

Ri(w)

 ⊆ E}

I KA (p) ∧ KB(p → q)→ DA ,B(q)

I DG(ϕ)→
∧

i∈G Kiϕ

F. Roelofsen. Distributed Knowledge. Journal of Applied Nonclassical
Logic (2006).

w ∈ KG(E) iff RG(w) ⊆ E (without necessarily RG(w) =
⋂
i∈G

Ri(w))

A. Baltag and S. Smets. Correlated Knowledge: an Epistemic-Logic
view on Quantum Entanglement. Int. Journal of Theoretical Physics
(2010).
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Ingredients of a Logical Analysis of Rational Agency

⇒ informational attitudes (eg., knowledge, belief, certainty)
⇒ time, actions and ability
⇒ motivational attitudes (eg., preferences)
⇒ group notions (e.g., common knowledge and coalitional

ability)
⇒ normative attitudes (eg., obligations)
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Robert Aumann. Agreeing to Disagree. Annals of Statistics 4 (1976).

Theorem. Suppose that n agents share a common prior and
have different private information. If there is common
knowledge in the group of the posterior probabilities, then the
posteriors must be equal.

S. Morris. The common prior assumption in economic theory. Eco-
nomics and Philosophy, 11, pgs. 227 - 254, 1995.
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Generalized Aumann’s Theorem

Qualitative versions: like-minded individuals cannot agree to
make different decisions.

M. Bacharach. Some Extensions of a Claim of Aumann in an Ax-
iomatic Model of Knowledge. Journal of Economic Theory (1985).

J.A.K. Cave. Learning to Agree. Economic Letters (1983).

D. Samet. Agreeing to disagree: The non-probabilistic case. Games
and Economic Behavior, Vol. 69, 2010, 169-174.
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The Framework

Knowledge Structure: 〈W , {Πi}i∈A〉 where each Πi is a
partition on W (Πi(w) is the cell in Πi containing w).

Decision Function: Let D be a nonempty set of decisions. A
decision function for i ∈ A is a function di : W → D. A vector
d = (d1, . . . ,dn) is a decision function profile. Let
[di = d] = {w | di(w) = d}.

(A1) Each agent knows her own decision:

[di = d] ⊆ Ki([di = d])
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Comparing Knowledge

[j � i]: agent j is at least as knowledgeable as agent i.

[j � i] :=
⋂

E∈℘(W)

(Ki(E)⇒ Kj(E)) =
⋂

E∈℘(W)

(¬Ki(E) ∪ Kj(E))

w ∈ [j � i] then j knows at w every event that i knows there.

[j ∼ i] = [j � i] ∩ [i � j]
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The Sure-Thing Principle

A businessman contemplates buying a certain piece
of property. He considers the outcome of the next
presidential election relevant.

So, to clarify the matter
to himself, he asks whether he would buy if he knew
that the Democratic candidate were going to win, and
decides that he would. Similarly, he considers whether
he would buy if he knew a Republican candidate were
going to win, and again he finds that he would. Seeing
that he would buy in either event, he decides that he
should buy, even though he does not know which
event obtains, or will obtain, as we would ordinarily
say. (Savage, 1954)
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The sure-thing principle cannot appropriately be
accepted as a postulate...because it would introduce
new undefined technical terms referring to knowledge
and possibility that would render it mathematically
useless without still more postulates governing these
terms. It will be preferable to regard the principle as a
loose one that suggests certain formal postulates well
articulated with P1 [the transitivity of preferences]
(Savage, 1954)
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Sure-Thing Principle

Should I study or have a beer?

Either I pass or I won’t pass the
exam. If I pass, it is better to drink and pass, so I should drink.
If I fail, it is better to drink and fail, so I should drink. I should
drink in either case, so I should have a drink.

Eric Pacuit 22



Sure-Thing Principle

Should I study or have a beer? Either I pass or I won’t pass the
exam.

If I pass, it is better to drink and pass, so I should drink.
If I fail, it is better to drink and fail, so I should drink. I should
drink in either case, so I should have a drink.

Eric Pacuit 22



Sure-Thing Principle

Should I study or have a beer? Either I pass or I won’t pass the
exam. If I pass, it is better to drink and pass, so I should drink.
If I fail, it is better to drink and fail, so I should drink.

I should
drink in either case, so I should have a drink.

Eric Pacuit 22



Sure-Thing Principle

Should I study or have a beer? Either I pass or I won’t pass the
exam. If I pass, it is better to drink and pass, so I should drink.
If I fail, it is better to drink and fail, so I should drink. I should
drink in either case, so I should have a drink.

Eric Pacuit 22



Sure-Thing Principle

It is not the logical principle ϕ→ χ and ψ→ χ then ϕ ∨ ψ→ χ.
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Sure-Thing Principle

R. Aumann, S. Hart and M. Perry. Conditioning and the Sure-Thing
Principle. manuscript, 2005.

J. Pearl. The Sure-Thing Principle. Journal of Causal Inference,
Causal, Casual, and Curious Section, 4(1):81-86, 2016.

Branden Fitelson. Confirmation, Causation, and Simpson’s Paradox.
Episteme, 2017.
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“Change Savage’s example to make the election be merely for
the office of mayor, and suppose that the businessman
thinks—perhaps correctly, and perhaps with excellent
reason—that his buying the property would improve the
Democratic contender’s chances of winning.”

Imagine that the businessman believes that the Democratic
candidate, if elected mayor, would be a disaster to the city,
regardless of whether he buys the property of not. Under such
circumstances, it is quite reasonable that buying the property
would be a good post-election deal, regardless of which
candidate wins, yet a terrible pre-election deal, prior to knowing
the winner, in blatant violation of the sure-thing principle.
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The Nixon Diamond

You’re told (from a reliable source) that Nixon is a republican,
which suggests that he is a Hawk. You’re also told (from a
reliable source) that Nixon is a Quaker, which suggests that he
is a Dove.

Either being a Hawk or a Dove implies having
extreme political views. Should you conclude that Nixon has
extreme political views?
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Floating Conclusions
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J. Horty. Skepticism and floating conclusions. Artificial Intelligence,
135, pp. 55 - 72, 2002.
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Your parents have 1M inheritance which will is split between
you mother and father (each may give you 0.5M).

Your brother
(a reliable source) says that you will receive the money from
your Mother (but not your Father). Your sister (a reliable source)
says that you will receive the money from your Father (but not
your Mother). You want to buy a yacht which requires a large
deposit and you can only afford it provided you inherit the
money. Should you make a deposit on the yacht?
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Interpersonal Sure-Thing Principle (ISTP)

For any pair of agents i and j and decision d,

Ki([j � i] ∩ [dj = d]) ⊆ [di = d]
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Interpersonal Sure-Thing Principle (ISTP): Illustration

Suppose that Alice and Bob, two detectives who graduated the
same police academy, are assigned to investigate a murder
case.

If they are exposed to different evidence, they may reach
different decisions. Yet, being the students of the same
academy, the method by which they arrive at their conclusions
is the same. Suppose now that detective Bob, a father of four
who returns home every day at five oclock, collects all the
information about the case at hand together with detective
Alice.
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Interpersonal Sure-Thing Principle (ISTP): Illustration

However, Alice, single and a workaholic, continues to collect
more information every day until the wee hours of the morning
— information which she does not necessarily share with Bob.

Obviously, Bob knows that Alice is at least as knowledgeable
as he is. Suppose that he also knows what Alices decision is.
Since Alice uses the same investigation method as Bob, he
knows that had he been in possession of the more extensive
knowledge that Alice has collected, he would have made the
same decision as she did. Thus, this is indeed his decision.
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Implications of ISTP

Proposition. If the decision function profile d satisfies ISTP,
then

[i ∼ j] ⊆
⋃
d∈D

([di = d] ∩ [dj = d])
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ISTP Expandability

Agent i is an epistemic dummy if it is always the case that all
the agents are at least as knowledgeable as i. That is, for each
agent j,

[j � i] = W

A decision function profile d on 〈W ,Π1, . . . ,Πn〉 is ISTP
expandable if for any expanded structure 〈W ,Π1, . . . ,Πn+1〉

where n + 1 is an epistemic dummy, there exists a decision
function dn+1 such that (d1,d2, . . . ,dn+1) satisfies ISTP.
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ISTP Expandability: Illustration

Suppose that after making their decisions, Alice and Bob are
told that another detective, one E.P. Dummy, who graduated the
very same police academy, had also been assigned to
investigate the same case.

In principle, they would need to
review their decisions in light of the third detectives knowledge:
knowing what they know about the third detective, his usual
sources of information, for example, may impinge upon their
decision.
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ISTP Expandability: Illustration

But this is not so in the case of detective Dummy. It is
commonly known that the only information source of this
detective, known among his colleagues as the couch detective,
is the TV set.

Thus, it is commonly known that every detective
is at least as knowledgeable as Dummy. The news that he had
been assigned to the same case is completely irrelevant to the
conclusions that Alice and Bob have reached. Obviously, based
on the information he gets from the media, Dummy also makes
a decision. We may assume that the decisions made by the
three detectives satisfy the ISTP, for exactly the same reason
we assumed it for the two detectives decisions
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Generalized Agreement Theorem

If d is an ISTP expandable decision function profile on a
partition structure 〈W ,Π1, . . . ,Πn〉, then for any decisions
d1, . . . ,dn which are not identical, C(

⋂
i[di = di]) = ∅.

Eric Pacuit 37



Dynamic characterization of Aumann’s Theorem

I How do the posteriors become common knowledge?

J. Geanakoplos and H. Polemarchakis. We Can’t Disagree Forever.
Journal of Economic Theory (1982).

I What happens when communication is not the the whole
group, but pairwise?

R. Parikh and P. Krasucki. Communication, Consensus and Knowl-
edge. Journal of Economic Theory (1990).
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Dynamic Logics of Knowledge and Belief
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Fitch’s Paradox

Fitch (1963) derived an unexpected consequence from the
thesis, advocated by some anti-realists, that every truth is
knowable:

(VT) q → ^Kq,
where ^ is a possibility operator (more on this later).

Fitch make two modest assumptions for K , Kϕ→ ϕ (T) and
K(ϕ ∧ ψ)→ (Kϕ ∧ Kψ) (M), and two modest assumptions for
^:

I ^ is the dual of � for necessity, so ¬^ϕ follows from �¬ϕ.
I � obeys the rule of Necessitation: if ϕ is a theorem, so is
�ϕ.
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Fitch’s Paradox

For an arbitrary p, consider the following instance of (VT):

(0) (p ∧ ¬Kp)→ ^K(p ∧ ¬Kp)

Here is the proof for Fitch’s Paradox:
(1) K(p ∧ ¬Kp)→ (Kp ∧ K¬Kp) instance of M axiom
(2) K¬Kp → ¬Kp instance of T axiom
(3) K(p ∧ ¬Kp)→ (Kp ∧ ¬Kp) from (1) and (2) by PL
(4) ¬K(p ∧ ¬Kp) from (3) by PL
(5) �¬K(p ∧ ¬Kp) from (4) by �-Necessitation
(6) ¬^K(p ∧ ¬Kp) from (5) by � - ^ Duality
(7) ¬(p ∧ ¬Kp) from (0) by PL
(8) p → Kp from (7) by classical PL

Since p was arbitrary, we have shown that every truth is known.
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(3) K(p ∧ ¬Kp)→ (Kp ∧ ¬Kp) from (1) and (2) by PL
(4) ¬K(p ∧ ¬Kp) from (3) by PL
(5) �¬K(p ∧ ¬Kp) from (4) by �-Necessitation
(6) ¬^K(p ∧ ¬Kp) from (5) by � - ^ Duality
(7) ¬(p ∧ ¬Kp) from (0) by PL
(8) p → Kp from (7) by classical PL

Since p was arbitrary, we have shown that every truth is known.
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The Question

Fitch’s Paradox leaves us with the question: what must we
require in addition to the truth of ϕ to ensure the knowability of
ϕ?

There is a fairly large literature on knowability and related
issues. See, e.g.:

J. Salerno. 2009. New Essays on the Knowability Paradox, OUP

J. van Benthem. 2004. “What One May Come to Know,” Analysis.

P. Balbiani et al. 2008. “‘Knowable’ as ‘Known after an Announcement,”’

Review of Symbolic Logic.
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Dynamic Epistemic Logic

The key idea of dynamic epistemic logic is that we can
represent changes in agents’ epistemic states by transforming
models.

In the simplest case, we model an agent’s acquisition of
knowledge by the elimination of possibilities from an initial
epistemic model.
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Finding out that ϕ

M = 〈W , {∼i}i∈A, {�i}i∈A,V〉

M
′ = 〈W ′, {∼′i }i∈A, {�

′

i }i∈A,V |W ′〉

Find out that ϕ
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Example: College Park and Amsterdam

Recall the College Park agent who doesn’t know whether it’s
raining in Amsterdam, whose epistemic state is represented by
the model:

r

w1 w2

b
b ,d b ,d

What happens when the Amsterdam agent calls the College
Park agent on the phone and says, “It’s raining in Amsterdam”?

We model the change in b ’s epistemic state by eliminating all
epistemic possibilities in which it’s not raining in Amsterdam.
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Model Update

We can easily give a formal definition that captures the idea of
knowledge acquisition as the elimination of possibilities.

GivenM = 〈W , {Ra | a ∈ Agt},V〉, the updated model M|ϕ is
obtained by deleting fromM all worlds in which ϕ was false.

Formally,M|ϕ = 〈W|ϕ, {Ra|ϕ | a ∈ Agt},V|ϕ〉 is the model s.th.:

W|ϕ = {v ∈W | M, v � ϕ};

Ra|ϕ is the restriction of Ra to W|ϕ;

V|ϕ(p) is the intersection of V(p) and W|ϕ.

In the single-agent case, this models the agent learning ϕ. In
the multi-agent case, this models all agents publicly learning ϕ.

Eric Pacuit 47



Model Update

We can easily give a formal definition that captures the idea of
knowledge acquisition as the elimination of possibilities.

GivenM = 〈W , {Ra | a ∈ Agt},V〉, the updated model M|ϕ is
obtained by deleting fromM all worlds in which ϕ was false.

Formally,M|ϕ = 〈W|ϕ, {Ra|ϕ | a ∈ Agt},V|ϕ〉 is the model s.th.:

W|ϕ = {v ∈W | M, v � ϕ};

Ra|ϕ is the restriction of Ra to W|ϕ;

V|ϕ(p) is the intersection of V(p) and W|ϕ.

In the single-agent case, this models the agent learning ϕ. In
the multi-agent case, this models all agents publicly learning ϕ.

Eric Pacuit 47



Model Update

We can easily give a formal definition that captures the idea of
knowledge acquisition as the elimination of possibilities.

GivenM = 〈W , {Ra | a ∈ Agt},V〉, the updated model M|ϕ is
obtained by deleting fromM all worlds in which ϕ was false.

Formally,M|ϕ = 〈W|ϕ, {Ra|ϕ | a ∈ Agt},V|ϕ〉 is the model s.th.:

W|ϕ = {v ∈W | M, v � ϕ};

Ra|ϕ is the restriction of Ra to W|ϕ;

V|ϕ(p) is the intersection of V(p) and W|ϕ.

In the single-agent case, this models the agent learning ϕ. In
the multi-agent case, this models all agents publicly learning ϕ.

Eric Pacuit 47



Model Update

We can easily give a formal definition that captures the idea of
knowledge acquisition as the elimination of possibilities.

GivenM = 〈W , {Ra | a ∈ Agt},V〉, the updated model M|ϕ is
obtained by deleting fromM all worlds in which ϕ was false.

Formally,M|ϕ = 〈W|ϕ, {Ra|ϕ | a ∈ Agt},V|ϕ〉 is the model s.th.:

W|ϕ = {v ∈W | M, v � ϕ};

Ra|ϕ is the restriction of Ra to W|ϕ;

V|ϕ(p) is the intersection of V(p) and W|ϕ.

In the single-agent case, this models the agent learning ϕ. In
the multi-agent case, this models all agents publicly learning ϕ.

Eric Pacuit 47



Model Update

We can easily give a formal definition that captures the idea of
knowledge acquisition as the elimination of possibilities.

GivenM = 〈W , {Ra | a ∈ Agt},V〉, the updated model M|ϕ is
obtained by deleting fromM all worlds in which ϕ was false.

Formally,M|ϕ = 〈W|ϕ, {Ra|ϕ | a ∈ Agt},V|ϕ〉 is the model s.th.:

W|ϕ = {v ∈W | M, v � ϕ};

Ra|ϕ is the restriction of Ra to W|ϕ;

V|ϕ(p) is the intersection of V(p) and W|ϕ.

In the single-agent case, this models the agent learning ϕ. In
the multi-agent case, this models all agents publicly learning ϕ.

Eric Pacuit 47



Model Update

We can easily give a formal definition that captures the idea of
knowledge acquisition as the elimination of possibilities.

GivenM = 〈W , {Ra | a ∈ Agt},V〉, the updated model M|ϕ is
obtained by deleting fromM all worlds in which ϕ was false.

Formally,M|ϕ = 〈W|ϕ, {Ra|ϕ | a ∈ Agt},V|ϕ〉 is the model s.th.:

W|ϕ = {v ∈W | M, v � ϕ};

Ra|ϕ is the restriction of Ra to W|ϕ;

V|ϕ(p) is the intersection of V(p) and W|ϕ.

In the single-agent case, this models the agent learning ϕ. In
the multi-agent case, this models all agents publicly learning ϕ.

Eric Pacuit 47



Public Announcement Logic

One of the big ideas of dynamic epistemic logic is to add to our
formal language operators that can describe the kinds of model
updates that we just saw for the College Park and Amsterdam
example.

The language of Public Announcement Logic (PAL) is given by:

ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | Kaϕ | [!ϕ]ϕ

Read [!ϕ]ψ as “after (every) true announcement of ϕ, ψ.”

Read 〈!ϕ〉ψ := ¬[!ϕ]¬ψ as “after a true announcement of ϕ, ψ.”
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Public Announcement Logic

Read [!ϕ]ψ as “after (every) true announcement of ϕ, ψ.”

Read 〈!ϕ〉ψ := ¬[!ϕ]¬ψ as “after a true announcement of ϕ, ψ.”

The truth clause for the dynamic operator [!ϕ] is:

I M,w � [!ϕ]ψ iffM,w � ϕ implies M|ϕ,w � ψ.

So if ϕ is false, [!ϕ]ψ is vacuously true. Here is the 〈!ϕ〉 clause:

I M,w � 〈!ϕ〉ψ iffM,w � ϕ and M|ϕ,w � ψ.

Big Idea: we evaluate [!ϕ]ψ and 〈!ϕ〉ψ not by looking at other
worlds in the same model, but rather by looking at a new model.
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Public Announcement Logic

SupposeM = 〈W , {∼i}i∈A, {�i}i∈A,V〉 is a multi-agent Kripke
Model

M,w |= [ψ]ϕ iffM,w |= ψ impliesM|ψ,w |= ϕ

whereM|ψ = 〈W ′, {∼′i }i∈A, {�
′

i }i∈A,V
′
〉 with

I W ′ = W ∩ {w | M,w |= ψ}

I For each i, ∼′i = ∼i ∩ (W ′
×W ′)

I For each i, �′i = �i ∩ (W ′
×W ′)

I for all p ∈ At, V ′(p) = V(p) ∩W ′
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Public Announcement Logic

[ψ]p ↔ (ψ→ p)

[ψ]¬ϕ ↔ (ψ→ ¬[ψ]ϕ)

[ψ](ϕ ∧ χ) ↔ ([ψ]ϕ ∧ [ψ]χ)

[ψ][ϕ]χ ↔ [ψ ∧ [ψ]ϕ]χ

[ψ]Kiϕ ↔ (ψ→ Ki(ψ→ [ψ]ϕ))
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Public Announcement Logic

[ψ]p ↔ (ψ→ p)

[ψ]¬ϕ ↔ (ψ→ ¬[ψ]ϕ)

[ψ](ϕ ∧ χ) ↔ ([ψ]ϕ ∧ [ψ]χ)

[ψ][ϕ]χ ↔ [ψ ∧ [ψ]ϕ]χ

[ψ]Kiϕ ↔ (ψ→ Ki(ψ→ [ψ]ϕ))

Theorem Every formula of Public Announcement Logic is
equivalent to a formula of Epistemic Logic.
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I [q]Kq

I Kp → [q]Kp

I Bϕ→ [ψ]Bϕ

p,¬q

w1

¬p,¬q

w2

p,q

w3

I [ϕ]ϕ
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Public Announcement vs. Conditional Belief
Are [ϕ]Bψ and Bϕψ different?

Yes!

p,q

w1

p,¬q

w2

¬p,q

w3

1 2

I w1 |= B1B2q
I w1 |= Bp

1 B2q
I w1 |= [p]¬B1B2q
I More generally, Bp

i (p ∧ ¬Kip) is satisfiable but
[p]Bi(p ∧ ¬Kip) is not.
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The Logic of Public Observation

I [ϕ]Kψ↔ (ϕ→ K(ϕ→ [ϕ]ψ))

I [ϕ][�]ψ↔ (ϕ→ [�](ϕ→ [ϕ]ψ))

I Belief: [ϕ]Bψ= (ϕ→ B(ϕ→ [ϕ]ψ))

[ϕ]Bψ↔ (ϕ→ Bϕ[ϕ]ψ)
[ϕ]Bαψ↔ (ϕ→ Bϕ∧[ϕ]α[ϕ]ψ)
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Finding out that ϕ

M = 〈W , {∼i}i∈A, {�i}i∈A,V〉

M
′ = 〈W ′, {∼′i }i∈A, {�

′

i }i∈A,V |W ′〉

Find out that ϕ
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I Epistemic states: AGM, Plausibility Models, Bayesian
Model (and the many variations)

I “Finding out that ϕ”
• Learn that ϕ
• Suppose that ϕ
• Accept ϕ
• ...

I How did you find out that ϕ?
• Directly observed ϕ
• Indirectly observed ϕ
• Told ‘ϕ’ (by an epistemic peer, by an expert, by a trusted

individual)
• ...

I Belief change over time
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The Theory of Belief Revision

C. Alchourrón, P. Gärdenfors and D. Makinson. On the logic of theory
change: Partial meet contraction and revision functions. Journal of
Symbolic Logic, 50, 510 - 530, 1985.

Hans Rott. Change, Choice and Inference: A Study of Belief Revision
and Nonmonotonic Reasoning. Oxford University Press, 2001.

A.P. Pedersen and H. Arló-Costa. “Belief Revision.”. In Continuum
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B ∗ ϕ

Initial set of beliefs New evidence ϕ

Revision operator: ∗ : B ×L → B
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Belief Revision via Plausibility

I W = {w1,w2,w3}

w1 � w2 and w2 � w1 (w1 and w2
are equi-plausbile)
w1 ≺ w3 (w1 � w3 and w3 � w1)
w2 ≺ w3 (w2 � w3 and w3 � w2)
{w1,w2} ⊆ Min�([wi])

w3

w2w1

A

B

D

E

ϕ
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Belief Revision via Plausibility
ψ

A

B

C

D

E

ϕ

Conditional Belief: Bϕψ

Min�([[ϕ]]M) ⊆ [[ψ]]M

Conservative Upgrade: Information from a trusted source
(↑ϕ): A ≺i C ≺i D ≺i B ∪ E
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T1,T2

w1

H1,T2

w3

T1,H2

w2

H1,H2

w4

Min�([w1]) = {w4}, so w1 |= B(H1 ∧ H2)

Min�([w1] ∩ [[T1]]M) = {w2}, so w1 |= BT1H2

Min�([w1] ∩ [[T1]]M) = {w3}, so w1 |= BT2H1
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T1,T2

w1

H1,T2

w3

T1,H2

w2

H1,H2

w4

Suppose the agent finds out that T1 is true.
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T1, T2

w1

H1, T2

w3

T1, H2

w2

H1, H2

w4

Suppose the agent finds out that T1 is/may be true.
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!(T1)
=⇒ T1,T2

w1

T1,H2

w2

↑(T1)
=⇒ T1,H2

w2

H1,H2

w4

H1,T2

w3

T1,T2

w1
BT2H1

⇑(T1)
=⇒ T1,H2

w2

T1,T2

w1

H1,H2

w4

H1,T2

w3
BT2T1
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Informative Actions

A

B

C

D

E

ϕ

Public Announcement: Information from an infallible source
(!ϕ): A ≺i B M

!ϕ = 〈W !ϕ, {∼
!ϕ
i }i∈A,V

!ϕ
〉

W !ϕ = [[ϕ]]M
∼
!ϕ
i =∼i ∩(W !ϕ

×W !ϕ)

�
!ϕ
i =�i ∩(W !ϕ

×W !ϕ)
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Informative Actions

A

B

C

D

E

ϕ

Radical Upgrade: (⇑ϕ): A ≺i B ≺i C ≺i D ≺i E,
M
⇑ϕ = 〈W , {∼i}i∈A, {�

⇑ϕ
i }i∈A,V〉

Let [[ϕ]]wi = {x | M, x |= ϕ} ∩ [w]i

I for all x ∈ [[ϕ]]wi and y ∈ [[¬ϕ]]wi , set x ≺⇑ϕi y,
I for all x , y ∈ [[ϕ]]wi , set x �⇑ϕi y iff x �i y, and
I for all x , y ∈ [[¬ϕ]]wi , set x �⇑ϕi y iff x �i y.
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Informative Actions

A

B

C

D

E

ϕ

Conservative Upgrade: (↑ϕ): A ≺i C ≺i D ≺i B ∪ E

Conservative upgrade is radical upgrade with the formula

besti(ϕ,w) := Min�i ([w]i ∩ {x | M, x |= ϕ})

1. If v ∈ besti(ϕ,w) then v ≺↑ϕi x for all x ∈ [w]i , and

2. for all x , y ∈ [w]i − besti(ϕ,w), x �↑ϕi y iff x �i y.
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Recursion Axioms

[⇑ϕ]Bψχ↔ (L(ϕ ∧ [⇑ϕ]ψ) ∧ Bϕ∧[⇑ϕ]ψ[⇑ϕ]χ)∨

(¬L(ϕ ∧ [⇑ϕ]ψ) ∧ B [⇑ϕ]ψ[⇑ϕ]χ)

[↑ϕ]Bψχ↔ (Bϕ
¬[↑ϕ]ψ∧B [↑ϕ]ψ[↑ϕ]χ)∨(¬Bϕ

¬[↑ϕ]ψ∧Bϕ∧[↑ϕ]ψ[↑ϕ]χ)
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Composition

p,q

w1

p,¬q

w2

¬p,q

w3

p,¬q

w2

¬p,q

w3

p,q

w1

⇑(p ∧ q)

¬p,q

w3

p,¬q

w2

p,q

w1

⇑(p)
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Iterated Updates

!ϕ1, !ϕ2, !ϕ3, . . . , !ϕn
always reaches a fixed-point

⇑p ⇑¬p ⇑p · · ·
Contradictory beliefs leads to oscillations

↑ϕ, ↑ϕ, . . .
Simple beliefs may never stabilize

⇑ϕ,⇑ϕ, . . .
Simple beliefs stabilize, but conditional beliefs do not

A. Baltag and S. Smets. Group Belief Dynamics under Iterated Revi-
sion: Fixed Points and Cycles of Joint Upgrades. TARK, 2009.
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r

w1

n

w2

d

w3

r

w1

d

w3

n

w2

↑(r ∨ (d ∧ ¬Bd) ∨ (¬d ∧ Bd)

r

w1

n

w2

d

w3

↑(r ∨ (d ∧ ¬Bd) ∨ (¬d ∧ Bd)
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Let ϕ be (r ∨ (B¬rq ∧ p) ∨ (B¬rp ∧ q))

rw1

qw2

pw3

M1

⇑ϕ
=⇒

rw1

pw3

qw2

M2

⇑ϕ
=⇒

rw1

qw2

pw3

M3

⇑ϕ
=⇒ · · ·
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Suppose that you are in the forest and happen to a see
strange-looking animal.

You consult your animal guidebook and
find a picture that seems to match the animal you see. The
guidebook says that the animal is a type of bird, so that is what
you conclude: The animal before you is a bird. After looking
more closely, you also notice that the animal is also red. So,
you also update your beliefs with that fact. Now, suppose that
an expert (whom you trust) happens to walk by and tells you
that the animal is, in fact, not a bird.
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b , r b , r

b , r b , r

M0

b , r b , r

b , r b , r

M1

↑b
b , r b , r

b , r

b , r

M2

↑r

b , r

b , r

b , r b , r

M3

↑b
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Note that in the last model,M3, the agent does not believe that
the bird is red.

The problem is that there does not seem to be
any justification for why the agent drops her belief that the bird
is red. This seems to result from the accidental fact that the
agent started by updating with the information that the animal is
a bird. In particular, note that the following sequence of updates
is not problematic:
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b , r b , r

b , r b , r

M0

b , r b , r

b , r b , r

M1

↑r
b , r b , r

b , r

b , r

M2

↑b

b , r

b , r

b , r

b , r

M3

↑b
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t0

t1 t2 t3

t4 t5

↑b ↑r ↑(b ∧ r)

↑r ↑b
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R. Stalnaker. Iterated Belief Revision. Erkenntnis 70, pgs. 189 - 209,
2009.
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Two Postulates of Iterated Revision

I1 If ψ ∈ Cn({ϕ}) then (K ∗ ψ) ∗ ϕ = K ∗ ϕ.

I2 If ¬ψ ∈ Cn({ϕ}) then (K ∗ ϕ) ∗ ψ = K ∗ ψ

I Postulate I1 demands if ϕ→ ψ is a theorem (with respect
to the background theory), then first learning ψ followed by
the more specific information ϕ is equivalent to directly
learning the more specific information ϕ.

I Postulate I2 demands that first learning ϕ followed by
learning a piece of information ψ incompatible with ϕ is the
same as simply learning ψ outright. So, for example, first
learning ϕ and then ¬ϕ should result in the same belief
state as directly learning ¬ϕ.
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Stalnaker’s Counterexample to I1

UUU

UUD

UDU

UDD

DDD

DDU

DUD

DUU

I Three switches wired such that a
light is on iff all three switches are
up or all three are down.
Three independent (reliable)
observers report on the switches:
Alice says switch 1 is U, Bob says
switch 2 is D and Carla says switch
3 is U.
I receive the information that the
light is on. What should I believe?
Cautious: UUU, DDD; Bold: UUU
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Stalnaker’s Counterexample to I1

UUU

UUD

UDU

UDD

DDD

DDU

DUD

DUU

I Suppose there are two switches: L1 is
the main switch and L2 is a secondary
switch controlled by the first two lights.
(So L1 → L2, but not the converse)
Suppose I receive L1 ∧ L2, this does
not change the story.
Suppose I learn that L2. This is
irrelevant to Carla’s report, but it
means either Ann or Bob is wrong.
Now, after learning L1, the only
rational thing to believe is that all
three switches are up.
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Stalnaker’s Counterexample to I1

UUU

UUD

UDU

UDD

DDD

DDU

DUD

DUU

I So, L2 ∈ Cn({L1}) but (potentially)

(K ∗ L2) ∗ L1 , K ∗ L1.
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Stalnaker’s Counterexample to I2

I Two fair coins are flipped and placed in two boxes and two
independent and reliable observers deliver reports about
the status (heads up or tails up) of the coins in the opaque
boxes.

I Alice reports that the coin in box 1 is lying heads up, Bert
reports that the coin in box 2 is lying heads up.

I Two new independent witnesses, whose reliability trumps
that of Alice’s and Bert’s, provide additional reports on the
status of the coins. Carla reports that the coin in box 1 is
lying tails up, and Dora reports that the coin in box 2 is
lying tails up.

I Finally, Elmer, a third witness considered the most reliable
overall, reports that the coin in box 1 is lying heads up.
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Hi (Ti): the coin in box i facing heads (tails) up.

I The first revision results in the belief set K ′ = K ∗ (H1 ∧H2),
where K is the agents original set of beliefs.

I After receiving the reports, the belief set is
K ′ ∗ (T1 ∧ T2) ∗ H1.

I Since Elmers report is irrelevant to the status of the coin in
box 2, it seems natural to assume that
H1 ∧ T2 ∈ K ′ ∗ (T1 ∧ T2) ∗ H1.

I The problem: Since (T1 ∧ T2)→ ¬H1 is a theorem (given
the background theory), by I2 it follows that
K ′ ∗ (T1 ∧ T2) ∗ H1 = K ′ ∗ H1.
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...[Postulate I2] directs us to take back the totality of
any information that is overturned. Specifically, if we
first receive information α, and then receive
information that conflicts with α, we should return to
the belief state we were previously in, before learning
α. But this directive is too strong. Even if the new
information conflicts with the information just received,
it need not necessarily cast doubt on all of that
information.
asdf (Stalnaker, pg. 207–208)
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Heuristic Diagnosis of Stalnaker’s Example
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A key aspect of any formal model of a (social) interactive
situation or situation of rational inquiry is the way it accounts for
the

...information about how I learn some of the things I
learn, about the sources of my information, or about
what I believe about what I believe and don’t believe. If
the story we tell in an example makes certain
information about any of these things relevant, then it
needs to be included in a proper model of the story, if
it is to play the right role in the evaluation of the
abstract principles of the model. (Stalnaker, pg. 203)

R. Stalnaker. Iterated Belief Revision. Erkentnis 70, pgs. 189 - 209,
2009.
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Discussion, I

A proper conceptualization of the event and report structure is
crucial (the event space must be ‘rich enough’): A theory must
be able to accommodate the conceptualization, but other than
that it hardly counts in favor of a theory that the modeler gets
this conceptualization right.
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Discussion, II

There seems to be a trade-off between a rich set of states and
event structure, and a rich theory of ‘doxastic actions’.

How should we resolve this trade-off when analyzing
counterexamples to postulates of belief changes over time?
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meta-information: information about how “trusted” or “reliable”
the sources of the information are.

procedural information: information about the underlying
protocol specifying which events (observations, messages,
actions) are available (or permitted) at any given moment.
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meta-information: information about how “trusted” or “reliable”
the sources of the information are.

This is particularly important when analyzing how an agent’s
beliefs change over an extended period of time. For example,
rather than taking a stream of contradictory incoming evidence
(i.e., the agent receives the information that p, then the
information that q, then the information that ¬p, then the
information that ¬q) at face value (and performing the
suggested belief revisions), a rational agent may consider the
stream itself as evidence that the source is not reliable
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procedural information: information about the underlying
protocol specifying which events (observations, messages,
actions) are available (or permitted) at any given moment.
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procedural information: information about the underlying
protocol specifying which events (observations, messages,
actions) are available (or permitted) at any given moment.

A protocol describes what the agents “can” or “cannot” do (say,
observe) in a social interactive situation or rational inquiry.
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meta-information: information about how “trusted” or “reliable”
the sources of the information are.

procedural information: information about the underlying
protocol specifying which events (observations, messages,
actions) are available (or permitted) at any given moment.

Eric Pacuit 83



Actions

1. Actions as transitions between states, or situations:

s t

a

2. Actions restrict the set of possible future histories.
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J. van Benthem, H. van Ditmarsch, J. van Eijck and J. Jaspers. Chap-
ter 6: Propositional Dynamic Logic. Logic in Action Online Course
Project, 2011.
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6-10 CHAPTER 6. LOGIC AND ACTION

Converse Some actions can be undone by reversing them: the reverse of opening a
window is closing it. Other actions are much harder to undo: if you smash a piece of
china then it is sometimes hard to mend it again. So here we have a choice: do we assume
that basic actions can be undone? If we do, we need an operation for this, for taking the
converse of an action. If, in some context, we assume that undoing an action is generally
impossible we should omit the converse operation in that context.

Exercise 6.1 Suppose ˇ is used for reversing basic actions. So ǎ is the converse of action a, and
b̌ is the converse of action b. Let a; b be the sequential composition of a and b, i.e., the action that
consists of first doing a and then doing b. What is the converse of a; b?

6.3 Viewing Actions as Relations

As an exercise in abstraction, we will now view actions as binary relations on a set S of
states. The intuition behind this is as follows. Suppose we are in some state s in S. Then
performing some action a will result in a new state that is a member of some set of new
states {s1, . . . , sn}.

If this set is empty, this means that the action a has aborted in state s. If the set has a
single element s0, this means that the action a is deterministic on state s, and if the set
has two or more elements, this means that action a is non-deterministic on state s. The
general picture is:

s

s1

s2

s3

sn

Clearly, when we extend this picture to the whole set S, what emerges is a binary relation
on S, with an arrow from s to s0 (or equivalently, a pair (s, s0) in the relation) just in case
performing action a in state s may have s0 as result. Thus, we can view binary relations
on S as the interpretations of basic action symbols a.

The set of all pairs taken from S is called S ⇥ S, or S2. A binary relation on S is simply
a set of pairs taken from S, i.e., a subset of S2.

Given this abstract interpretation of basic relations, it makes sense to ask what corresponds
to the operations on actions that we encountered in Section 6.2. Let’s consider them in
turn.
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Propositional Dynamic Logic

Language: The language of propositional dynamic logic is
generated by the following grammar:

p | ¬ϕ | ϕ ∧ ψ | [α]ϕ

where p ∈ At and α is generated by the following grammar:

a | α ∪ β | α; β | α∗ | ϕ?

where a ∈ Act and ϕ is a formula.

Semantics: M = 〈W , {Ra | a ∈ P},V〉 where for each a ∈ P,
Ra ⊆W ×W and V : At→ ℘(W)

[α]ϕ means “after doing α, ϕ will be true”

〈α〉ϕ means “after doing α, ϕ may be true”
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M,w |= [α]ϕ iff for each v, if wRαv thenM, v |= ϕ

M,w |= 〈α〉ϕ iff there is a v such that wRαv andM, v |= ϕ
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Union
Rα∪β := Rα ∪ Rβ

6-12 CHAPTER 6. LOGIC AND ACTION

s

s1

s2

s3

sn

s01
s02
s03

s0m

Then performing action a [ b (the choice between a and b) in s will get you in one of the
states in {. . . , sn} [ {s01, . . . , s

0
m}. More generally, if action symbol a is interpreted as

the relation Ra, and action symbol b is interpreted as the relation Rb, then a [ b will be
interpreted as the relation Ra [ Rb (the union of the two relations).

Test A notation that is often used for the equality relation (or: identity relation is I . The
binary relation I on S is by definition the set of pairs given by:

I = {(s, s) | s 2 S}.

A test ?' is interpreted as a subset of the identity relation, namely as the following set of
pairs:

R?' = {(s, s) | s 2 S, s |= '}

From this we can see that a test does not change the state, but checks whether the state
satisfies a condition.

To see the result of combining a test with another action:
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Sequence

Rα;β := Rα ◦ Rβ

6.3. VIEWING ACTIONS AS RELATIONS 6-11

Sequence Given that action symbol a is interpreted as binary relation Ra on S, and that
action symbol b is interpreted as binary relation Rb on S, what should be the interpretation
of the action sequence a; b? Intuitively, one can move from state s to state s0 just in case
there is some intermediate state s0 with the property that a gets you from s to s0 and b gets
you from s0 to s0. This is a well-known operation on binary relations, called relational
composition. If Ra and Rb are binary relations on the same set S, then Ra � Rb is the
binary relation on S given by:

Ra � Rb = {(s, s0) | there is some s0 2 S : (s, s0) 2 Raand (s0, s
0) 2 Rb}.

If basic action symbol a is interpreted as relation Ra, and basic action symbol b is inter-
preted as relation Rb, then the sequence action a; b is interpreted as Ra � Rb. Here is a
picture:

s

s1

s2

s3

sn

s11

s12

s13

s1m

If the solid arrows interpret action symbol a and the dashed arrows interpret action sym-
bol b, then the arrows consisting of a solid part followed by a dashed part interpret the
sequence a; b.

Choice Now suppose again that we are in state s, and that performing action a will get
us in one of the states in {s1, . . . , sn}. And supposse that in that same state s, performing
action b will get us in one of the states in {s01, . . . , s

0
m}.
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Test
Rϕ? = {(w,w) | M,w |= ϕ}

6.4. OPERATIONS ON RELATIONS 6-13

s

s1

s2

s3

sn

t

t1

t2

t3

tm

The solid arrow interprets a test ?' that succeeds in state s but fails in state t. If the
dashed arrows interpret a basic action symbol a, then, for instance, (s, s1) will be in the
interpretation of ?'; a, but (t, t1) will not.

Since > is true in any situation, we have that ?> will get interpreted as I (the identity
relation on S). Therefore, ?>; a will always receive the same interpretation as a.

Since ? is false in any situation, we have that ?? will get interpreted as ; (the empty
relation on S). Therefore, ??; a will always receive the same interpretation as ??.

Before we handle repetition, it is useful to switch to a more gereral perspective.

6.4 Operations on Relations

Relations were introduced in Chapter 4 on predicate logic. In this chapter we view actions
as binary relations on a set S of situations. Such a binary relation is a subset of S ⇥ S,
the set of all pairs (s, t) with s and t taken from S. It makes sense to develop the general
topic of operations on binary relations. Which operations suggest themselves, and what
are the corresponding operations on actions?

In the first place, there are the usual set-theoretic operations. Binary relations are sets of
pairs, so taking unions, intersections and complements makes sense (also see Appendix
A). We have already seen that taking unions corresponds to choice between actions.

Example 6.2 The union of the relations ‘mother’ and ‘father’ is the relation ‘parent’.

Example 6.3 The intersection of the relations ✓ and ◆ is the equality relation =.
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Iteration

Rα∗ := ∪n≥0Rn
α
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Propositional Dynamic Logic

1. Axioms of propositional logic

2. [α](ϕ→ ψ)→ ([α]ϕ→ [α]ψ)

3. [α ∪ β]ϕ↔ [α]ϕ ∧ [β]ϕ

4. [α; β]ϕ↔ [α][β]ϕ

5. [ψ?]ϕ↔ (ψ→ ϕ)

6. ϕ ∧ [α][α∗]ϕ↔ [α∗]ϕ

7. ϕ ∧ [α∗](ϕ→ [α]ϕ)→ [α∗]ϕ

8. Modus Ponens and Necessitation (for each program α)
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Propositional Dynamic Logic

1. Axioms of propositional logic

2. [α](ϕ→ ψ)→ ([α]ϕ→ [α]ψ)

3. [α ∪ β]ϕ↔ [α]ϕ ∧ [β]ϕ

4. [α; β]ϕ↔ [α][β]ϕ

5. [ψ?]ϕ↔ (ψ→ ϕ)

6. ϕ ∧ [α][α∗]ϕ↔ [α∗]ϕ (Fixed-Point Axiom)

7. ϕ ∧ [α∗](ϕ→ [α]ϕ)→ [α∗]ϕ (Induction Axiom)

8. Modus Ponens and Necessitation (for each program α)
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Actions and Ability

An early approach to interpret PDL as logic of actions was put
forward by Krister Segerberg.

Segerberg adds an “agency” program to the PDL language δA
where A is a formula.

K. Segerberg. Bringing it about. JPL, 1989.
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Actions and Agency

The intended meaning of the program ‘δA ’ is that the agent
“brings it about that A ’: formally, δA is the set of all paths p
such that

1. p is the computation according to some program α, and
2. α only terminates at states in which it is true that A

Interestingly, Segerberg also briefly considers a third condition:

3. p is optimal (in some sense: shortest, maximally efficient,
most convenient, etc.) in the set of computations satisfying
conditions (1) and (2).

The axioms:
1. [δA ]A
2. [δA ]B → ([δB]C → [δA ]C)
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Actions and Agency in Branching Time
Alternative accounts of agency do not include explicit
description of the actions:

t0 t1 t2 t3

· · ·

· · ·
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STIT

I Each node represents a choice point for the agent.

I A history is a maximal branch in the above tree.

I Formulas are interpreted at history moment pairs.

I At each moment there is a choice available to the agent
(partition of the histories through that moment)

I The key modality is [i stit ]ϕ which is intended to mean that
the agent i can “see to it that ϕ is true”.

• [i stit ]ϕ is true at a history moment pair provided the agent
can choose a (set of) branch(es) such that every future
history-moment pair satisfies ϕ
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STIT

We use the modality ‘^’ to mean historic possibility.

^[i stit ]ϕ: “the agent has the ability to bring about ϕ”.
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STIT Model
A STIT models isM = 〈T , <,Choice,V〉 where

I 〈T , <〉: T a set of moments, < a tree-like ordering on T
(irreflexive, transitive, linear-past)

I Let Hist be the set of all histories, and
Ht = {h ∈ Hist | t ∈ h} the histories through t .

I Choice : A× T → ℘(℘(H)) is a function mapping each
agent to a partition of Ht
• Choicet

i , ∅

• K , ∅ for each K ∈ Choicet
i

• For all t and mappings st : A→ ℘(Ht ) such that
st (i) ∈ Choicet

i , we have
⋂

i∈A st (i) , ∅

I V : At→ ℘(T × Hist) is a valuation function assigning to
each atomic proposition
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Many Agents
The previous model assumes there is one agent that “controls”
the transition system.

What if there is more than one agent?
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STIT Language

ϕ = p | ¬ϕ | ϕ ∧ ψ | [i stit ]ϕ | [i dstit : ϕ] | �ϕ

I M, t/h |= p iff t/h ∈ V(p)

I M, t/h |= ¬ϕ iffM, t/h 6|= ϕ

I M, t/h |= ϕ ∧ ψ iffM, t/h |= ϕ andM, t/h |= ψ

I M, t/h |= �ϕ iffM, t/h′ |= ϕ for all h′ ∈ Ht

I M, t/h |= [i stit ]ϕ iffM, t/h′ |= ϕ for all h′ ∈ Choicet
i (h)

I M, t/h |= [i dstit ]ϕ iffM, t/h′ |= ϕ for all h′ ∈ Choicet
i (h)

and there is a h′′ ∈ Ht such thatM, t/h |= ¬ϕ
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STIT: Example

The following are false: A → ^[stit ]A and
^[stit ](A ∨ B)→ ^[stit ]A ∨^[stit ]B.

h1 h2 h3

K1 K2

A
¬B

¬A
B

¬A
¬B

t

J. Horty. Agency and Deontic Logic. 2001.

Eric Pacuit 103



STIT: Axiomatics
I S5 for �: �(ϕ→ ψ)→ (�ϕ→ �ψ), �ϕ→ ϕ, �ϕ→ ��ϕ,
¬�ϕ→ �¬�ϕ

I S5 for [i stit ]: [i stit ](ϕ→ ψ)→ ([i stit ]ϕ→ [i stit ]ψ),
[i stit ]ϕ→ ϕ, [i stit ]ϕ→ [i stit ][i stit ]ϕ,
¬[i stit ]ϕ→ [i stit ]¬[i stit ]ϕ

I �ϕ→ [i stit ]ϕ

I (
∧

i∈A^[i stit ]ϕi)→ ^(
∧

i∈A[i stit ]ϕi)

I Modus Ponens and Necessitation for �

M. Xu. Axioms for deliberative STIT. Journal of Philosophical Logic,
Volume 27, pp. 505 - 552, 1998.

P. Balbiani, A. Herzig and N. Troquard. Alternative axiomatics and
complexity of deliberative STIT theories. Journal of Philosophical
Logic, 37:4, pp. 387 - 406, 2008.
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Recap: Logics of Action and Ability

I Fϕ: ϕ is true at some moment in the future

I ∃Fϕ: there is a history where ϕ is true some moment in
the future

I [α]ϕ: after doing action α, ϕ is true

I [δϕ]ψ: after bringing about ϕ, ψ is true

I [i stit ]ϕ: the agent can “see to it that” ϕ is true

I ^[i stit ]ϕ: the agent has the ability to bring about ϕ
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Epistemizing logics of action and ability
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Knowledge, action, abilities

A. Herzig. Logics of knowledge and action: critical analysis and chal-
lenges. Autonomous Agent and Multi-Agent Systems, 2014.

J. Broeresen, A. Herzig and N. Troquard. What groups do, can do
and know they can do: An analysis in normal modal logics. Journal of
Applied and Non-Classical Logics, 19:3, pgs. 261 - 289, 2009.

W. van der Hoek and M. Wooldridge. Cooperation, knowledge and
time: Alternating-time temporal epistemic logic and its applications.
Studia Logica, 75, pgs. 125 - 157, 2003.
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Epistemic stit model

〈Tree, <,Agent ,Choice , {∼α}α∈Agent ,V〉
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m1

m2 m3

A

h1

¬A

h2

¬A

h3

A

h4

m/h denotes (m,h) with
m ∈ h is called an index

Hm = {h | m ∈ h}
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Epistemic stit model

〈Tree, <,Agent ,Choice , {∼α}α∈Agent ,V〉

m1 K1 K2

m2 K3 K4
m3K5 K6

A

h1

¬A

h2

¬A

h3

A

h4
For α ∈ Agent , Choicem

α is a
partition on Hm

Choicem
α (h) is the particular

action at m that contains h
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m1 K1 K2

m2 K3 K4
m3K5 K6
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h1

¬A

h2

¬A

h3

A

h4

V assigns sets of indices to
atomic propositions.

m2/h1 |= A m2/h2 6|= A

Eric Pacuit 108



Epistemic stit model

〈Tree, <,Agent ,Choice , {∼α}α∈Agent ,V〉

m1 K1 K2

m2 K3 K4
m3K5 K6

A

h1

¬A

h2

¬A

h3

A

h4
∼α is an (equivalence) rela-
tion on indices

m/h ∼α m′/h′: everything
α knows at m/h is true at
m′/h′, α cannot distinguish
m/h and m′/h′, . . .
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m
K1 K2

m2K3 K4

I M,m/h |= �A if and only ifM,m/h′ |= A for all h′ ∈ Hm,

M,m/h |= [α stit: A ] if and only if Choicem
α (h) ⊆ |A |m

M
,

M,m/h |= KαA if and only if, for all m′/h′, if m/h ∼α m′/h′,
thenM,m′/h′ |= A
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Action labels

Let Type = {τ1, τ2, . . . , τn} be a set of action types—general
kinds of action, as opposed to the concrete action tokens.

An action type τ is interpreted as a partial function mapping
each agent α and moment m into the particular action token
[τ]mα that results when τ is executed by α at m (so,
[τ]mα ∈ Choicem

α )

Eric Pacuit 110



Labeled stit frames

〈Tree, <,Agent ,Choice , {∼α}α∈Agent ,Type ,Label,V〉,

Label maps each action token K ∈ Choicem
α to a particular

action type Label(K) ∈ Type .

1. If K ∈ Choicem
α , then [Label(K)]mα = K ,

2. If τ ∈ Type and [τ]mα is defined, then Label([τ]mα ) = τ.

Typem
α = {Label(K) : K ∈ Choicem

α }

Typem
α (h) = Label(Choicem

α (h))
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Frame properties

I If m/h ∼α m′/h′, then m/h′′ ∼α m′/h′′′ for each h′′ ∈ Hm

and h′′′ ∈ Hm′ .

I For all m/h, Knowα(m/h) ⊆ Hm.

I If m/h ∼α m′/h′, then Typem
α = Typem′

α .

I If m/h ∼α m′/h′, then Typem
α (h) = Typem′

α (h′).
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kstit

I M,m/h |= [α kstit: A ] if and only if [Typem
α (h)]m

′

α ⊆ |A |m
′

M
for

all m′/h′ such that m′/h′ ∼α m/h.
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kstit

m
K1 K2

m2K3 K4

τ

I M,m/h |= [α kstit: A ] if and only if [Typem
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α ⊆ |A |m
′

M
for

all m′/h′ such that m′/h′ ∼α m/h.
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Causal vs. epistemic ability

^[α stit: A ]

Kα^[α stit: A ]

^Kα[α stit: A ]

^[α kstit: A ]
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Causal vs. epistemic ability

m1 K1 K2

m2 K3 K4
m3K5 K6

A

h1

¬A

h2

¬A

h3

A

h4

^[α stit: A ] is settled true at m2
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Ex ante vs. ex interim knowledge

I M,m/h |= KαA if and only if, for all m′/h′, if m/h ∼α m′/h′,
thenM,m′/h′ |= A

I M,m/h |= Kact
α A if and only if, for all m′/h′, if

m/h ∼α m′/h′ and h′ ∈ [Typem
α (h)]m

′

α ,M,m′/h′ |= A
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Discussion

I Language/validities

�A ⊃ [α stit: A ]
Kα�A ⊃ [α kstit: A ]
[α kstit: A ] ≡ Kact

α [α stit: A ]
. . .

I What do the agents know vs. What do the agents know
given what they are doing.

I Equivalence between labeled stit models (cf. Thompson
transformations specifying when two imperfect information
games reduce to the same Normal form)
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