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Basic modal language: ϕ := p | ¬ϕ | (ϕ ∧ ψ) | �ϕ
where p ∈ At

Frame: M = 〈W ,R〉 where W , ∅ and R ⊆W ×W

Model: M = 〈W ,R ,V〉 where 〈W ,R〉 is a frame and
V : At→ ℘(W)

Truth:
I M,w |= p iff w ∈ V(p)

I M,w |= ¬ϕ iffM,w 6|= ϕ

I M,w |= ϕ ∧ ψ iffM,w |= ϕ andM,w |= ψ

I M,w |= �ϕ iff for all v ∈W , if wRv, thenM, v |= ϕ
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I M,w |= ϕ ∨ ψ iffM,w |= ϕ orM,w |= ψ

I M,w |= ϕ→ ψ iff ifM,w |= ϕ thenM,w |= ψ

I M,w |= ^ϕ iff there is a v ∈W such that wRv and
M, v |= ϕ

[[·]]M : L → ℘(W), where for all ϕ ∈ L, [[ϕ]]M = {v | M, v |= ϕ}
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Alternative Semantics

I General frames/models: 〈W ,R ,A〉 where 〈W ,R〉 is a
frame, and A ⊆ ℘(W) is a BAO: Boolean algebra closed
under the operator m : ℘(W)→ ℘(W): where for all X ,
m(X) = {v | R(v) ⊆ X }.

A general model is a structure 〈W ,R ,A,V〉, where
〈W ,R ,A〉 is a general frame and for all p ∈ At, V(p) ∈ A.

I Neighborhood semantics: 〈W ,N,V〉 where
N : W → ℘(℘(W))

M,w |= �ϕ iff [[ϕ]]M = {v | M, v |= ϕ} ∈ N(w)
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Language Extensions

I Multiple modalities: M = 〈W ,R1, . . . ,Rn,V〉 where each
i = 1, . . . ,n, Ri ⊆W ×W

M,w |= �iϕ iff for all v ∈W , if wRiv, thenM, v |= ϕ.

I Converse modality: M = 〈W ,R ,V〉

M,w |= �←ϕ iff for all v ∈W , if vRw, thenM, v |= ϕ.
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Language Extensions

I Universal modality: M = 〈W ,R ,V〉

M,w |= Aϕ iff for all v ∈W ,M, v |= ϕ.

I Difference modality: M = 〈W ,R ,V〉

M,w |= Dϕ iff for all v ∈W , if w , v, thenM, v |= ϕ.
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Language Extensions

I Reflexive Transitive Closure: M = 〈W ,R ,V〉

M,w |= �∗ϕ iff for all v ∈W , if wR∗v, thenM, v |= ϕ,
where R∗ is the reflexive transitive closure of R

I Common knowledge/belief: M = 〈W ,R1, . . . ,Rn,V〉

M,w |= �∗ϕ iff for all v ∈W , if w(
⋃

i Ri)
∗v, thenM, v |= ϕ

I Distributed knowledge/belief: M = 〈W ,R1, . . . ,Rn,V〉

M,w |= [∩]ϕ iff for all v ∈W , if wR∩v, thenM, v |= ϕ,
where R∩ =

⋂
i Ri
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Suppose that At is a set of atomic propositions and W , ∅ is
a set of possible worlds

Propositional Valuations: Each possible world is a total function
assigning truth values to atomic propositions

I V : At→ ℘(W)

I V : At ×W → {F ,T }

I Each possible world is a total function assigning truth
values to atomic propositions

I Bivalent: two truth values
I Different possible worlds may be associated with the same

propositional valuation
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Many-valued modal logic
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Truth Values: Suppose that T is a finite lattice. Its members
are referred to as truth values. The lattice ordering is denoted
≤, and the meet and join operations by ∧ and ∨. The bottom
and the top of T are denoted F and T respectively, and it is
assumed that F , T .

Language: The propositional language LT0 includes atomic
propositions (including truth value constants for each element
of T ); and is closed under conjunction (∧), disjunction (∨) and
implication (→).

Valuation: A valuation is a mapping from the atomic formulas
of LT0 to T that maps each member of T to itself.
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A valuation v is extended to all formulas in the obvious way:

I v(ϕ ∧ ψ) = v(ϕ) ∧ v(ψ)

I v(ϕ ∨ ψ) = v(ϕ) ∨ v(ψ)

To deal with implications:

I v(ϕ→ ψ) = T iff v(ϕ) ≤ v(ψ)

I If implications are nested (e.g., ϕ→ (ψ→ χ)), additional
structure beyond a lattice is needed

I Import/Export: (ϕ ∧ ψ)→ χ⇔ (ϕ→ (ψ→ χ))

I An element c ∈ T is the pseudo-complement of a relative
to b if c is the greatest member of T such that a ∧ c ≤ b. If
the pseudo-complement of a relative to b exists, it is
denoted by a ⇒ b; Then, v(ϕ→ ψ) = v(ϕ)⇒ v(ψ)

I V(¬ϕ) = V(ϕ)⇒ F

Eric Pacuit 11



A valuation v is extended to all formulas in the obvious way:

I v(ϕ ∧ ψ) = v(ϕ) ∧ v(ψ)

I v(ϕ ∨ ψ) = v(ϕ) ∨ v(ψ)

To deal with implications:

I v(ϕ→ ψ) = T iff v(ϕ) ≤ v(ψ)

I If implications are nested (e.g., ϕ→ (ψ→ χ)), additional
structure beyond a lattice is needed

I Import/Export: (ϕ ∧ ψ)→ χ⇔ (ϕ→ (ψ→ χ))

I An element c ∈ T is the pseudo-complement of a relative
to b if c is the greatest member of T such that a ∧ c ≤ b. If
the pseudo-complement of a relative to b exists, it is
denoted by a ⇒ b; Then, v(ϕ→ ψ) = v(ϕ)⇒ v(ψ)

I V(¬ϕ) = V(ϕ)⇒ F

Eric Pacuit 11



A valuation v is extended to all formulas in the obvious way:

I v(ϕ ∧ ψ) = v(ϕ) ∧ v(ψ)

I v(ϕ ∨ ψ) = v(ϕ) ∨ v(ψ)

To deal with implications:

I v(ϕ→ ψ) = T iff v(ϕ) ≤ v(ψ)

I If implications are nested (e.g., ϕ→ (ψ→ χ)), additional
structure beyond a lattice is needed

I Import/Export: (ϕ ∧ ψ)→ χ⇔ (ϕ→ (ψ→ χ))

I An element c ∈ T is the pseudo-complement of a relative
to b if c is the greatest member of T such that a ∧ c ≤ b. If
the pseudo-complement of a relative to b exists, it is
denoted by a ⇒ b; Then, v(ϕ→ ψ) = v(ϕ)⇒ v(ψ)

I V(¬ϕ) = V(ϕ)⇒ F

Eric Pacuit 11



A valuation v is extended to all formulas in the obvious way:

I v(ϕ ∧ ψ) = v(ϕ) ∧ v(ψ)

I v(ϕ ∨ ψ) = v(ϕ) ∨ v(ψ)

To deal with implications:

I v(ϕ→ ψ) = T iff v(ϕ) ≤ v(ψ)

I If implications are nested (e.g., ϕ→ (ψ→ χ)), additional
structure beyond a lattice is needed

I Import/Export: (ϕ ∧ ψ)→ χ⇔ (ϕ→ (ψ→ χ))

I An element c ∈ T is the pseudo-complement of a relative
to b if c is the greatest member of T such that a ∧ c ≤ b. If
the pseudo-complement of a relative to b exists, it is
denoted by a ⇒ b; Then, v(ϕ→ ψ) = v(ϕ)⇒ v(ψ)

I V(¬ϕ) = V(ϕ)⇒ F

Eric Pacuit 11



A valuation v is extended to all formulas in the obvious way:

I v(ϕ ∧ ψ) = v(ϕ) ∧ v(ψ)

I v(ϕ ∨ ψ) = v(ϕ) ∨ v(ψ)

To deal with implications:

I v(ϕ→ ψ) = T iff v(ϕ) ≤ v(ψ)

I If implications are nested (e.g., ϕ→ (ψ→ χ)), additional
structure beyond a lattice is needed

I Import/Export: (ϕ ∧ ψ)→ χ⇔ (ϕ→ (ψ→ χ))

I An element c ∈ T is the pseudo-complement of a relative
to b if c is the greatest member of T such that a ∧ c ≤ b. If
the pseudo-complement of a relative to b exists, it is
denoted by a ⇒ b; Then, v(ϕ→ ψ) = v(ϕ)⇒ v(ψ)

I V(¬ϕ) = V(ϕ)⇒ F

Eric Pacuit 11



A binary modal model is a structure 〈W ,R , v〉 where W , ∅,
R ⊆W ×W and V : (At ∪ T )→ T such that for t ∈ T and
w ∈W , V(w, t) = t .

V(w,�ϕ) =
∧
{V(v , ϕ) | v ∈ R(w)}

V(w,^ϕ) =
∨
{V(v , ϕ) | v ∈ R(w)}
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Binary Necessitation Rule

Suppose that t1, . . . , tn, t ∈ T and ϕ1, . . . , ϕn, ψ are formulas

t1 → ϕ1, . . . , tn → ϕn ⇒ t → ψ
t1 → �ϕ1, . . . , tn → �ϕn ⇒ t → �ψ
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A T -modal model is a structure 〈W ,R ,V〉, where W , ∅,
R : W ×W → T and V : (At ∪ T )→ T such that for t ∈ T and
w ∈W , V(w, t) = t .

V(w,�ϕ) =
∧
{R(w,w′)⇒ V(w′, ϕ) | w′ ∈W }

V(w,^ϕ) =
∨
{R(w,w′) ∧ V(w′, ϕ) | w′ ∈W }
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A formula ϕ is valid in a T -modal model 〈W ,R ,V〉 if
V(w, ϕ) = T for all w ∈W .

I �(ϕ→ ψ)→ (�ϕ→ �ψ) is T -valid.
I �ϕ↔ ¬^¬ϕ is not valid
I (t → �ϕ)↔ �(t → ϕ) is T -valid
I (^ϕ→ t)↔ �(ϕ→ t) is T -valid

Note that when t = F , the last item means that
¬^ϕ↔ �¬ϕ and ¬^¬ϕ↔ �¬¬ϕ are valid.
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M. Fitting. Many-valued modal logics. Fundamenta Informaticae ,
15:235 - 254, 1991.

M. Fitting. Many-valued modal logics, II. Fundamenta Informaticae ,
17:55 - 73, 1992.

M. Fitting. Bisimulations and Boolean Vectors. in Advances in Modal
Logic 4, pp. 97 - 125, King’s College Publications, 2003.
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From worlds to possibilities
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I. L. Humberstone. From Worlds to Possibilities. Journal of Philosoph-
ical Logic, 10(3), pp. 313 - 339, 1981.
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Temporal Logic: Instants vs. Intervals

”...instants or moments of time are replaced by intervals or
periods of time as the temporal entities with respect to which
formulae are evaluated for truth. Here an interval is taken as an
entity sui generis, rather than as a set of moments of time...”

“...instants are limits of nested sequences of subintervals, and
talk which takes them too seriously is diagnosed as involving
what has been called the ‘infinitieth term’ fallacy. The only
temporal entities robust enough for talk of truth with respect to
them to be primitively intelligible...are intervals, and the salient
fact about interval sub-division is that it is a process which does
not terminate.”
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Possibilities

Goal: develop a semantics for modal logic...

“...in which less determinate entities than possible worlds,
things which I am inclined for want of a better word to call
simply possibilities, are what sentences (or fomulae) are true or
false with respect to.

Our entrée into the realm of the possible,
one might say, is though imagining and story-telling about how
things might be, considering what might happen under
hypothetical circumstances, entertaining a counterfactual
supposition, and so on; but each such introduction into that
realm presents us what I called...a region of logical space, and
not with a point thereof.”
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D Edgington. The Paradox of Knowability. Mind, 94(376), pp. 557-
568, 1985.
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The Knowability Paradox

1. If ‘p’ is true, then it is logically possible that it is known (by
someone at some time) that p.

ϕ→ ^Kϕ

2. There is at least one truth which is never known.

p ∧ ¬Kp

3. (p ∧ ¬Kp)→ ^K(p ∧ ¬Kp)

4. K(p ∧ ¬Kp)→ (Kp ∧ K¬Kp)

5. (Kp ∧ K¬Kp)→ (Kp ∧ ¬Kp)

6. ^K(p ∧ ¬Kp)→ ^(Kp ∧ ¬Kp)

7. (p ∧ ¬Kp)→ ^(Kp ∧ ¬Kp)

8. (p ∧ ¬Kp)→ ⊥
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“I shall argue that an analogous solution can be given to the
original paradox, in terms of the modal operator ‘actually’....I
shall show that the solution is consistent, makes philosophical
sense, and does not violate verificationist scruple”

1’ For any actual truth, it is possible to know that it is actually
true

2’ There is something which is actually true and not known to
be true

“ Three assumptions are needed. If the verificationist can
accept these assumptions, he can avail himself of this way out
of the paradox.”

Eric Pacuit 23



“The third assumption is that we can understand talk about
possibilities, or possible situations, in the following sense.

I am
about to throw a die. There are six possibilities regarding how it
lands, one of which will be actual. There were three candidates
for a job. There were three possibilities, one of which came
about. Possibilities differ from possible worlds in leaving many
details unspecified. In my first example, I am counting the
possibility that the die land six-up as one possibility. There are
indefinitely many possible worlds compatible with this one
possibility-which vary not only in the precise location and
orientation of the landed die, but also as to whether it is raining
in China at the time, or at any other time, and so on ad
infinitum.”
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“...possible worlds are far too idealized to figure in our ordinary
modal talk. When I think of the possibility that I will finish the
paper today, I am not thinking of one totally specific possible
world. It is not the sort of thing I am capable of thinking of. It,
itself, seems to violate the principle of knowability. Nor am I
thinking of a large class of possible worlds in which I finish the
paper. I am thinking of a possibility or a possible situation,
which I can refine, or subdivide, into more specific possible
situations if I wish, but which will never reach total specificity.”
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I. Rumfitt. On A Neglected Path to Intuitionism. Topoi, 31(1), pp. 101
- 109, 2012.
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Intuitionistic Logic

The Law of Exclusive Middle, ϕ ∨ ¬ϕ, is not intuitionisitically
valid.

“According to W. V. Quine, in any disagreement over basic
logical laws the contesting parties mean different things by the
connectives or quantifiers implicated in those laws. ‘Whoever
denies the law of excluded middle changes the subject? In
repudiating ‘p or ∼ p’ he is [...] giving up classical negation, or
perhaps alternation, or both’ (Quine 1986, 83)...In this paper, I
shall refute Quine by showing that classical and intuitionist
logicians need not attach different senses to the connectives.”
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“when a conclusion follows from some premisses, there is no
possibility of the premisses being true without the conclusion
being true.

If we try to develop this thought within the prevailing theory of
modality, however, we encounter a problem.

That theory represents a possibility, such as my being in Pisa
today, as a set of possible worlds—fully determinate ways in
which the entire cosmos could have been. The notion of full
determinacy needs explanation, but possible-worlds theorists
give it cash value by postulating that, for any statement and any
world, the statement is either true at that world or false there.
That is, they give it content precisely by postulating the
necessary truth of Bivalence. In the present dialectical context,
that cannot be assumed, so our theory of consequence cannot
invoke possible worlds.”
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W. Holliday. Possibility Frames and Forcing for Modal Logic. Technical
report, 2018.
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Posets and Relations

A poset 〈S ,v〉 where S is a set and v is a reflexive and
transitive relation on S.

For x , y ∈ S:

1. ↓x = {y ∈ S | y v x}
2. x () y iff ∃z ∈ S : z v x and z v y

“x and y are compatible”
3. x ⊥ y iff not x () y

“x and y are incompatible”
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Posets and Relations

For a binary relation R ⊆ S × S and X ⊆ S, and x ∈ S:
1. R[X ] is the image of X under R, i.e.,

R[X ] = {y ∈ S | ∃x ∈ X : xRy}
2. R−1[X ] is the preimage of X under R, i.e.,

R−1[X ] = {y ∈ S | ∃x ∈ X : yRx}
3. R(x) = R[{x}]
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A partial-state frame is a tuple F = 〈S ,R ,v,P〉 where

1. S is a nonempty set (the set of states)
2. v is a partial order on S (the refinement relation)
3. R is a binary relation on S (the accessibility relation —

possibly more than one)
4. P is a subset of ℘(S) such that ∅ ∈ P and for all X ,Y ∈ P:

4.1 X ∩ Y ∈ P
4.2 X ⊃ Y = {s ∈ S | ∀s′ v s : s′ ∈ X ⇒ s′ ∈ Y } ∈∈ P
4.3 �Y = {s ∈ S | R(s) ⊆ Y } ∈ P

A model is a tuple 〈F , π〉 where π : At→ P.
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x v y means that the state x is a refinement or further
specification or extension of the state y
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Suppose thatM = 〈S ,R ,v,P, π〉 is a partial-state model with
x ∈ S:

I M, x |= p iff x ∈ π(p)

I M, x |= ¬ϕ iff ∀x′ v x,M, x′ 6|= ϕ

I M, x |= ϕ ∧ ψ iffM, x |= ϕ andM, x |= ψ

I M, x |= ϕ→ ψ iff ∀x′ v x, ifM, x′ |= ϕ thenM, x′ |= ψ

I M, x |= �ϕ iff ∀y ∈ R(x),M, y |= ϕ

Fact: Given ϕ ∨ ψ := ¬(¬ϕ ∧ ¬ψ),

M, x |= ϕ ∨ ψ iff ∀x′ v x ∃x′′ v x′,M, x′′ |= ϕ orM, x′′ |= ψ
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Suppose that F = 〈S ,R ,v,P〉 is a partial-state frame and
M = 〈F , π〉 a partial-state model:

1. [[p]]M = π(p)

2. [[¬ϕ]]M = [[ϕ]]M ⊃ [[∅]]M

3. [[ϕ ∧ ψ]]M = [[ϕ]]M ∩ [[ψ]]M

4. [[ϕ→ ψ]]M = [[ϕ]]M ⊃ [[ψ]]M

5. [[�ϕ]]M = �[[ϕ]]M

I For any formula ϕ ∈ L, [[ϕ]]M ∈ P
I The set of formulas valid over F is closed under uniform

substitution
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World Frames

A relational frame 〈W ,R〉 can be regarded as a partial-frame
〈W ,R ,v,P〉 where

1. v is the identity relation
2. P = ℘(W)

A general relational frame 〈W ,R ,A〉 can be regarded as a
partial-frame 〈W ,R ,v,A〉 where

1. v is the identity relation

Fact. The definition of truth for Boolean connectives reduces to
the standard definition on world frames.
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Intuitionistic Modal Frames

A full intuitionistic modal frame is a partial-state frame
F = 〈S ,R ,v,P〉 satisfying:

1. up-R: if x′ v x and x′Ry′, then xRy′

2. R-down: if y′ v y and xRy, then xRy′

3. P is the set of all downsets in 〈S ,v〉

Persistence: IfM, x |= ϕ and x′ v x, thenM, x′ |= ϕ.
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up-R

If x′ v x and x′Ry′, then xRy′.
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R-down

If y′ v y and xRy, then xRy′
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R-down
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Since truth sets of all formulas are downsets, we have that
ϕ→ (ψ→ ϕ) is intuitionistically valid.

Intuitionistic Disjunction:

M, x |= ϕ g ψ iffM, x |= ϕ orM, x |= ψ
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Powerset Possibilization

Given a world frame F = 〈W ,R ,A〉 and a world model
M = 〈F,V〉, the powerset possibilization are F℘ = 〈S ,v,R ,P〉
andM℘ = 〈F℘, π〉, defined as follows:

1. S = ℘(W) − ∅

2. X v Y iff X ⊆ Y
3. XRY iff Y ⊆ R[X ]

4. P = {↓X | X ∈ A }
5. π(p) = {X ∈ S | X ⊆ V(p)}
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Fact.

1. For any X ∈M℘ and ϕ ∈ L,M℘,X |= ϕ iff ∀x ∈M,
M, x |= ϕ

2. For any set of formulas Σ, Σ is satisfiable over F℘ iff Σ is
satisfiable over F

Corollary. K is sound with respect to the class of all powerset
possibilizations of world frames and complete with respect to
the class of powerset possibilizations of full world frames.

Moreover, any normal modal logic that is sound and complete
with respect to a class F of world frames, according to standard
Kripke semantics, is also sound and complete with respect to
the class of powerset possibilizations of frames from F,
according to partial-state semantics.
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Possibility frames
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Note that ϕ↔ ¬¬ϕ is not valid on partial-state frames.
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¬¬ϕ→ ϕ:

Refinability: IfM, x 6|= ϕ then there is a x′ v x such that
M, x′ |= ¬ϕ

If ϕ is indeterminate at x, i.e., ifM, x 6|= ϕ andM, x 6|= ¬ϕ, then
there is a refinement of x that decides ϕ negatively and there is
a refinement of x that decides ϕ affirmatively.

Indeterminacy of ϕ is equivalent to having refinements that
decide ϕ each way.

ϕ→ ¬¬ϕ:

Persistence: ifM, x |= ϕ and x′ v x, thenM, x′ |= ϕ.
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In classical partial-state frames, every admissible proposition
X ∈ P will satisfy:

I Persistence: if x ∈ X and x′ v x, then x′ ∈ X
I Refinability: if x < X then ∃x′ v x ∀x′′ v x′ : x′′ < X

In intuitionistic models, the admissible propositions are all the
downsets, but in classical models, the admissible propositions
are all downsets that also satisfy admissibility.

X satisfies both persistence and refinability is equivalent to X
satisfying:

x ∈ X iff ∀x′ v x′ ∃x′′ v x′ : x′′ ∈ X
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Proposition. The conditions of persistence and refinability on
admissible propositions are necessary and sufficient for a
partial-state frame to be classical.

I Every state x belongs to a chain x0 w x1 w · · · that decides
the truth value of every formula eventually: For all ϕ, there
is k ∈N such thatM, xk |= ϕ orM, xk |= ¬ϕ.

I Lemma. Fix a language with countably many propositional
variables. If F = 〈S ,R ,v,P〉 is a partial-state frame in
which every X ∈ P satisfies persistence and refinability,
and if α is a propositional tautology, then α is valid over F .
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Let O(S ,v) be the set of all downsets in 〈S ,v〉.

〈S ,O(S ,v)〉 is a topology (the downset, or Alexandrov,
topology).

Interior: int(X) is the largest downset included in X
Closure: cl(X) is the smallest upset that includes X

[[¬ϕ]]M = int(S − [[ϕ]]M)
[[ϕ→ ψ]]M = int((S − [[ϕ]]M) ∪ [[ψ]]M)
[[ϕ ∨ ψ]]M = int(cl([[ϕ]]M ∪ [[ψ]]M))

A set X is regular open of X = int(cl(X)).
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Fact. For any topological space 〈S ,O〉, the structure
〈RO(S),∧,−,>〉 where

RO(S) is the set of all regular open sets in the topology,
X ∧ Y = X ∩ Y , −X = int(S − X), and > = S

is a complete Boolean algebra with

for all X ⊆ R(S),
∧
X = int(

⋂
X) and

∨
X = int(cl(

⋃
X)).
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Lemma. For any poset 〈S ,v〉 and X ⊆ S:

1. int(cl(X)) = {x ∈ S | ∀x′ v x ∃x′′ v x′ : x′′ ∈ X }
2. int(cl(⇓X)) is the smallest regular open set that includes

X , where ⇓X = {y ∈ S | ∃x ∈ X : y v x}
3. X satisfies persistence and refinability iff X is regular open

in O(S ,v)
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Proposition For any partial-state frame F = 〈S ,v,R ,P〉 the
following are equivalent:

1. the set of ϕ ∈ L valid over F is a classical normal modal
logic;

2. for every ϕ ∈ L, ¬¬ϕ is equivalent to ϕ over F ; and
3. P ⊆ RO(F )

Definition. A possibility frame is a partial-state frame
F = 〈S ,v,R ,P〉 in which P ⊆ RO(F ). A full possibility frame is
a possibility frame in which P = RO(F )
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An important property of a full possibility frame F is that
RO(F ) is closed under �.

This is not trivial, for there are possibility frames F that lack the
property.

By contrast, it is easy to check that for any F , RO(F ) is closed
under ∩ and ⊃.

The fact that not every possibility frame is such that RO(F ) is
closed under � means that not every possibility frame can be
turned into a full possibility frame simply by replacing its set of
admissible propositions P by RO(F ).
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For any poset 〈S ,v〉 and binary relation R on S the following
are equivalent:

1. RO(S ,v) is closed under �
2. R and v and satisfy:

2.1 R-rule: if x′ v x and x′ R y′ () z, then ∃y : x R y () z
2.2 R⇒win: if xRy, then
∀y′ v y ∃x′ v x ∀x′′ v x′∃y′′ () y′ : x′′Ry′′

I If F satisfies R-rule, then F satisfies up-R
I If F satisfies down-R, then R⇒win is equivalent with:

R-refinability: if xRy then ∃x′ v x ∀x′′ v x′ ∃y′ v y : x′′Ry′
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if xRy then ∃x′ v x ∀x′′ v x′ ∃y′ v y : x′′Ry′.
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The are full possibility frames F that validate a modal formula
that is not valid on any Kripke frame. Thus, the logic of F will
be a normal modal logic that is Kripke-frame inconsistent—it is
not sound with respect to any Kripke frame.
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Suppose that ϕ and ψ for formulas such that the propositional
variable p does not occur in ψ. The consider the following
formula:

split ^i(p ∧ ψ)→ (^i(p ∧ ϕ) ∧^i(p ∧ ¬ϕ))

Any Kripke frame F that validates split must also validate ¬^iψ.

Worlds cannot split, but possibilities can: There is a full
possibility frames that validates and instance of split and ^iψ.
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There are three approaches to valuation functions in the
literature on possibility semantics.

The approach followed here: a valuation is a total function
π : At→ ℘(S) such that π(p) satisfies persistence and
refinability.

x ∈ π(p) means that x determines that p si true and x < π(p)
means that x does not determine that p is true, i.e., that either
x determines that p is false or x does not determine the truth or
falsity of p.
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Partial Valuations

A valuation is a partial function V : At × S → {0,1} satisfying
stability and resolution:

1. stability V(p, x) is defined and x′ v x, then V(p, x′) is
defined and V(p, x) = V(p, x′)

2. resolution: if V(p, x) is undefined, then there are y v x and
z v x such that V(p, y) = 1 and V(p, z) = 0.

V(p, x) = 1 means that x determines that p is true; V(p, x) = 0
means that x determines that p is false; V(p, x) being
undefined means that x does not determine the truth or falsity
of p.
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Total Valuations

U : At × S → 0,1 is a total function such that
{x ∈ S | U(p, x) = 1} satisfies persistence and refinability in the
sense of this paper; U(p, x) = 1 means that x determines that
p is true; U(p, x) = 0 means that x does not determine that p is
true.
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M. Harrison-Trainor. Worldization of Possibility Models. manuscript,
2018.
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From possibilities to worlds

“[T]he business of making a possibility more determinate
seems openended. There are possibilities that the child at
home should be a boy, a six-year-old boy, a six-year-old boy
with blue eyes, a six-year old boy with blue eyes who weighs 3
stone, and so forth. So far from terminating in a fully
determinate possibility, we seem to have an indefinitely long
sequence of increasingly determinate possibilities, any one of
which is open to further determination. But then, so far from
conceiving of our rational activities as discriminating between
regions of determinate points, we appear to have no clear
conception of such a point at all. ”

I. Rumfitt. The Boundary Stones of Thought: An Essay in the Philoso-
phy of Logic. Oxford University Press, 2015.
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Theorem (Harrison-Trainor). LetM be a countable possibility
model in a countable language. Then there is a Kripke model
K which is a worldization ofM.

Note: there are counterexamples ifM is not countable or the
language is not countable.
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