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From Propositional to First Order Modal Logic

“[W]hat is first-order modal logic for? What do quantifiers add to
the mix?

Motivations based on natural language and
philosophy are still central, though we have a much richer
variety of things we can potentially formalize and investigate. Of
course we want a semantics that agrees with our intuitive
understanding, but now intuitions can, and do, differ
substantially from person to person. Are designators rigid? Can
objects exist in more than one possible world? Should there be
a distinction between identity and necessary identity? And for
that matter, is the whole subject a mistake from the beginning,
as Quine would have it? Rather than a semantics on which we
all generally agree, quite a disparate range has been proposed.
We are still exploring what first-order modal semantics should
be; the propositional case was settled long ago.”
asdf fadf (Fitting, pg. 1, First Order Intensional Logic)
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First Order Modal Language

LetV be a set of variables and C a set of constants.

A term is any variable or constant: T =V∪C (we may also
use function symbols)

Let Pred be a set of predicate symbols. A formula is
constructed by any

ϕ := t1 = t2 | P(t1, . . . , tn) | ¬ϕ | (ϕ∧ϕ) | �ϕ |^ϕ | (∀x)ϕ | (∃x)ϕ

where P ∈ Pred of arity n, ti ∈ T for i = 1, . . . ,n and x ∈ V

(Sometimes equality is not in the language)
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I ∀x�P(x) ∃x^P(x)
I �∀xP(x) ^∃xP(x)

I ∃x�P(x)
I �∃xP(x)

I �∀xϕ(x)→ ∀x�ϕ(x)
I ∀x�ϕ(x)→ �∀xϕ(x)

I (x = y)→ �(x = y)
I (x = c)→ �(x = c)
I (x , y)→ �(x , y)
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Constant vs. Varying Domains

A constant domain Kripke frame is a tuple 〈W ,R ,D〉 where
W , ∅ and D are sets, and R ⊆W ×W .

A varying domain Kripke frame is a tuple 〈W ,R ,D〉 where W
is a non-empty set, R ⊆W ×W , and for each w ∈W , D(w) is a
set (the domain at w). Let the domain of the model be
D =

⋃
w∈W D(w).
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Substitutions

Suppose that D is the domain of the model.

A substitution is any function s :V → D (V the set of
variables).

A substitution s′ is said to be an x-variant of s, denoted
s ∼x s′, if for all y ∈ V, if y , x, then s(y) = s′(y).

Eric Pacuit 7



First Order Interpretations

Let D be the domain.

An interpretation I assigns an n-ary relation to each n-ary
predicate symbol and an element of the domain to each
constant symbol:

If P is an n-ary predicate symbol, then I(P) ⊆ Dn

If c is constant, then I(c) ∈ D

If t ∈ T is a term, I is an interpretation and s is a substitution,
then t I,s

∈ D, where t I,s is I(t) if t ∈ C and t I,s is s(t) if t ∈ V
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Interpretation in a Kripke Model

Let D be the domain for a Kripke model with worlds W .

An interpretation I assigns an n-ary relation to each n-ary
predicate symbol and world w and an element of the domain to
each constant symbol and world w:

If P is an n-ary predicate symbol, then I(P,w) ⊆ Dn

If c is constant, then I(c,w) ∈ D

If t ∈ T is a term, I is an interpretation and s is a substitution
and w ∈W , then t I,s,w

∈ D, where t I,s,w is I(t ,w) if t ∈ C and t I,s

is s(t) if t ∈ V
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Truth

LetM = 〈W ,R ,D, I〉 be a (varying/constant) domain Kripke
model:

I M,w |=s t1 = t2 iff t I,s,w
1 = t I,s,w

2

I M,w |=s P(t1, . . . , tn) iff 〈t I,s,w
1 , . . . , t I,s,w

n 〉 ∈ I(P,w)

I M,w |=s ¬ϕ iffM,w 6|=s ϕ

I M,w |=s ϕ ∧ ψ iffM,w |=s ϕ andM,w |=s ψ

Eric Pacuit 10



Varying Domains

LetM = 〈W ,R ,D, I〉 be a varying domain Kripke model:

I M,w |=s �ϕ iff for all v ∈W , if wRv, thenM, v |=s ϕ

I M,w |=s ∀xϕ iff for all s′, if s ∼x s′ and s′(w) ∈ D(w), then
M,w |=s′ ϕ

I Actualist quantification: only quantifying over objects that
exist

I ∀xP(x)→ P(y) is not valid (cf. Free logic)
I Can add possibilist quantifiers
I We can say “y exists”: ∃x(x = y),

“y doesn’t exists”: ¬∃x(x = y),
but we cannot express “there are non-existents”
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Barcan Schemas

I Barcan formula (BF): ∀x�ϕ(x)→ �∀xϕ(x)
I converse Barcan formula (CBF): �∀xϕ(x)→ ∀x�ϕ(x)

Lemma. CBF is valid in a varying domain relational frame iff
the frame is monotonic.

A varying domain is monotonic if for all w, v ∈W , if wRv, then
D(w) ⊆ D(v)

Lemma. BF is valid in a varying domain relational frame iff the
frame is anti-monotonic

A varying domain is anti-monotonic if for all w, v ∈W , if wRv,
then D(v) ⊆ D(w)
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Constant Domain Models

LetM = 〈W ,R ,D, I〉 be a constant domain Kripke model:

I M,w |=s �ϕ iff for all v ∈W , if wRv, thenM, v |=s ϕ

I M,w |=s ∀xϕ iff for all s′, if s ∼x s′, thenM,w |=s′ ϕ

I Possibilist quantification: quantifying over all objects (even
non-existent objects)

I ∀xP(x)→ P(y) is valid
I Can add actualist quantifiers:

• Introduce an existence predicate E (typically assume
I(E,w) , ∅ for all w ∈W and

⋃
w I(E,w) = D)

• ∀
Exϕ := ∀x(E(x)→ ϕ)

• ∃
Exϕ := ∃x(E(x) ∧ ϕ)
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I Since varying domain semantics can be simulated using
constant domain semantics and relativized quantifiers,
from a semantic point of view there is really little point in
studying the varying domain version in much detail.

I Axiomatic systems intended for constant domain systems
have more complex completeness proofs.

I Prefixed tableau systems for constant domain systems are
considerably simpler than the varying domain versions.
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Rigidity

Predicates and constants are not rigid. Their interpretation
changes from world to world.

Substitutions do not depend on worlds, so the interpretation is
of variables is rigid

I (x = y)→ �(x = y) is valid

I (x , y)→ �(x , y) is valid

I How should we interpret ^P(c)? Two possibilities:

• The current interpretation of c has the “Possible-P” property
• there is a possible world such that c (interpreted in that

possible world) has the property P
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M. Fitting. Intensional Logic. Stanford Encyclopedia of Philosophy,
2006. Substantive revision 2015.

M. Fitting. First-order intensional logic. Annals of Pure and Applied
Logic, 127: 171–193, 2004.
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Lewis Counterpart Semantics

A counterpart relation on a set D is a binary relation C whose
domain and codomain is D.

If s and s′ are two valuations in D and C is a counterpart
relation on D, say s′ is a C-counterpart to s provided, for each
variable x, 〈s(x), s′(x)〉 ∈ C

Eric Pacuit 17



Lewis Counterpart Semantics

A Lewis counterpart model is a structureM = W ,R ,D,C , I〉
where everything is as before, except C maps each member of
W ×W to a counterpart relation on D.

The idea is that if 〈d, c〉 ∈ C(w, v), then c is a counterpart in
world v of the object d in world w.

I M,w |=s �ϕ iffM, v |=s′ ϕ for all v ∈ R(w) and every
valuation s′ that is a C(w, v) counterpart of s

I M,w |=s ^ϕ iffM, v |=s′ ϕ for some v ∈ R(w) and some
valuation s′ that is a C(w, v) counterpart of s

Eric Pacuit 18



a bw
I(P,w) = ∅

a bv
I(P,w) = {(a,b), (b ,b)}
M, v |=s P(x , y) M, v |=s′ P(x , y)

Suppose s, s′ are substitutions where:
s(x) = a, s(y) = b and s′(x) = b, s′(y) = b
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“In counterpart semantics, objects are present since they are
what counterpart relations connect, but the counterpart network
is fundamental, and an object, at a world, is actually something
like a slice across that network. The morning star/evening star
object in this world has, in an alternative Babylonian world, two
counterparts, one playing the morning star role, the other the
evening star role....

In counterpart semantics what, exactly, is
the morning star? For that matter, what is the evening star?...
In short, I have a problem identifying the subject matter of this
semantics. Indeed, while the notion of counterpart is
fundamental, there is no way of saying this object and that one
are counterparts in the formal modal language.” (Fitting, pg. 6)
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First Order Intensional Logic

In addition to objects there will be what we call intensions or
intensional objects or concepts.

Typical informal intensions are the morning star, the oldest
person in the world, or simply that.

Intensions designate different objects under different
circumstances—they are non-rigid designators.

They will be modeled by functions from possible worlds to
objects. There will be quantification over intensions, as well as
quantification over objects.

Eric Pacuit 21



An intension f picks out an object at each world.

Given a unary predicate P, P(f) could mean the intension f has
the property P or the object designated by f has the property P.
(Both make sense.)

De Re/De Dicto issues:
I P(f) is true at w if the object picked out by f at w has

property P
I What about ^P(f)?

• (de re) ^P(f) is true at w if the object picked out by f at w
has the property P at an accessible world v

• (de dicto) ^P(f) is true at w if there is an accessible world v
such that the object picked out by f at v has the property P
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Predicate Abstraction

I (de re) ^P(f) is true at w if the object picked out by f at
w has the property P at an accessible world v.

〈λx .^P(x)〉(f)

I (de dicto) ^P(f) is true at w if there is an accessible
world v such that the object picked out by f at v has the
property P.

^〈λx .P(x)〉(f)

Eric Pacuit 23



Lambda Notation

Describing Functions:

I f : R→ R, where for all x ∈ R, f(x) = x2

I x 7→ x2

I λx .x2

Beta Reduction:

I f(3) = 9
I (λx .x2)(3) = 32

Eric Pacuit 24



Propositional modal logic:

[[·]]M : L → ℘(W)

For each formula of first-order modal logic ϕ:

[[ϕ]]M : DV → ℘(W)
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Suppose that the possible worlds are people, and f is the
favorite-book concept picking out, for each person, that
person’s favorite book. And suppose P is intended to be the
is-an-important-concept predicate.

For a person who considers reading important, P(f) will most
likely be true—the concept of a favorite book would be
important for that person.

Let us say Q is intended to be the is-an-important-book
predicate.
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I certainly think 〈λx .Q(x)〉(f) is true—for me it says my favorite
book is an important book (for me).

I would not think 〈λx .�Q(x)〉(f) to be true—for me it says that
my favorite book is an important book for everybody.

On the other hand I probably would think that �〈λx .Q(x)〉(f) is
true—for me it says that everybody thinks their favorite book is
important.
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The King of Sweden could be taller than he is now.

m is an intensional variable selecting the monarch in a world.

^T(m,m): The problem is that the ms should pick out the
monarchs in different worlds.

〈λy .^〈λx .T(x , y)〉(m)〉(m)
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A FOIL model is a structureM = 〈W ,R ,DO ,DI, I〉, where
W , ∅, R ⊆W ×W , DO is a non-empty set of objects, and DI is
a non-empty set of functions from W to DO . Finally, I is an
interpretation assigning to each predicate symbol P a relation
of an appropriate type.

M,w |=s 〈λx .ϕ〉(f) iffM,w |=s′ ϕ where for all y ∈ V, if y , x,
then s′(y) = s(y) and s′(x) = s(f)(w).

Eric Pacuit 29



Valid:
∀x∀y((x = y)→ �(x = y)))

∀x∀y((x , y)→ �(x , y)))

∀f∀g[〈λx , y .(x = y)〉(f ,g)→ 〈λx , y .�(x = y)〉(f ,g)]

Not Valid:

∀f∀g[〈λx , y .(x = y)〉(f ,g)→ �〈λx , y .(x = y)〉(f ,g)]
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D(f , x) abbreviates 〈λy .y = x〉(f) (where x and y are distinct
object variables).

M,w |=s D(f , x) when f designates the object x at w

(1) (∀x)(∀f)D(f , x)
(2) (∀x)ϕ↔ (∀f)〈λx .ϕ〉(f)

In FOIL, (1) implies (2).
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For a propositional modal logic L, FOIL-L is the intensional
logic built on that class of frames in the obvious way. Now, let
FOIL-L-λ be the restriction of FOIL-L to the sublanguage
without quantifiers.

1. If L is one of K, T, or D, then FOIL-L-λ is decidable.
2. FOIL-S4-λ is undecidable, with or without equality.
3. If = is interpreted by equality on DO , then FOIL-L-λ is

undecidable for any L between K4 and S5.
4. The two preceding items remain true even if formulas are

restricted to contain no object variables and only a single
intension variable.

5. Tableau systems for FOIL-L-λ

M. Fitting. Modal logics between propositional and first-order. Journal
of Logic and Computation, 12:1017 - 1026, 2002.
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Constants and Function Symbols

M. Fitting. On Height and Happiness. in Rohit Parikh on Logic, Lan-
guage and Society, Springer Outstanding Contributions to Logic, C.
Baskent, L. Moss, R. Ramanujam editors, pages 235-258, 2017.
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The King of Sweden could be taller than he is now.

〈λy .^〈λx .T(x , y)〉(m)〉(m)

Alice could be taller than she is now.

〈λy .^〈λx .T(x , y)〉(a)〉(a)

Problem: Names are rigid.

〈λy .�〈λx .x = y〉(a)〉(a)

So, the above two formulas imply:

〈λx .^T(x , x)〉(a)
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Add function symbols (and constants)

Let h(a) be the height of a

The point is that even though a is rigid, h(a) can vary from
world to world

Alice could be taller than she is now.

〈λy .^〈λx .G(x , y)〉(h(a))〉(h(a))
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There is a family of object variables, typically x, y, . . ., and
intension constants, a, b, . . .

We also have intension function symbols, f , g, . . . of various
arities, which take object variables as arguments.

Relation symbols, P, Q , . . . of various arities, also taking object
variables as arguments in the usual way.

An intension function term is f(x1, . . . , xn) where x1, . . . , xn are
object variables and f is an n-ary intension function symbol.

Note that intension functions are not allowed to be
nested—arguments are object variables
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Intentions functions are not allowed to be nested—arguments
are object variables.

P(f(g(a)))

is an abbreviation for

〈λz.〈λy .〈λx .P(x)〉(f(y))〉(g(z))〉(a)
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If f is an n-ary intension function symbol then
I(f) : S → (Dn

→ D), for some S ⊆W .

I(f) is an n-ary function from D to itself from some set of
possible worlds, so f may not designate at some worlds.

If a is a constant, then I(a) is a 0-ary function on D, so I(a) is a
partial function from W to D.

If I(f) : S → (Dn
→ D), we say f designates at the worlds in S.
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Previous definition, where f is an intensional variable

M,w |=s 〈λy .ϕ〉(f) iffM,w |=s′ ϕ where for all z ∈ V, if z , y,
then s′(z) = s(z) and s′(y) = s(f)(w).

Assume f is an n-ary intensional function symbol

M,w |=s 〈λy .ϕ〉(f(x1, . . . , xn)) iffM,w |=s′ ϕ where for all
z ∈ V, if z , y, then s′(z) = s(z) and
s′(y) = I(f)(w)(v(x1), . . . , v(xn)).
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H. Arlo Costa and E. Pacuit. First-Order Classical Modal Logic. Studia
Logica, 84, pgs. 171 - 210 (2006).
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First-order Modal Logic

A constant domain Kripke frame is a tuple 〈W ,R ,D〉 where
W and D are sets, and R ⊆W ×W .

A constant domain Kripke model adds a valuation function
V , where for each n-ary relation symbol P and w ∈W ,
I(P,w) ⊆ Dn.

Suppose that s is a substitution.

1. M,w |=s P(x1, . . . , xn) iff 〈s(x1), . . . , s(xn)〉 ∈ I(P,w)

2. M,w |=s �ϕ iff R(w) ⊆ [[ϕ]]M,s

3. M,w |=s ∀xϕ iff for each x-variant s′,M,w |=s′ ϕ
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First-order Modal Logic

A constant domain Neighborhood frame is a tuple 〈W ,N,D〉
where W and D are sets, and N : W → ℘(℘(W)).

A constant domain Neighborhood model adds a valuation
function V , where for each n-ary relation symbol P and w ∈W ,
I(P,w) ⊆ Dn.

Suppose that s is a substitution.

1. M,w |=s P(x1, . . . , xn) iff 〈s(x1), . . . , s(xn)〉 ∈ I(P,w)

2. M,w |=s �ϕ iff [[ϕ]]M,s ∈ N(w)

3. M,w |=s ∀xϕ iff for each x-variant s′,M,w |=s′ ϕ
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Example

Suppose that F is a unary predicate symbol,V = {x , y}, and
〈W ,N,D, I〉 is a first order constant domain neighborhood
model where
I W = {w, v ,u};
I N(w) = {{w, v}, {u}}, N(v) = {{v}}, N(u) = {{w, v}, {v}};
I D = {a,b}; and
I I(F ,w) = {a}, I(F , v) = {a,b}, and I(F ,u) = ∅.
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Example

There are four possible substitutions:
I s1 :V → D where s1(x) = a, s1(y) = b;
I s2 :V → D where s2(x) = b, s2(y) = a;
I s3 :V → D where s3(x) = s3(y) = a; and
I s4 :V → D where s4(x) = s4(y) = b

I [[F(x)]]M,s1 = {w, v};
I [[F(x)]]M,s2 = {v};
I [[F(x)]]M,s3 = {w, v}; and
I [[F(x)]]M,s4 = {v}.
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Example

In general, every formula ϕ ∈ L1 is associated with a function

[[ϕ]] : DV → ℘(W)
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Example

I [[�F(x)]]M,s1 = [[�F(x)]]M,s3 = {w,u}
[[�F(x)]]M,s2 = [[�F(x)]]M,s4 = {v ,u};

I [[�∀xF(x)]]M,s1 = {v}; and
I [[∀x�F(x)]]M,s1 = {v ,u}.
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Barcan Schemas

I Barcan formula (BF): ∀x�A(x)→ �∀xA(x)
I converse Barcan formula (CBF): �∀xA(x)→ ∀x�A(x)

Observation 1: CBF is provable in FOL + EM

Observation 2: BF and CBF both valid on relational frames
with constant domains

Observation 3: BF is valid in a varying domain relational
frame iff the frame is anti-monotonic; CBF is valid in a varying
domain relational frame iff the frame is monotonic.

See (Fitting and Mendelsohn, 1998) for an extended discussion
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Constant Domains without the Barcan Formula

The system EMN and seems to play a central role in
characterizing monadic operators of high probability (See
Kyburg and Teng 2002, Arló-Costa 2004).

Of course, BF should fail in this case, given that it instantiates
cases of what is usually known as the ‘lottery paradox’:

For each individual x, it is highly probably that x will loose the
lottery; however it is not necessarily highly probably that each
individual will loose the lottery.
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Converse Barcan Formulas and Neighborhood
Frames

A frame F is consistent iff for each w ∈W , N(w) , ∅

A first-order neighborhood frame F = 〈W ,N,D〉 is nontrivial iff
|D | > 1

Lemma Let F be a consistent constant domain neighborhood
frame. The converse Barcan formula is valid on F iff either F is
trivial or F is monotonic.
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W

X

X ∈ N(w)
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W

X

Y

Y < N(w)
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W

Y

X

F = ∅

∀v < Y , I(F , v) = ∅
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W

X

Y

F = ∅

F = D

∀v ∈ X , I(F , v) = D = {a,b}
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W

Y

X

F = ∅

F = DF = {a}

∀v ∈ Y − X , I(F , v) = D = {a}
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W

Y

X

F = ∅

F = DF = {a}

(F [a])M = Y < N(w) hence w 6|= ∀x�F(x)
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W

Y

X

F = ∅

F = DF = {a}

(∀xF(x))M = (F [a])M ∩ (F [b])M = X ∈ N(w)

hence w |= �∀xF(x)
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Barcan Formulas and Neighborhood Frames

We say that a frame closed under ≤ κ intersections if for each
state w and each collection of sets {Xi | i ∈ I} where |I| ≤ κ,
∩i∈IXi ∈ N(w).

Lemma Let F be a consistent constant domain neighborhood
frame. The Barcan formula is valid on F iff either

1. F is trivial or
2. if D is finite, then F is closed under finite intersections and

if D is infinite and of cardinality κ, then F is closed under
≤ κ intersections.
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Suppose that L is a propositional modal logic. Let FOL + L
denote the set of formulas closed under the following rules and
axiom schemes

L All axiom schemes and rules from L.
(All) ∀xϕ(x)→ ϕ[y/x] is an axiom scheme,

where y is free for x in ϕ.

(Gen)
ϕ→ ψ
ϕ→ ∀xψ , where x is not free in ϕ.
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Theorem FOL + E is sound and strongly complete with respect
to the class of all constant domain neighborhood frames.
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CBF

`FOL+EM �∀xϕ(x)→ ∀x�ϕ(x)

0FOL+E+(CBF) �(ϕ ∧ ψ)→ (�ϕ ∧ �ψ)
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Completeness Theorems

Theorem FOL + E is sound and strongly complete with respect
to the class of all frames.

Theorem FOL + EC is sound and strongly complete with
respect to the class of frames that are closed under
intersections.

Theorem FOL + EM is sound and strongly complete with
respect to the class of monotonic frames.

Theorem FOL + E + CBF is sound and strongly complete with
respect to the class of frames that are either non-trivial and
monotonic or trivial and not monotonic.
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FOL + K and FOL + K + BF

Theorem FOL + K is sound and strongly complete with
respect to the class of filters.

Observation The augmentation of the smallest canonical
model for FOL+K is not a canonical model for FOL+K. In fact,
the closure under infinite intersection of the minimal canonical
model for FOL + K is not a canonical model for FOL + K.

Lemma The augmentation of the smallest canonical model for
FOL + K + BF is a canonical for FOL + K + BF .

Theorem FOL + K + BF is sound and strongly complete with
respect to the class of augmented first-order neighborhood
frames.
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Is the addition of quantifiers straightforward?

1. S4M is complete for the class of all frames that are
reflexive, transitive and final (every world can see an
‘end-point’). However FOL + S4M is incomplete for Kripke
models based on S4M-frames. (see Hughes and
Cresswell, pg. 283).

2. S4.2 is S4 with ^�ϕ→ �^ϕ. This logics is complete for
the class of frames that are reflexive, transitive and
convergent. However, FOL + S4M + BF is incomplete for
the class of constant domain models based on reflexive,
transitive and convergent frames. (see Hughes and
Creswell, pg. 271)

3. The quantified extension of GL is not complete (with
respect to varying domains models).
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What is going on?

R. Goldblatt. Quantifiers, Propositions and Identity: Admissible Se-
mantics for Quantified Modal and Substructural Logics. Lecture Notes
in Logic No. 38, Cambridge University Press, 2011.
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Background: Incompleteness

There are (consistent) modal logics that are incomplete

A general model is a structure 〈W ,R ,V ,A〉 where A is a
suitable boolean algebra with an operator of propositions.

All modal logics are sound and strongly complete with respect
to general frames.
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Theorem (Goldblatt and Mares) For any canonical
propositional modal logic S, its quantified extension QS is
complete over a class of general frames for which the
underlying propositional frame are just the S-frames.

I New perspective on the Barcan formula: it corresponds to
Tarskian models

I There is a trade-off between having the underlying Kripke
frame validate the propositional logic in question and
having a Tarskian-reading of the quantifier.
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Central Idea

Algebraic reading of the universal quantifier: ∀xϕ is true at
a world w iff there is some proposition X such that X entails
every instantiation of ϕ and X obtains at w.

M,w |=s ∀xA iff there is a proposition X such that w ∈ X and
X ⊆ [[A ]]M,s[x |d] for all d ∈ D.

vs.

M,w |=s ∀xA iff for all d ∈ D,M,w |=s[x |d] A
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General Frames

Let 〈W ,R〉 be a frame.

[R] : ℘W → ℘W where
[R](X) = {w ∈W | for all v ∈W , wRv implies v ∈ X }
So [[�α]]M = [R][[α]]M

X ⇒ Y = (W − X) ∪ Y
So [[α→ β]]M = [[α]]M ⇒ [[β]]M.
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Halmos Functions

ϕ : DV → ℘W
Let ϕ and ψ be two such functions, we can lift [R] and⇒ to
operations of functions: Eg., if ϕ : DV → ℘W and f ∈ DV.
([R]ϕ)(f) = [R](ϕ(f))

Fix a set Prop ⊆ ℘W . This defines for each S ⊆ ℘W ,

uS =
⋃
{X ∈ Prop | X ⊆

⋂
S}
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General Frames for First-Order Modal Logic

Suppose Prop ⊆ ℘W and let ϕ : DV → Prop,
(∀xϕ)f = ud∈Dϕ(f [x |d])

〈W ,R ,V ,Prop,PropFun〉 where

I Prop contains ∅ and is closed under⇒ and [R]

I Contains the function ϕ∅(f) = ∅ for all f ∈ DV

I PropFun is closed under⇒, [R] and ∀x .
I Assume (P)M : DV → ℘W is an element of PropFun for

each atomic predicate P.
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General Completeness

Theorem For any propositional modal logic S, the quantified
logic QS is complete for the class of (all validating) quantified
general frames.

Note that the canonical model construction has as worlds
maximally consistent sets that need not be ∀-complete.
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Key Results

Theorem (Goldblatt and Mares) If S is a canonical
propositional logic, then QS is characterized by the class of all
QS-frames whose underlying propositional frames validate S.

Logics containing the Barcan formula have two characterizing
canonical general frames: one that is Tarskian and one that is
not.

1. If S is canonical, then the second canonical model will
have an underlying propositional frame that validates S
(eg., S4.2), but may not be Tarskian.

2. On the other hand, The Tarskian canonical model may not
have an underlying propositional frame that is a frame for S
(again S4.2 is an example).
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