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Abstract
This paper obtains the weak completeness and decidability results for standard systems

of modal logic using models built from formulas themselves. This line of work began with
Fine [4]. There are two ways in which our work advances on that paper: First, the definition
of our models is mainly based on the relation Kozen and Parikh used in their proof of the
completeness of PDL, see [7]. The point is to develop a general model-construction method
based on this definition. We do this and thereby obtain the completeness of most of the
standard modal systems, and in addition apply the method to some other systems of interest.
None of the results use filtration, but in our final section we explore the connection.
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1 Introduction

The normal forms of propositional modal logic have been discovered several times. These are
the analog of the Scott sentences in modal logic, and they also are generalizations of state
descriptions from propositional logic. We’ll define them in due course, but here are some
examples:

α = ¬p ∧ ¬q ∧3(p ∧ q) ∧3(¬p ∧ q) ∧2(((p ∧ q)) ∨ (¬p ∧ q))
β = p ∧ ¬q ∧3(¬p ∧ q) ∧3(¬p ∧ q) ∧2(((¬p ∧ q)) ∨ (¬p ∧ q))
χ = ¬p ∧ q ∧3α ∧3β ∧2(α ∨ β)

The primary source on the use of normal forms is Kit Fine’s paper 1975 paper “Normal forms
in modal logic” [4]. Presumably Fine called them “normal forms” because every modal for-
mula is equivalent to a disjunction of a finite set of them. In a different way, such sentences
serve as characterizing sentences (or approximations to such sentences). This means that the
bisimulation type of a given model-world pair is an infinitary sentence built in the manner of
the examples above; see [1], Theorem 11.12. This result will not be important to us, and indeed
we shall refer to these formulas as canonical formulas in our development.

Fine [4] claim that “Normal forms have been comparatively neglected in the study of modal
sentential logic” seems even more cogent thirty years after its publication. The topic is missing
from most recent textbooks, and only a handful of papers discuss it. There are several possible
reasons for this. First, normal forms give weak completeness and decidability results, and these
can be obtained as well via the method of filtration, as first shown by Lemmon and Scott. So
one might reasonably ask what the advantage of normal form proofs could be. This is answered
by Fine’s claim that normal form methods are more elegant. Indeed, as David Makinson’s
review [9] points out, “[Normal forms are] applied with flair and elegance to the modal logics
K,T,K4, and a fairly broad class of ‘uniform’ modal logics. In the case of K the construction
turns out to be quite simple; in the other cases it is rather intricate.”

And this brings us to the second possible reason for the neglect of normal forms. There
has not been an account of what the method consists of that allows us to ask what it can and
cannot do. Thus the original applications in [4] seem in retrospect to be ad hoc. To be more
specific on this point, Fine’s main construction builds finite Kripke models from the normal
forms themselves. The “intricate” constructions boil down to the specification of a particular
accessibility relation on a particular set of normal forms of a given (finite) height and over a
given (finite) set of atomic propositions. The original definitions of the subset and the relation
are indeed special, and it would appear that they must be tailored logic-by-logic.

This paper attempts to re-open the matter of building Kripke models from the formulas of
the logic itself. It develops the topic from scratch in Sections 2 and 3 and then turns to new
applications. Our re-working of the topic aims to develop it as a method in the sense that
we settle on one main construction, the models Ch,n(L) introduced in Section 4. This relates
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to our point just above. Our definitions are arguably simpler and more ‘canonical’. We have
Ch,n(L) = (Ch,n(L), →c , v), where

1. Ch,n(L) is a certain set of formulas of modal height ≤ h built from the first n atomic
propositions, all of which are consistent in the logic L.

2. α→c β iff α ∧3β is consistent in L.

3. v(pi) = {α : ` α→ pi}.

Point (3) is what one would expect from any model construction where the worlds are
formulas. The important point is (2). This definition comes from the Kozen-Parikh [7] proof of
the completeness of propositional dynamic logic. That paper was published six years after [4].
It is tempting to think that this paper is the version of Fine’s [4] that comes with the hindsight
of the main definition of [7]. (And in the other direction, we use the normal form proof to
simplify the work of [7] a bit, since we bypass filtration.)

This paper is mainly a study of the models Ch,n(L), and applications of them in proving
weak modal completeness theorems. We also ask about the relation of our work to filtration in
Section 7.1. Before turning to the specific contributions of the paper, we should emphasize that
our work only gives the weak completeness results. (That is, we prove that consistent sentences
in various logics have models of certain types; but our work does not directly carry over to
show that consistent sets of sentences have models of the appropriate types.) To get strong
completeness results from our work, the easiest way would seem to be via semantic compactness
theorems, provable using ultraproducts.

Specific completeness results Section 5 contains the weak completeness results for all
modal logics built from K using T , B, D, 4 and 5 with respect to the expected classes of finite
models. The only exceptions are K5 and KD5; for those the methods do not work. As we
have mentioned, the completeness results in [4] are for K, KT , KD, K4, and the uniform
logics such as KM ; also mentioned at the end are KB and S4. For S4, the method gives weak
completeness for finite preorders. Sections 5 and 6 also contain completeness of the provability
logic KL, K4McK, and the logic K2∗ of the transitive closure operator. We remind the reader
that filtration is not used in any of our arguments. (Also, we have nothing to say about strong
completeness.) We believe that our development of the weak completeness results is somewhat
simpler than the standard approach. On a related pedagogical point, we think that pictures
of the models Ch,n(L) for various logics L in Figure 1 should help students who prefer to have
presentations which are as concrete as possible.

How to read this paper This paper will read differently depending on what the reader
brings. It is mainly written for those with no experience with modal completeness proofs, and
indeed the paper itself can be used as a treatment of the central results in the area that we think
is faster and easier than more popular methods. However, all of the specific completeness results
in this paper are already known. Most appear in standard textbooks, such as Blackburn, de
Rijke, and Venema [3]. So readers who know those results might well wonder what the novelty
is and whether the re-working of old results is a reasonable thing to do in the first place. Those
readers might prefer to read or skim the paper until the end of Section 4, and then take up
Section 7.1.
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The technical material in this paper is quite elementary. Most of it could be read by anyone
who knows the completeness of classical propositional logic in any logical system, the Kripke
semantics of modal logic, and the specific modal systems such as K, S4, etc.

History My interest in these matters goes back to work with Jon Barwise on characterization
results for infinitary modal logic, and later applications of the same construction to the modal
correspondence theory. (See [1], Theorem 11.12, and also [2].) Analogs of the same construction
for finitary and infinitary modal logics were the leading idea behind coalgebraic logic [10].
However, in none of these works does one find a model construction based on the characterizing
formulas. Later, while teaching modal logic to undergraduates, I was faced with the task
of teaching completeness theorems to students who lacked the mathematics background to
understand the traditional completeness-via-filtration arguments. So I worked out proofs using
the characterizing formulas themselves. Since I had seen the Kozen-Parikh work on PDL, it
was natural to adapt the idea. In writing up that work, I found that Fine had done the same
thing in 1975. His work is not so well-known, I think: none of the readers of any of the papers
mentioned above ever mentioned it to me. There have not been many papers that build on it.
(One exception is Ghilardi [5], but its approach seems very different from this paper’s. For that
matter, a construction related to Fine’s in the intuitionistic setting may be found in de Jongh’s
dissertation [6]. This predates Fine’s paper.) And in looking at Fine’s paper [4], there are some
differences mainly due to the way that the models are defined. In any case, one of the purposes
of this paper is to stimulate some new thinking about the whole matter of constructing finite
models in modal logics using formulas themselves as worlds and with certain special relations
as the accessibility, as we have mentioned above.

A didactic point One of our goals is to present weak completeness proofs in as simple a
manner as possible. I believe that the approach here might be simpler than the standard one.
The reason is that one gets by without Zorn’s Lemma or quotients. To be fair, there are still
some complexities: students have to be good with induction to work through the proofs. To use
this material in a classroom setting would mainly mean presenting some of the results in detail
while keeping others as exercises. I have found that this works, but my sample is too small to
make a strong claim that the method works for students who find the standard approach tough
going.

2 The ⊕ notation for “exactly one”

In this section, we introduce some notation that will be used throughout this paper. We always
work with a countable set of atomic propositions p1, p2, . . ., pn, . . .. We write ⊕(ψ1, . . . , ψn) to
mean that exactly one of ψ1, . . . , ψn holds:∨

i

(
ψi ∧ ¬

∨
j 6=i

ψj
)
.

We also use this notation a bit sloppily when the list of formulas comes without a definite order,
as in ⊕{ψ1, . . . , ψn}. For example, let

SDn = the set of all state descriptions of order n. (1)
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This is the set of formulas of the form q1∧. . .∧qn, with each qi equal to either the corresponding
atomic proposition pi or its negation ¬pi.

Lemma 2.1. In any complete logical system for propositional logic ` ⊕SDn.

Proof We use completeness and the semantic fact that |= ⊕SDn. a

Lemma 2.2. The following are equivalent in propositional logic:

1. ⊕(ϕ1, ϕ2, . . . , ϕk) ∧ ⊕(ψ1, . . . , ψl)

2. ⊕{ϕi ∧ ψj : 1 ≤ i ≤ k, 1 ≤ j ≤ l}

Lemma 2.3. The following are equivalent in propositional logic:

1. ⊕(ϕ1, ψ1) ∧ · · · ∧ ⊕(ϕn, ψn)

2. ⊕{
∧
i∈S ϕi ∧

∧
i/∈S ψi : S ⊆ {1, . . . , n}}

The easiest proofs of these lemmas are semantic, using completeness. Of course there are
also syntactic proofs.

2.1 Extending the notation to the modal setting

In this section, we expand our discussion to the case of formulas built in the basic modal
similarity type. That is, we add a single modal operator 2 to the syntax of propositional logic,
generating formulas such as 2(p23 ∧¬2p3). As always, we write 3ϕ for ¬2¬ϕ. Let ψ1, . . . , ψm
be modal formulas. For each S ⊆ {ψ1, . . . , ψm}, let

αS =
∧
ψi∈S

3ψi ∧
∧
ψi /∈S

¬3ψi.

Also, let
Ŝ =

∧
ψi∈S

3ψi ∧2
∨
ψi∈S

ψi. (2)

We remind the reader of the convention that
∨
∅ = F and

∧
∅ = T. We also remind the

reader that K is the logical system extending propositional logic with K-axioms 2(ϕ→ ψ)→
(2ϕ→ 2ψ) and with the rule of Necessitation: from ϕ, infer 2ϕ. We write ` ϕ for derivability
in K.

Lemma 2.4. Suppose that ` ⊕(ψ1, . . . , ψm). Then in K, ` ⊕{αS : S ⊆ {ψ1, . . . , ψm}}, and
also ` ⊕{Ŝ : S ⊆ {ψ1, . . . , ψm}}.

Proof The first part is immediate from Lemma 2.3; the point is that ` ⊕(3ψi,¬3ψi) for all
i. For the second, we show that ` αS ↔ Ŝ for all S. Note that since ` ⊕(ψ1, . . . , ψm), we also
have `

∨
{ψ1, . . . , ψm}. By Necessitation, ` 2

∨
{ψ1, . . . , ψm}. So

`
∧
ψi /∈S

¬3ψi → 2
∨
ψi∈S

ψi.
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This implies that ` αS → Ŝ. We prove also the converse. Since ` ⊕(ψ1, . . . , ψm), we have

`
∨
ψi∈S

ψi →
∧
ψi /∈S

¬ψi.

So
` 2

∨
ψi∈S

ψi → 2
∧
ψi /∈S

¬ψi.

This easily leads to ` Ŝ → αS . a

2.2 Canonical formulas in modal logic

To generalize the notion of a state description to modal logic, we not only have to keep track of
which atomic propositions are used in a given formulas, we also need to take note of the modal
height.

Definition We define the height and order of an arbitrary formula ϕ of modal logic by the
following recursions:

ht(pn) = 0
ht(T) = 0
ht(F) = 0
ht(¬ϕ) = ht(ϕ)
ht(ϕ ∧ ψ) = max(ht(ϕ), ht(ψ))
ht(2ϕ) = 1 + ht(ϕ)

ord(pn) = n
ord(T) = 0
ord(F) = 0
ord(¬ϕ) = ord(ϕ)
ord(ϕ ∧ ψ) = max(ord(ϕ), ord(ψ))
ord(2ϕ) = ord(ϕ)

The height (also called depth) measures the maximum nesting depth of boxes, and the order
gives the largest subscript on any atomic proposition occurring. We also let

Lh,n = {ϕ : ht(ϕ) ≤ h, ord(ϕ) ≤ n}.

For example,
ht(3p3 ∧23p2) = 2
ord(3p3 ∧23p2) = 3

So that 3p3 ∧23p2 belongs to L2,3. Indeed it belongs to Lh,n for h ≥ 2 and n ≥ 3.

Definition Fix a natural number m, and consider the first m atomic propositions p1, . . . , pn.
For each T ⊆ {p1, . . . , pn}, let

T̂ =
∧
pi∈T

pi ∧
∧
pi /∈T

¬pi (3)

For example, with n = 4 and T = {p1, p4}, we have

T̂ = p1 ∧ p4 ∧ ¬p2 ∧ ¬p3.

Note that SDn = {T̂ : T ⊆ {p1, . . . , pn}}.

Definition We define the sets Ch,n of canonical formulas of height h and order n as follows:
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C0,n = SDn. Given Ch,n, we let Ch+1,n be the collection of formulas of the form Ŝ ∧ T̂ . The
notation Ŝ comes from (2), and the notation T̂ from (3). So for S ⊆ Ch,n and T ⊆ {p1, . . . , pn},

Ŝ = (
∧
ψ∈S 3ψ) ∧ (2

∨
ψ∈S ψ)

T̂ = (
∧
pi∈T pi) ∧ (

∧
pi /∈T ¬pi)

Put differently, each α ∈ Ch+1,n is of the form

(
∧
ψ∈S

3ψ) ∧ (2
∨
S) ∧ (

∧
T ) ∧ (

∧
pi /∈T

¬pi) (4)

for some S ⊆ Ch,n and some T ⊆ {p1, . . . , pn}.

Proposition 2.5. For each h and n, Ch,n is a finite subset of Lh,n. Moreover, if F (0, n) = 2n

and F (h+ 1, n) = 2F (h,n)+n, then |Ch,n| = F (h, n).

Example 2.1. C0,1 = {p1,¬p1}. C1,1 is a set with eight elements. Because we refer to these
elements at various points, it makes sense to adopt names for them. And because we are dealing
with n = 1, we drop the subscript on p1.

α1 = ∅̂ ∧ p
α2 = ∅̂ ∧ ¬p
α3 = {̂p} ∧ p
α4 = {̂p} ∧ ¬p

α5 = {̂¬p} ∧ p
α6 = {̂¬p} ∧ ¬p
α7 = Ĉ0,1 ∧ p
α8 = Ĉ0,1 ∧ ¬p

We have used the notation from above. For example, {̂p} abbreviates 3p ∧ 2p, and Ĉ0,1
abbreviates 3p ∧3¬p ∧2(p ∨ ¬p). (The last conjunct is redundant, so it is better to think of
Ĉ0,1 as 3p ∧3¬p.)

Example 2.2. Let A be any Kripke model. Fix a number n. For every a ∈ A and every h,
we define the formula ϕha. The definition is by recursion on h (simultaneously for all a ∈ A)
as follows: ϕ0

a is the unique canonical formula of height 0 and order n satisfied by a. (It is the
conjunction of all atomic propositions satisfied by a and all negations of atomic propositions
not satisfied by a.) Given ϕhb for all b ∈ A, we define

ϕh+1
a =

∧
a→b

3ϕhb ∧ 2
∨
a→b

ϕhb ∧ ϕ0
a.

Then each ϕha belongs to Ch,n.

We shall see later that very canonical formula can be obtained in the manner of Example 2.2.

Lemma 2.6. For all h and n, ` ⊕Ch,n in K. As a result, every world of every Kripke model
satisfies a unique element of Ch,n.

Proof For h = 0, use Lemma 2.1. Assume that ` ⊕Ch,n. By Lemma 2.4, ` ⊕{Ŝ : S ⊆ SDn}.
Continuing, we have already seen that ` ⊕SDn. That is, ` ⊕{T̂ : T ⊆ {p1, . . . , pn}}. So by
Lemma 2.2, we have

` ⊕{Ŝ ∧ T̂ : S ⊆ Ch,n and T ⊆ {p1, . . . , pn}}.

That is, ` ⊕Ch+1,n. a

7



We next present the fact that justifies thinking of the canonical formulas as analogs of state
descriptions. This result is the most important fact in this section, and it will be used without
specific justification in the rest of this paper.

Lemma 2.7. Let χ ∈ Lh,n and α ∈ Ch,n. Then in K, either ` α→ χ or else ` α→ ¬χ.

Proof By induction on χ. All of the work is in the induction step for 2. So we assume our
lemma for χ and prove it for 2χ. Let h and n be large enough so that 2χ ∈ Lh,n, and let
α ∈ Ch,n. We must have h > 0. Write α as in (4). For each β ∈ S, the induction hypothesis
applies to χ and β. We have two cases. First, assume that for some β ∈ S, ` β → ¬χ. Then
` 3β → 3¬χ. The definition of α in (4) implies that ` α → 3β. So ` α → 3¬χ. We have
` α → ¬2χ. The other case is when for each β ∈ S, ` β → χ. Then `

∨
β∈S β → χ. So we

also have ` 2
∨
β∈S β → 2χ. Again in view of (4), ` α → 2χ. This completes the induction

step for 2, and hence the overall proof. a

With the foregoing definitions in place, we now take up the main thread of this paper, the
construction of finite models from canonical formulas.

3 The models Bh,n

Our first class of models is called Bh,n. For natural numbers h and n, Bh,n might be called
the canonical finite model of height ≤ h and order n. These models are not the central objects
of study in this paper; those will be the models Ch,n(L) introduced in the next section. Our
mention of the models Bh,n is mostly for completeness.

We define Bh,n = (Bh,n,;) as follows:

1. The worlds Bh,n of Bh,n are the canonical formulas of height ≤ h and order n:

Bh,n = C0,n ∪ C1,n ∪ · · · ∪ Ch,n.

2. If α belongs to Ci+1,n, say α = Ŝ ∧ T̂ , then for all β ∈ S, α ; β. These are the only ;

relations in the model.

3. For 1 ≤ j ≤ n, v(pj) is all of the canonical formulas of height ≤ h and order n in which
pj is a conjunct (rather than ¬pj). An equivalent formulation is

v(pj) = {α ∈ C≤h,n : ` α→ pj}.

The reason why we use the symbol ; for the accessibility relation in a model rather than
just → is to avoid the confusion of logical implication with the accessibility relation in our
formula-based models.
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Example 3.1. Here is B1,1, using the notation from Example 2.1.

¬pp

α4

α2

α6

α8

α5

α1

α3

α7

<<zzzz

sshhhhhhhhhhhhhh

++VVVVVVVVVVVVV

bbDDD
PP"""""""""

@@�����������

^^<<<<<<<<<<<

NN���������

The atomic proposition p is true at the points α1, α3, α5, α7, and p. We have pictured C0,1
in the middle, and C1,1 outside. Incidentally, there is no significance to the arrangement of
α1, . . . , α8 in the picture. We maintain this arrangement in several figures in the sequel, and we
do so mainly because it results in pictures of partial orders that grow from the bottom upwards.

Lemma 3.1. For all α ∈ C≤h,n, (Bh,n, α) |= α.

Proof For h = 0, note that for 1 ≤ i ≤ n, α |= pi iff pi ∈ v(α) iff ` α→ pi. Since α is a state
description, ` α → pi or ` α → ¬pi; and the choice depends only on whether pi is or is not a
conjunct of α. This easily leads to our result.

Assume the result for h, and let α ∈ Ch+1,n. Then α is of the form Ŝ ∧ T̂ , with S ⊆ Ch,n
and T ⊆ {p1, . . . , pn}. The same argument as above shows that α |= T̂ . If β ∈ S, then α ; β.
By induction hypothesis, β |= β, so α |= 3β. If β /∈ S, then we claim that no child γ of α
can satisfy β. For such γ would be different from β, and as γ |= γ and every world satisfies a
unique element of Ch,n, we see that γ cannot satisfy β. Since this is true for all γ, we see that
α |= ¬3β. Thus, for all β ∈ S, α |= 3β, and for all β /∈ S, α |= ¬3β. Overall, α |= Ŝ. a

This last results explains our remark at the end of Example 2.2: every α ∈ Ch,n is of the
form ϕha for some pointed model (A, a).

Lemma 3.2. Fix a number n. For every χ ∈ Lh,n and every α ∈ C≤h,n, the following are
equivalent:

1. (Bh,n, α) |= χ.

2. ` α→ χ in K.

The proof is by induction on h.

Completeness and decidability of K We are not so interested in these models Bh,n in this
paper, mostly because it is not possible to adapt them to give results about specific logics of
interest. (The exceptions are for KB and KD, but we shall not go into details on those.) But
we do want to mention that those models give the completeness and decidability of K, as noted
by Fine [4].
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Theorem 3.3 (Completeness). If |= ψ, then ` ψ in K.

Proof Let h = ht(ψ), and n = ord(ψ). We assume that that |= ψ; i.e., ψ holds at all worlds of
all models. In particular, for all α ∈ Ch,n, we have (Bh,n, α) |= ψ. We work in K. By Lemma 3.2,
` α→ ψ for all α ∈ Ch,n. But then by propositional logic, `

∨
Ch,n → ψ. And as we know from

Lemma 2.6, `
∨
Ch,n. So as desired, ` ψ. a

Corollary 3.4 (Decidability). It is decidable whether |= ψ or not.

Proof Let h be the height of ψ, and n the order. Consider Bh,n. This model can be constructed
(computably) from the numbers h and n. If we want to see whether ψ is true in all models,
we need only look to see if it is true at all points in that one (big, but finite) model. And the
evaluation is again a computable matter. a

4 The models Ch,n(L)

At this point we have completeness for K, and we would also like to have it for logics like T , S4,
etc. For this, the model of the previous section is not good enough. Let L be a normal modal
logic. When we have two logics, say L and M , we write L ≤ M to mean that every axiom of
L is provable in M . We define Ch,n(L) = (Ch,n(L), →c ), the canonical model of L-consistent
fomulas of height h and order n:

1. Ch,n(L) = {α ∈ Ch,n : α is consistent in L}.

2. α→c β iff α ∧3β is consistent in L.

3. v(pi) = {α : ` α→ pi}.

The important thing to notice first is that the →c relation here is quite different from the
relation ; in Bh,n. Our relation →c comes from Kozen and Parikh [7]; it is the central way in
which our development of the subject differs from that of Fine [4]. Again, the symbol for the
accessibility relation was chosen to avoid the confusion with logical implication. (And we don’t
use ; to avoid confusion with the models Bh,n.) The particular relation →c has an intuition
behind it. We take the canonical sentences to be “maximally informative” (up to their height
and order). The main quest in this paper is for a model construction using them. Now in any
Kripke model of L, say A = (A,→), if a→ b, then αa ∧3αb is satisfiable and hence consistent
in L, where αa and αb are the sentences of Ch,n satisfied by a and b in A, respectively. Hence
αa→c αb. But we don’t want to define →c in terms of models; we prefer a definition that is
more “syntactic”. And so instead of saying α→c β iff there is some L-model A containing a→ b
such that αa = α and αb = β, we use the consequence of this, that α ∧3β be consistent in L.

4.1 Examples

This section constructs Ch,n(L) for various values of h and L. (In all of our examples, n = 1.
So instead of writing p1 or ¬p1, we simply write p or ¬p.) The case of h = 0 is degenerate in
our examples: C0,n is a complete model on 2n points. However, this is neither interesting nor
important: our results would do not use the structure of C0,n, and so we could re-define things
and still obtain the same overall results. Most of our examples are shown in Figure 1.

10



K

α4

α2

α6

α8

α5

α1

α3

α7
��?

??
??

?

OO

HH��������������''

����
��

��
��

��
��

��
��

��
oo

K
llllllll

vvllllllll

hhRRRRRRRRRRRRR

��?
??

??
??

??
??

??
??

??
?

K
RRRRRRRR

((RRRRRRRR

//

66lllllllllllll

����
��

��

OO

VV,,,,,,,,,,,,,, ww

OO

K
���������

HH���������

__??????

??������������������

VV,,,,,,,,,,,,,,

66lllllllllllll //
YY

K,,,,,,,,,

VV,,,,,,,,,

OO

hhRRRRRRRRRRRRR

HH��������������

__??????????????????

??������
oo

YY

K4

α4

α2

α6

α8

α5

α1

α3

α7

HH��������������''
K4

llllllll

vvllllllll

hhRRRRRRRRRRRRR

K4
RRRRRRRR

((RRRRRRRR

66lllllllllllll

VV,,,,,,,,,,,,,, ww

OO

K4
���������

HH���������

__??????

??������������������

VV,,,,,,,,,,,,,,

66lllllllllllll //
YY

K4,,,,,,,,,

VV,,,,,,,,,

OO

hhRRRRRRRRRRRRR

HH��������������

__??????????????????

??������
oo

YY

KB

α4

α2

α6

α8

α5

α1

α3

α7
��

__?????? ��

??������������������
oo //

YY
��

__?????????????????? ��

??������
YY

'' ww

oo //

S4

α6

α8

α3

α7 oo //

66lllllllllllll

__??????

YY

??������

hhRRRRRRRRRRRRR
YY

'' ww

KB4

α2

α6

α8

α1

α3

α7 oo //
YY YY

'' ww
S5

α6

α8

α3

α7 oo //
YY YY

'' ww

Figure 1: C1,1(L) for various logics L. The formulas α1, . . ., α8 are from Example 2.1.
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First we construct the model C1,1(K). The eight elements C1,1 are all consistent, and we
listed them with names in Example 2.1. The points satisfying p are those on the left side of
the figure: α1, α3, α5, and α7. We retain this convention in all of the models pictured in this
paper.

Here are a few comments that go with Figure 1. All eight formulas α1, . . . , α8 are all
consistent in K4. But we lose some arrows in C1,1(K4). Specifically, we lose α5 → α4, α5 → α8,
α4 → α5, α4 → α7, α3 → α7, and α6 → α8.

Of the eight elements of C1,1, only four are consistent in S4. C1,1(KT ) turns out to be the
same as C1,1(S4). In C1,1(KB) and C1,1(KB4), the points α1 and α2 have no outgoing arrows.

Example 4.1. Using our work on C1,1(S4), we construct C2,1(S4). We begin with the following
elements:

β1 = {α3, α6, α7, α8}b∧ p
β2 = {α3, α6, α7}b∧ p
β3 = {α3, α7, α8}b∧ p
β4 = {α6, α7, α8}b∧ p
β5 = {α6, α7}b∧ p
β6 = {α7, α8}b∧ p
β7 = {α3}b∧ p

β8 = {α3, α6, α7, α8}b∧ ¬p
β9 = {α3, α6, α8}b∧ ¬p
β10 = {α3, α7, α8}b∧ ¬p
β11 = {α6, α7, α8}b∧ ¬p
β12 = {α3, α8}b∧ ¬p
β13 = {α7, α8}b∧ ¬p
β14 = {α6}b∧ ¬p

These are the elements of C2,1 consistent in S4. The structure as always is given by βi→c βj iff
βi ∧3βj is consistent in S4.

It does take a lot of work to get the full structure, and we admit that we got the help of
a computer program for this.1 A picture of the model is shown in Figure 2. The picture does
not show the reflexive arrows on all points, or the arrows from β1 and β2 to all points. It also
does not include the information that p is true exactly at β1, . . ., β7.

4.2 Properties of Ch,n(L) and easy completeness results

The models Ch,n(L) are our main objects of study.

Lemma 4.1. In L, ` ⊕Ch,n(L).

Proof As we know from Lemma 2.6, in K, ` ⊕Ch,n. And working in L, if α is not consistent
then ` ¬α. a

Lemma 4.2. Let ψ ∈ Lh,n. Then

1. In K, ` ψ ↔
∨
{α ∈ Ch,n : in K,` α→ ψ}.

2. In L, ` ψ ↔
∨
{α ∈ Ch,n(L) : in K,` α→ ψ}.

Proof Let S be the set of α ∈ Ch,n such that ` α → ψ. Then `
∨
S → ψ. And for α /∈ S,

` α→ ¬ψ. So ` ψ ↔
∨
α∈Ch,n

(α ∧ ψ)↔
∨
α∈S(α ∧ ψ)↔

∨
α∈S α.

(2) follows from (1). and Lemma 4.1. a
1We used the Logics Workbench: http://www.lwb.unibe.ch/
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Figure 2: C2,1(S4), omitting all self-loops and most arrows from β1 and β8.
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Lemma 4.3 (Existence Lemma). Let ψ ∈ Lh,n, let ϕ be arbitrary, and suppose that ϕ ∧ 3ψ
is consistent in L. Then there is some α ∈ Ch,n(L) such that ϕ ∧ 3α is consistent in L, and
` α→ ψ in K.

Proof By Lemma 4.2, we see that in L,

` 3ψ ↔
∨
{3α : α ∈ Ch,n(L) and in K,` α→ ψ}.

So
` ϕ ∧3ψ ↔

∨
{ϕ ∧3α : α ∈ Ch,n(L) and in K,` α→ ψ}.

By our assumption, the finite disjunction on the right just above is consistent in L. So at least
one disjunct must be consistent. This gives some α ∈ Ch,n(L) with the desired properties. a

Lemma 4.4 (Truth Lemma for Ch,n(L)). For all α ∈ Ch,n(L) and all ψ ∈ Lh,n, (Ch,n(L), α) |=
ψ iff ` α→ ψ in K.

Proof By induction on ψ. The only interesting step is for 3ψ, assuming the result for ψ. Let
h and n be such that 3ψ ∈ Lh,n. Note that ψ ∈ Lh,n as well.

Assume that (Ch,n(L), α) |= 3ψ. Let β ∈ Ch,n(L) be such that α ∧ 3β is consistent in L
and (Ch,n(L), β) |= ψ. By induction hypothesis, ` β → ψ. Thus ` 3β → 3ψ. We thus see
that α ∧3ψ is consistent in L. As we know, either ` α→ 3ψ (in K), or ` α→ ¬3ψ (in K).
But the latter case cannot happen, because it would contradict the consistency of α ∧3ψ.

In the other direction, suppose that ` α→ 3ψ. Since α is consistent in L, so is α∧3ψ. So
by Existence Lemma 4.3, there is some β ∈ Ch,n(L) such that α ∧ 3β is consistent in L, and
` β → ψ in K. Thus α→c β in Ch,n(L), and by induction hypothesis, (Ch,n(L), β) |= ψ. So
(Ch,n(L), α) |= 3ψ. a

As a result of Lemma 4.4, (Ch,n(L), α) |= α for all α ∈ Ch,n(L).

Lemma 4.5. The following hold for all h and n:

1. If KT ≤ L, Ch,n(L) is reflexive.

2. If KD ≤ L, Ch,n(L) is serial.

3. If KB ≤ L, Ch,n(L) is symmetric.

Proof For (1), let α ∈ Ch,n(L). We must show that α→c α; i.e., α ∧3α is consistent. If not,
then ` α→ 2¬α. But by T, ` 2¬α→ ¬α. So ` α→ ¬α. This contradicts the consistency of
α in the logic L.

Next, we prove (2). Let α ∈ Ch,n(L), so α ∧ 3T is consistent in KD. By the Existence
Lemma 4.3, there is some β ∈ Ch,n(L) such that α ∧3β is consistent. Thus α→c β in Ch,n(L).

Finally, we show that Ch,n(L) is symmetric whenever KB ≤ L. Suppose that α ∧ 3β is
consistent, but ` β → 2¬α. Then ` 3β → 32¬α. By B, ` α → 23α. So 23α ∧ 32¬α is
consistent (in L). This is clearly a contradiction. a

There is one final general property of the models Ch,n.
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Lemma 4.6. Ch,n(L) is strongly extensional: every bisimulation on it is a subrelation of the
identity.

Proof Let R be a bisimulation on Ch,n(L), and suppose that α R β. Then α and β satisfy
the same modal formulas. By Lemma 4.4, α |= α. So β |= α. Then by Lemma 4.4 again, we
have that in K, ` β → α. In view of Lemma 4.1 above, we must have β = α; that is, distinct
canonical formulas imply each other’s negation. a

The results of this section give completeness/decidability results for the logicsKT ,KD,KB,
KTB, and KDB on the appropriate classes of structures. The proofs are routine modifications
of Theorem 3.3 and Corollary 3.4. We illustrate this point with KB.

Theorem 4.7 (Completeness). If ψ holds at every world in every symmetric model, then ` ψ
in KB. Moreover, the property of being provable in KB is decidable.

Proof Let h and n be large enough so that ψ ∈ Lh,n. The model Ch,n(KB) is symmetric, and
so each α ∈ Ch,n(KB) satisfies ψ in it. So in K, `

∨
Ch,n(KB)→ ψ. But in KB, `

∨
Ch,n(KB).

Hence in KB, ` ψ.
The decidability is again a corollary to the proof above: ψ is provable in KB iff it holds at

each world of Ch,n(KB), where the numbers h and n are obtained recursively from ψ. Now at
this point we do not know that the model Ch,n(KB) itself is recursive in h and n. But given
h and n, we can compute m = F (h, n) as in Proposition 2.5. Then from this we compute all
symmetric Kripke models on at most m nodes. From these we can tell which elements of Ch,n
are consistent in KB. And since one of the symmetric models will indeed be Ch,n(KB), we
can see for α, β ∈ Ch,n(KB) whether or not α ∧3β is satisfiable on a symmetric model of size
≤ m or not. This latter question is the same as whether of not α∧3β is consistent in KB, by
completeness. So from m we can compute the structure of Ch,n(KB) by examining all possible
symmetric models of size ≤ m. a

Here is a more abstract formulation of the last result.

Theorem 4.8. Let L be a logic, let C be a class of finite structures, and assume the following
conditions:

1. L is sound for C.

2. Membership in C is decidable.

3. Each Ch,n belongs to C.

Then L is complete for C, and provability in L is decidable.

We emphasize that the decidability part of the last result is particularly crude.

5 Applications

This section contains applications of the models Ch,n(L) to the weak completeness of a number
of modal propositional systems.
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5.1 Logics built from 4, D, T , and B

The completeness results for K4 and the analog of Lemma 4.5 for the standard logics extending
it are harder to come by. It is instructive to look at the argument for Lemma 4.5, and then
to attempt to prove the same result for transitivity and K4. Let us assume that α ∧ 3β and
β ∧ 3γ are both consistent in K4; we must show that α ∧ 3γ is also consistent in K4. As
it happens, this is the case, but the argument is not the kind of “soft” argument we saw in
Lemma 4.5. More to the point, the argument for KB in Lemma 4.5 did not use the fact that
the formulas α and β belonged to Ch,n(KB): the fact there was a general fact that held for all
formulas whatsoever. But for the harder results here, we actually need to use the fact that we
are dealing with canonical formulas. This is because it is not in general true for any formulas ϕ,
ψ, and χ, that the consistency in K4 of ϕ∧3ψ and ψ ∧3χ implies the consistency of ϕ∧3χ.
(Consider, for example, ϕ = p ∧23p, ψ = ¬p, and χ = 2¬p.)

Despite this, one can show that Ch,n(K4) is transitive; see results later in this section.
But the argument is indirect and goes through a model Mh,n(K4) which is easily seen to be
transitive and later by an argument turns out to be the same as Ch,n(K4). The same strategy
works for other logics, but different logics require different work. So we have an overall open
question: is it true that for every logic L such that K4 ≤ L, Ch,n(L) is transitive for almost all
h? We believe the answer should be no, but we not aware of a counterexample.

In this section ` α means that α is provable in K4 (unless noted otherwise, say as provability
in K).

Lemma 5.1. For every α ∈ Ch+1,n there is a unique α′ ∈ Ch,n, the derivative of α, such that
in K, ` α→ α′. Moreover for all logics L, if α ∈ Ch+1,n(L), then α′ ∈ Ch,n(L).

Proof By Lemma 2.6, there is some β ∈ Ch,n such that (Ch+1,n, α) |= β. But β must be
unique, since we also have |= ⊕Ch,n. a

Example 5.1. We use the notation from Examples 2.1 and 4.1. First, α′1 = α′3 = α′5 = α′7 = p,
and α′2 = α′4 = α′6 = α′8 = ¬p. Using this, we have β′1 = β′2 = · · · = β′6 = α7, β′7 = α3,
β′8 = · · · = β′13 = α8, and β′14 = α6.

Lemma 5.2. Let α→c β in Ch+1,n(L). Then in K, ` α→ 3β′.

Proof Assume that α∧3β is consistent. Since ` β → β′, we see that α∧3β′ is also consistent.
Note that 3β′ ∈ Lh+1,n. Therefore ` α→ 3β′. a

Lemma 5.3. Let K4 ≤ L and let α→c β in Ch+1,n(L). Then if ϕ ∈ Lh,n and ` β → 3ϕ, then
` α→ 3ϕ.

Proof Suppose that ` β → 3ϕ. Then again α∧33ϕ is consistent. But in K4, ` 33ϕ→ 3ϕ,
Therefore α ∧3ϕ is consistent, so ` α→ 3ϕ. a

As mentioned above, our study of the models Ch,n(L) goes via the study of models which
are prima facie different from Ch,n(L). The main ones are the models Mh,n(L) = (Ch,n, →m ),
defined as follows:

1. M0,n(L) = C0,n(L).
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2. The valuation on Mh+1,n(L) again has v(pi) = {α : ` α→ pi}

3. The accessibility relation on Mh+1,n(L) is defined by α→m β iff

(a) ` α→ 3β′, and

(b) whenever γ ∈ Ch,n is such that ` β → 3γ, then also ` α→ 3γ.

Incidentally, as with all our models, the case of h = 0 is not so significant. We could have
defined the structure differently for h = 0 and very little would have changed.

Lemma 5.4. Let K4 ≤ L. If α→c β, then α→m β.

Proof This follows from Lemmas 5.2 and 5.3. a

Lemma 5.5. Concerning the models Mh,n(L):

1. Mh,n(L) is transitive.

2. If KT ≤ L, then Mh,n(L) is reflexive.

3. If KD ≤ L, then Mh,n(L) is serial.

Proof M0,n(L) is easily transitive. We therefore consider only the models Mh+1,n(L). Suppose
that α→m β→m γ. We show that α→m γ. Since β→m γ, we have ` β → 3γ′. It follows from this
and the fact that α→m β that ` α → 3γ′. This is half of what we want. For the other half,
suppose that ` γ → 3δ. Then ` β → 3δ, and so also ` α→ 3δ.

Turning to the second part, KT ≤ L, then ` α → 3α′ for all α ∈ Ch,n(L). Consequently,
Mh,n(L) is reflexive.

For part (3), suppose that KD ≤ L. Let α ∈ Ch,n(L). Then ` α → 3T. By the Existence
Lemma, let β ∈ Ch,n(L) be such that α→c β. Then also α→m β. a

Lemma 5.6. Each model Mh,n(L) is strongly extensional.

We shall need Truth Lemma for the models Mh,n(L). But it makes sense to prove a a
generalized version of the Truth Lemma, based on the following definition.

Definition A relation ; on Ch,n(L) is suitable if the following two properties hold:

1. If α→c β in Ch,n(L), then α ; β.

2. If α ; β, then ` α→ 3β′.

The main example so far of a suitable relation is →m on Ch,n(K4). But there are others,
for example the symmetric closure of →m on Ch,n(KB4). For the connection of this notion to
filtration, see Section 7.1.

Lemma 5.7 (A Generalized Truth Lemma). Let ; be a suitable relation on Ch,n(L). Then
for all α ∈ Ch,n(L) and all ψ ∈ Lh,n, ((Ch,n,;), α) |= ψ iff ` α→ ψ in K.

Proof By induction on ψ. a
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Lemma 5.8. Ch,n(K4) = Mh,n(K4).

Proof We need only check that if α→m β, then α→c β. We apply Lemma 5.7 to Mh,n. We see
that (Mh,n(K4), α) |= α ∧3β. Since the model Mh,n(K4) is transitive, α ∧3β is consistent in
K4. Thus α→c β. a

Theorem 5.9. Every α ∈ Ch,n(K4) is satisfied on some finite transitive model. Thus K4 is
complete for transitive models, and also decidable.

Completeness of S4, KD4, KB4, and S5 At this point we extend our results to the
standard logics which include the 4 axiom.

Lemma 5.10. Mh,n(S4) = Ch,n(S4).

Proof As in Lemma 5.8, we observe that if α→m β, then α ∧ 3β is satisfied in the world α
in the reflexive and transitive model Mh,n(S4) (see Lemma 5.5). Hence α∧3β is consistent in
S4; i.e., α→c β. a

As a result of Lemma 5.10, S4 is complete for reflexive transitive models, and it is also
decidable. A similar result holds for KD4. However, things are different for KB4:

Proposition 5.11. M1,1(KB4) 6= C1,1(KB4).

Proof Let α = p∧3p∧3¬p∧2(p∨¬p), and β = ¬p∧2F. Both are consistent in KB4, since
both are satisfiable in symmetric transitive models. Then α′ = p and β′ = ¬p. So ` α→ 3β′.
In addition, there no γ such that ` β → 3γ. This shows α→m β. But ` (α ∧3β)→ 32F, and
so in KB4, α ∧3β is inconsistent.

A related point: →m on Mh,n(KB4) is not symmetric: as we have seen, α→m β. But
6` β → 3α′, so the converse does not hold. a

To modify the work of this section to get the completeness result for KB4, we must therefore
do more. Define a model M↔

h,n(L) to be the same as Mh,n(L), except that

α−→mm β iff both α→m β and β→m α.

From Lemma 5.4 we see that if KB4 ≤ L and α→c β, then α−→mm β. The definition of −→mm
implies that this relation is symmetric and transitive. Moreover, if KT ≤ L, then →m is also
reflexive (see Lemma 4.5). The Generalized Truth Lemma 5.7 applies to M↔

h,n. Then as in
Lemma 5.8, we see that Ch,n(KB4) = M↔

h,n(KB4), and Ch,n(S5) = M↔
h,n(S5).

5.2 K45 and KD45

Proposition 5.12. M1,1(K5) 6= C1,1(K5) and M1,1(K45) 6= C1,1(K45).

Proof We follow the proof of Proposition 5.11. Again we set α = p ∧3p ∧3¬p ∧2(p ∨ ¬p),
and β = ¬p ∧ 2F; so α→m β. Also α′ = p and β′ = ¬p. Both α and β are consistent in S5,
since both are satisfiable in equivalence relations. Also, α→m α, since ` α→ 3α′. But working
in K5, we have ` 3β → 32F, and ` α → 3T. So ` α ∧3β → (3T ∧32F). Thus α ∧3β is
inconsistent. a
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Lemma 5.13. Let K5 ≤ L. Let α→c β in Ch+1,n(L). If γ ∈ Ch,n and ` α → 3γ, then
` β → 3γ.

Proof If not, ` β → 2¬γ. So ` 3β → 32¬γ. But α∧3β is consistent, and so is α∧32¬γ.
Thus K5, ` 32¬γ → 2¬γ. so α ∧ 2¬γ is consistent. By earlier work, ` α → 2¬γ. But this
contradicts the consistency of α. a

We define models Nh,n(L) = (Ch,n(L), →n ) by the definition we saw above for the models
Mh,n(L), except that we add an additional condition on the accessibility relation →n :

(4c) whenever γ ∈ Ch,n is such that ` α→ 3γ, then also ` β → 3γ.

Lemma 5.14. Let K45 ≤ L. If α→c β, then α→n β.

Proof This follows from Lemmas 5.2, 5.3, and 5.13. a

Lemma 5.15. Concerning the models Nh,n(L):

1. Nh,n(L) is transitive and euclidean.

2. If KT ≤ L, then Nh,n(L) is reflexive.

3. If KD ≤ L, then Nh,n(L) is serial.

Proof N0,n(L) is easily euclidean. We therefore consider only the models Nh+1,n(L). For
the transitivity, suppose that α→n β and β→n γ. We show that α→n γ. Since β→n γ, we have
` β → 3γ′. And then the fact that α→n β implies that ` β → 3γ′. Suppose next that
` α → 3δ, where δ ∈ Ch,n(L). Then also ` β → 3δ, and in addition we have ` γ → 3δ. The
converse also holds, and we have transitivity.

We turn to the euclidean property. Suppose that α→n β and α→n γ. We show that β→n γ.
First, since ` α → 3γ′ and α→n β, we have ` β → 3γ′. Suppose that ` β → 3δ. Then
` α→ 3δ, since α→n β. And then since α→n γ, we have ` γ → 3δ, as desired.

Turning to the second part of this lemma, if KT ≤ L, then ` α→ 3α′ for all α ∈ Ch,n(L).
Consequently, Nh,n(L) is reflexive.

Finally, suppose that KD ≤ L. Let α ∈ Ch,n(L). Then ` α → 3T. By the Existence
Lemma, let β ∈ Ch,n(L) be such that α→c β. Then also α→n β. a

Lemma 5.16. Ch,n(K45) = Nh,n(K45), and Ch,n(KD45) = Nh,n(KD45).

Proof As in Lemma 5.8: We use Lemmas 5.7, 5.14, and 5.15. a

5.3 K5 and KD5

It is worth mentioning that the C models cannot be used to obtain the standard completeness
results for these logics.

Proposition 5.17. C1,1(K5) and C1,1(KD5) are not euclidean.

Proof In the notation of Example 2.1, we have α5→c α6 and α5→c α8. (The easiest way to
see these is to observe that α5 ∧3α6 and α5 ∧3α8 are satisfiable on euclidean serial models.)
But α8 6→c α6. This is because ` α6 → 2¬p, so in K5, ` 3α6 → 2¬p. And ` α8 → 3p. So
α8 ∧3α6 is not consistent in K5. a
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5.4 K4McK

McK is the logic generated over K by the McKinsey axioms 23ϕ→ 32ϕ. The logic S4.1, S4
with the McKinsey axioms was shown to have the finite model property by Segerberg [11]. We
shall consider K4McK in this section, but our work applies to S4.1 with only small changes.
Our result is that K4McK is sound for the class CMcK of transitive frames with the property
that every x ∈ F has a successor y which has at most one successor.

Lemma 5.18. For h ≥ 2, the frame underlying Mh,n(K4McK) belongs to CMcK .

Proof Write M for the model Mh,n(K4McK), and we writeM for its universe, Ch,n(K4McK).
M is transitive by Lemma 5.5, part (1). We therefore show that every α ∈ M has a successor
β which itself has at most one successor. We argue by contradiction.

For each γ ∈M , let
γ→
m

= {δ : γ→m δ}.

We claim that each set γ→
m

is non-empty. To see this, we recall that KD ≤ K4McK and use
Lemma 5.5, part (3). (To see that KD ≤ K4McK, note that in K, ` 23F→ 2F. In KMcK,
` 23F→ 3T. So we then have in KMcK that ` ¬23F; in particular ` 3T.)

Towards a contradiction, let α ∈M have the property that no element of α→
m

has just one
successor. By transitivity, α→

m
is closed under →c . By finiteness, there is a non-empty set

S ⊆ α→
m

which is ⊆-minimal with respect to this closure property. For each γ ∈ S, γ→
m

= S
by minimality. And since S 6= ∅, our overall assumption in this paragraph implies that there
are distinct elements in S, say γ 6= δ. Now γ and δ must disagree on some atomic proposition:
otherwise they are bisimilar in the model, and hence equal by Lemma 5.6. Suppose that γ |= p
and δ |= ¬p. Considering S, we see that γ |= 23p. By Lemma 5.7 and the assumption that
h ≥ 2, in K we have ` γ → 23p. In KMcK, ` γ → 32p. By the Existence Lemma, there
is some ε ∈ M such that ε |= 2p and δ→c ε (so also δ→m ε). By minimality, ε→

m
= S, and so

ε→c δ. But now δ |= p. This contradicts our earlier fact that δ |= ¬p. a

We deduce that Ch,n(K4McK) = Mh,n(K4McK) for h ≥ 2. Also, we see that K4McK is
complete for models whose underlying frame belongs to CMcK .

5.5 K2∗

The next logical system we study is called K2∗. It is K with the normality axioms and
necessitation rules for both 2 and 2∗, together with the following two axiom schemes:

Mix 2∗ϕ→ (ϕ ∧22∗ϕ)
Induction (ϕ ∧2∗(ϕ→ 2ϕ))→ 2∗ϕ

These are the versions of the Segerberg axioms for PDL tuned to this simpler system. This
system K2∗ is sound when 2∗ is interpreted by the reflexive-transitive closure of 2; The rest
of this section is devoted to a proof of completeness of K2∗.

Before this, we need a small point on the multimodal versions of our results. In general,
working with more than one modal operator is straightforward in our approach. More precisely,
it is straightforward to define the canonical formulas and the analogs of the Ch,n models in the
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multimodal setting. But it always takes extra work to deal with logics that incorporate non-
trivial interaction axioms. This should be no surprise, since even in the monomodal setting one
needs special work for the axioms.

We build Ch,n(K2∗) the same way we built Ch,n except that we take 2 and 2∗ to be
independent modalities. That is, we change (4) to

(
∧
ψ∈R

3ψ) ∧ (2
∨
R) ∧ (

∧
ψ∈S

3∗ψ) ∧ (2∗
∨
S) ∧ (

∧
T ) ∧ (

∧
pi /∈T

¬pi) (5)

But Ch,n(K2∗) is the set of formulas of this form which are consistent in K2∗. We define
the height of a formula ϕ ∈ L(2∗) by the same induction as earlier, except we also say that
ht(2∗ϕ) = 1 + ht(ϕ). The analogs of Lemmas 2.6 and 2.7 hold.

Lemma 5.19. Let α, β ∈ Ch,n(K2∗) and 3∗ϕ ∈ Lh,n. Suppose that α→c β and ` β → 3∗ϕ.
Then ` α→ 3∗ϕ as well.

Proof If not, then ` α→ 2∗¬ϕ. We also have ` 3β → 33∗ϕ. Since α∧3β is consistent, its
consequence 2∗¬ϕ∧33∗ϕ is also consistent. But by Mix, ` 33∗ϕ→ 3∗ϕ. Thus 2∗¬ϕ∧3∗ϕ
is consistent, and this is absurd. a

We say that a set X is closed under →c if whenever α ∈ X and α→c β, then β ∈ X as well.

Lemma 5.20. Let X ⊆ Ch,n(K2∗) be closed under →c . Then `
∨
X → 2∗

∨
X. Moreover,

for all α ∈ X, ` α→ 2∗
∨
X.

Proof We check that `
∨
X → 2

∨
X. (Then it follows from the induction axiom that

`
∨
X → 2∗

∨
X.) If not,

∨
X ∧ 3¬

∨
X is consistent. Then for some α ∈ X, α ∧ 3¬

∨
X

is consistent. Note that ¬
∨
X ∈ Lh,n, so we apply the Existence Lemma: let β be such that

α→c β and ` β → ¬
∨
X. Then β /∈ X. But then we see that X is not closed under →c , a

contradiction. Finally, for all α ∈ X, ` α→
∨
X. So ` α→ 2∗

∨
X as well. a

Lemma 5.21 (Truth Lemma for Ch,n(K2∗)). For all α ∈ Ch,n(K2∗) and all ψ ∈ Lh,n,

(Ch,n(K2∗), α) |= ψ iff ` α→ ψ in K2∗.

Proof By induction on ψ. The step for 3ψ is the same as in Lemma 4.4. We only give the
induction step for 3∗ψ formulas.

Let 3∗ψ ∈ Lh,n. First, suppose that (Ch,n(K2∗), α) |= 3∗ψ. We check by induction on the
length l of the shortest path witnessing this that ` α → 3∗ψ. For l = 0, we have α |= ψ, and
the induction hypothesis shows ` α → ψ. And by Mix, ` ψ → 3∗ψ. Assume the result for l,
and suppose that α |= 3∗ψ via a path of length l + 1. Let α→c β and β |= 3∗ψ. By induction
hypothesis, ` β → 3∗ψ. By Lemma 5.19, ` α→ 3∗ψ.

In the other direction, assume that ` α → 3∗ψ. Let X be the set of β ∈ Ch,n(K2∗) such
that there is no path in the model from β to any γ such that γ |= ψ. Note that X is closed
under →c . We must show that α /∈ X, for then our semantics tells us that α |= 3∗ψ. If α ∈ X,
then by Lemma 5.20, ` α → 2∗

∨
X. For β ∈ X, ` β → ¬ψ. So `

∨
X → ¬ψ, and it follows

that ` α→ 2∗¬ψ. And we have a contradiction to ` α→ 3∗ψ. a

Theorem 5.22. K2∗ is complete and decidable.
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6 Two modifications

In this section, we present two further completeness results. These have the property that the
models Ch,n(L) are not directly usable; one must modify them in some way or other. This
section may be omitted without loss of continuity.

6.1 2ϕ↔ 3ϕ

We consider Tr, the logic K together with the axioms 2ϕ ↔ 3ϕ. The corresponding frame
condition is that every point has exactly one successor; that is, the frame is the graph of a
total function. We’ll write L in this discussion for this logic. As it happens, Ch,n(L) is never a
function. The situation is simple enough that we can give an explicit description of the model
Ch,n(L). Recall the sets SDn of state descriptions of order n; see equation (1). The set Ch,n(L)
of worlds of the model Ch,n(L) is isomorphic to the set of sequences of length h of elements of
SDn. We write such a sequence as

s = (Ŝ1, . . . , Ŝh).

The atomic formulas true at s are those implied by S1. Given two such sequences, say the
one above and also t = (T̂1, . . . , T̂h), we say that s → t iff S2 = T1, . . ., Sh = Th−1. In this
way, each point has 2n successors. The overall model is thus not a function. The isomorphism
i : W → Ch,n(L) is given by

i(s) = Ŝ1 ∧3+(Ŝ2 ∧3+(· · · ∧3+Ŝn))

where 3+ϕ abbreviates 3ϕ ∧2ϕ.
We can, however obtain a completeness result by modifying the model. Let D be any subset

of Ch,n(L) which is a total function. (D may be obtained by starting with any node, following
the arrows in any way whatsoever, and stopping on a repeated node.) An induction on i shows
that for 1 ≤ i ≤ h and ϕ ∈ Li,n and all s and t such that S1 = T1, . . ., Si = Ti, we have
(Ch,n(L), s) |= ϕ iff (Ch,n(L), t) |= ϕ. Then an induction on ϕ ∈ Lh,n shows that for s ∈ W ,
(Ch,n(L), s) |= ϕ iff (W, s) |= ϕ. It follows that for α ∈ Ch,n, (W, i−1(α)) |= α. In particular,
every L-consistent α has a functional model.

6.2 The Löb logic KL

Recall that the Löb axioms are those of the form 2(2ϕ → ϕ) → 2ϕ, and KL is K together
with all of these axioms. Recall also the standard fact that K4 ≤ KL. (It would have been
nice to find a semantic proof of this by studying Ch,n(KL) directly, but we were not able to do
this.)

In this section, we study a variant Dh,n(L) = (Ch,n(L), →d ) of Ch,n(L), and we show that
this model is transitive and converse wellfounded. This gives the completeness and decidability
results for the logic KL on finite transitive tree models.

We define α→d β if α→c β, and for some ϕ ∈ Lh,n, ` α → 3ϕ and ` β → 2¬ϕ. The
valuation on the model is the obvious one.
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We also define N∗h,n(L) = (Ch,n(L),→N∗) by the same definition of Mh,n(L), except that we
also add

(3c) there is some γ ∈ Ch,n such that ` α→ 3γ, but ` β → 2¬γ.

Since K4 ≤ L we have that if α→d β, then α→N∗ β (see also Lemma 5.4).
Further, N∗h,n(L) is transitive. To see this, suppose that α →N∗ β →N∗ γ, and let γ and

δ be such that ` α → 3γ and ` β → 2¬γ. Then we must have ` γ → 2¬γ; for if not, then
` γ → 3γ, so ` β → 3γ by Lemma 5.4.

Continuing, we claim that N∗h,n(L) is converse wellfounded. That is, there are no infinite
paths

α0 →N∗ α1 →N∗ α2 →N∗ · · ·

in the model. For suppose we had such a path. For each i, let γi ∈ Ch,n be such that ` αi → 3γi
and ` αi+1 → 2¬γi. Since Lh,n is finite, we can fix some γ∗ such that for infinitely many n,
γi = γ∗. But then for some i < j we have ` αi → 3γ∗ and ` αj → 3γ∗. However, by an
inductive argument using Lemma 5.3 backwards from j we also see that ` αi+1 → 3γ∗. This
contradicts the consistency of αi+1. This establishes our claim.

Lemma 6.1 (Truth Lemma for N∗h,n(L)). Let KL ≤ L. For all α ∈ Ch,n(L) and all ψ ∈ Lh,n,
(N∗h,n(L), α) |= ψ iff ` α→ ψ in K.

Proof We only give the induction step for 3ψ formulas. Let 3ψ ∈ Lh,n. Assume first that
(N∗h,n(L), α) |= 3ψ. Then just as in Lemma 4.4 we see that ` α→ 3ψ.

In the other direction, suppose that ` α → 3ψ. Then by the Löb axioms, ` α → 3(ψ ∧
2¬ψ). Note that ψ ∧ 2¬ψ ∈ Lh,n as well. By the Existence Lemma 4.3, let β ∈ Ch,n(L) be
such that α→c β and ` β → (ψ ∧ 2¬ψ). The last condition insures that α→d β. So α →N∗ β,
and we have (N∗h,n(L), α) |= 3ψ. a

Theorem 6.2. Concerning KL:

1. N∗h,n(KL) = Dh,n(KL).

2. KL is complete for finite transitive, converse wellfounded models.

Proof The first part is similar to arguments that we have seen. The two models have the
same set of nodes. If α→d β, then we know that α →N∗ β. Conversely, if α →N∗ β, then by
Lemma 6.1, α ∧ 3β is satisfiable on some transitive converse wellfounded model, hence it is
consistent in KL.

The second follows from the first, as we have seen many times. a

Since we are interested in the models Ch,n(L), it is worth noting that for the logic at hand
we do have transitivity.

Theorem 6.3. Ch,n(KL) is transitive.
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Proof Let ≈ be the relation on Ch,n(KL) defined by

α ≈ β iff for all δ ∈ Ch−1,n, ` α→ δ iff ` β → δ

Note in particular that if α ≈ β that α and β are the same except for their atomic conjunct.
As a consequence, α′ = β′.

Further, note that α→c β iff either α→N∗ β or α ≈ β. Turning to the transitivity, suppose
that α→c β→c γ. There are four cases. Once case uses the transitivity of →N∗ , and another
the transitivity of ≈. The remaining two cases are similar to each other; here is one: suppose
α →N∗ β ≈ γ. Then ` α → 3β′, so as 3β′ = 3γ′, we have ` α → 3γ′. Also, if ` γ → 3δ,
then also ` β → 3δ (since β ≈ γ). And then also ` α→ 3δ (since α→m β). Finally, if δ is such
that ` α→ 3δ but ` β → 2¬δ, then again we have ` γ → 2¬δ. a

As it happens, C1,1(KL) = C1,1(K4). This model is shown in the bottom right corner of
Figure 1. Some work with a computer program shows that C2,1(KL) has 170 nodes.

7 Comparison with other work

One of the main points of this paper is the study of the models Ch,n(L) and the application of
those models to completeness proofs. As a summary/conclusion to this paper, we mention the
relation of our work with that of others, especially the original paper of Fine [4] and also the
approach via filtration.

7.1 Comparison with filtration of the canonical model

Recall that Lh,n is the set of modal formulas of height ≤ h and of order ≤ n. Let Let Can(L)
be the canonical model of a logic L. This is the model whose worlds are the maximal consistent
sets in L, whose valuation is v(p) = {x : p ∈ x}, and whose accessibility relation is x → y
iff whenever ϕ ∈ y, 3ϕ ∈ x. For each h and n, each x ∈ Can(L) contains a unique element
αx ∈ Ch,n. The set Lh,n induces an equivalence relation ≡ on Can(L), where x ≡ y iff αx = αy.
This is the same relation as x ≡ y iff x ∩ Lh,n = y ∩ Lh,n. We recall also the Truth Lemma for
Can(L): W |= ϕ iff ϕ ∈W .

For each α ∈ Ch,n(L), Can(L) contains ThC(α), the set of formulas satisfied by α in the model
Ch,n. Note that αTh(α) = α, and Th(αx) ≡ x. (But in general, we do not have Th(αx) = x.)

Recall also that in view of the Truth Lemma, a filtration on the canonical model through
Lh,n is a relation R on Can(L)/ ≡ such that

1. if x→ y, then [x]R[y];

2. if [x]R[y], 3ϕ ∈ Lh,n and ϕ ∈ y, then also 3ϕ ∈ x.

The smallest filtration is Rmin, given by [x]R[y] iff x′ → y′ for some x′ ≡ x and y′ ≡ y. The
largest is Rmax is given by [x]Rmax[y] iff whenever 3ϕ ∈ Lh,n and ϕ ∈ y, 3ϕ ∈ x.

Theorem 7.1. There is a one-to-one correspondence between filtrations of Can(L) through Lh,n
and suitable relations ; on Ch,n(L). The correspondence associates to a filtration R the suitable
relation ;R given by

α ;R β iff [Th(α)]R[Th(β)].
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In the other direction, we associate to a suitable relation ; the filtration R; given by

[x]R;[y] iff αx ; αy

Each of these is monotone with respect to inclusion of relations. Moreover,

1. The minimal filtration of Lh,n corresponds to the accessibility relation →c of Ch,n(L).

2. The largest filtration on Lh,n corresponds to the suitable relation ; given by α ; β iff
` α→ β′ in L.

Proof There are a few things to check here. We begin with the verification that if R is
a filtration, then we check that ;R is suitable. Note that if α→c β, then Th(α) → Th(β)
in Can(L). And then by the first filtration condition, we have [Th(α)]R[Th(β)]. Therefore
α ;R β. And if α ;R β, then we show α ∧3β′ is consistent in K; it follows that ` α → 3β′

in K. Note that in the filtration Can(L)/R, [Th(α)] |= α and [Th(β)] |= β′. These hold by the
Filtration Lemma and the Truth Lemma of the canonical model.

In the other direction, assume that ; is a suitable relation on Ch,n(L). We check that
R; is a filtration of Can(L). Suppose that x → y in Can(L). Then in the canonical model,
x |= αx ∧ 3αy. So αx ∧ 3αy ∈ x. Therefore αx ∧ 3αy is consistent in L; i.e., αx→c αy. We
then have αx ; αy. Thus [x]R[y]. And suppose that [x]R[y], 3ϕ ∈ Lh,n and ψ ∈ y. In Can(L),
y |= ψ. By the Filtration Theorem, [y] |= ϕ. So[x] |= 3ϕ, and thus 3ϕ ∈ x as desired.

To check that the two correspondences are inverses:

α ;R; β iff [Th(α)]R;[Th(β)]
iff αTh(α) ; βTh(β)

iff α ; β

and also
[x]R;R [y] iff αx ;R αy

iff [Th(αx)]R[Th(αy)]
iff [x]R[y]

The monotonicity point in our theorem means that if R1 ⊆ R2 are filtrations, then ;R1⊆;R2 .
This is immediate from the definition, as is the parallel point in the other direction.

We next turn to the additional assertions. Now

α ;Rmin β iff [Th(α)]Rmin[Th(β)]
iff (∃x′, y′)x′ ≡ Th(α), y′ ≡ Th(β), x′ → y′

iff αx′ ∧3βy′ is consistent
iff α ∧3β is consistent
iff α→c β

Finally,

α ;Rmax β iff [Th(α)]Rmax[Th(β)]
iff 3ϕ ∈ Lh,n and (Ch,n, β) |= ϕ imply (Ch,n, α) |= 3ϕ
iff 3ϕ ∈ Lh,n and ` β′ → ϕ imply (Ch,n, α) |= 3ϕ
iff ` α→ 3β′

a
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In view of the results of this paper on Ch,n(L), one might at first glance think that we could
profitably consider the models Dh,n(L) := (Ch,n(L),;Rmax) obtained by the largest filtration.
However, these models are usually not interesting. For example, it is easy to check that Dh,n(K4)
is has more edges than Ch,n(K4); specifically, ∅̂∧p has outgoing arrows in Dh,n(K4). This means
that Dh,n(K4) is not transitive. The upshot is that the models Ch,n(K4) are more appropriate
vehicles for completeness results.

The canonical model as a limit Since we have been discussing the canonical model, it
might be useful to mention a sense in which the canonical model may be regarded as the limit
of the models Ch,n(L) that have been the main objects of study in this paper. It is not entirely
clear how to make this precise.

Fix a number n, and let Ln =
⋃
h Lh,n. This is the set of formulas on the first n atomic

propositions. Let Cann(L) be the set of consistent formulas in Ln, made into a Kripke model
in the expected way. All of the work we do in this section is independent of n, so we shall drop
it from the notation.

Recall that an n-bisimulation between Kripke models A and B is a sequence Z0 ⊇ Z1 · · · ⊇ Zn
such that

1. If aZ0b, then a and b agree on atomic propositions.

2. If aZi+1b and a→ a∗, then there is some b∗ such that b→ b∗ and a∗Zib∗.

3. If aZi+1b and b→ b∗, then there is some a∗ such that and a∗Zib∗.

For more on this, see, e.g., Blackburn, de Rijke, and Venema [3], pp. 74–75. We will also speak
of an ω-bisimulation as an infinite sequence with the properties above for all i. It is well-known
that this is weaker than a bisimulation.

Proposition 7.2. The following sequence

Ẑh = Z0 ⊇ Z1 · · · ⊇ Zh

is the largest h-bisimulation between Ch+1,n(L) and Ch,n(L): αZiβ iff α and β satisfy the same
formula in Ci,n. In terms of derivatives, α(h+1−i) = β(h−i).

Proof It is clear that if αZ0β, then α and β agree on atomic propositions. We check one of
the zig-zag conditions. Suppose that α and β agree on the same canonical formula of height
i+1, say γ, and also that α→c α∗. Let δ be the element of Ci,n satisfied by α∗. Then ` γ → 3δ,
since γ ∧3δ is consistent. From this, β |= 3δ. So for some β∗ such that β→c β∗, β∗ |= δ. This
means that δ is the element of Ch,n(L) satisfied by β.

For the uniqueness, recall that if two points in any models are related by an h-bisimulation,
then they satisfy the same modal formulas of height at most h. For 0 ≤ i ≤ h, the modal
formula of height i satisfied by α in Ch+1,n is α(h+1−i) (this is the (h + 1 − i)-th derivative of
α, and the modal formula of height i satisfied by β in Ch,n is β(h−i). a
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Consider the infinite sequence along the top below:

C0,n(L) C1,n(L)
bZ0oo C2,n(L)

bZ1oo · · · Ch,n(L) Ch+1,n(L)
bZhoo · · ·

Cann(L)

πh

OO

πh+1

88qqqqqqqqqq

So the relations on the top line are stronger and stronger with h. (That is, the diagram above
is not a diagram in a category in the usual sense, since the relations (morphisms) involve are
required to be have different properties.) The h-bisimulation πh is the sequence Y0 ⊇ Y1 · · · ⊇
Yh, where xYiα iff x and α satisfy the same formula in Ci,n(L). It is not hard to check that for
all h, πh is an h-bisimulation. Moreover, the diagram commutes in the appropriate sense: for
all h and all i ≤ h, Y h

i = Zhi ◦ Y
h+1
i as a relational composition.

Proposition 7.3. Cann(L) is the limit of the sequence Ch,n(L)← Ch+1,n(L) in the sense that
if A = (A,→, v) is any L-model and for all h, ρh = Z0 ⊇ Z1 ⊇ · · ·Zh is an h-bisimulation
between A and Ch,n(L), then there is a unique ω-bisimulation R0 ⊇ R1 ⊇ · · · such that for all
h, ρh = πh ◦Rh. Moreover, there is a total bisimulation between A and Cann.

Proof (Sketch) The hypotheses imply that for all h, if aZhα, then (A, a) |= α. It then turns
out that the map d : A → Cann given by d(a) = {ϕ : (A, a) |= ϕ} is the unique bisimulation.
The ω-bisimulation between them is defined similarly. a

7.2 Comparison with Fine’s original treatment

In this section, we return to our discussion from the Introduction concerning Fine’s paper [4]
on this subject. What we want to do here is to review details on his model Ch,n, the vehicle for
proving completeness of K4. We show that it is the same as Ch,n(K4).

For any formulas α and β in Ch,n, we say αS β if for all γ ∈ Ch−1,n, ` β → 3γ implies
` α → 3γ. Here the provability is in K. A formula α ∈ Ch,n is K4-suitable if for β ∈ Ch−1,n

and γ ∈ Ch−2,n, if ` α→ 3β and ` β → 3γ, then there is some δ ∈ Ch−1,n such that ` α→ 3δ,
δ′ = γ, and β S δ.

We define a model (Ch,n, R) as follows: the worlds of the model are theK4-suitable formulas,
and the accessibility relation is αRβ iff ` α → 3β′ and αS β. The valuation is the obvious
one. It is clear that R is transitive. Note that the logical system K4 plays no role in any of
these definitions.

The following result is neither surprising nor trivial:

Proposition 7.4. Mh,n(K4) = Ch,n(K4) = Ch,n.

Proof First we check that every α ∈ Ch,n(K4) is K4-suitable. For this, we call on Lemma
4 from [4]. That result concerns the property of α ∈ Ch,n being K4-suited : if β ∈ Ch−2,n and
` α→ 33β, then for some γ ∈ Ch−1,n, γ′ = β, and ` α→ 3γ.

We claim at this point that for all n, every α ∈ Ch,n(K4) is K4-suited. For suppose that
β ∈ Ch−2,n and ` α→ 33β. Then in the model Ch,n(K4), α |= 33β. So let γ#, δ# ∈ Ch,n(K4)
be such that α→c γ#→c δ# and δ# |= 3β. Then the second derivative of δ# is exactly β. We
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take for γ the first derivative of δ#. We have γ′ = β. Further, by transitivity of the model
Ch,n(K4), α→c δ#. So in the model, α |= 3γ. By the Truth Lemma, ` α→ 3γ.

We also claim that for every α ∈ Ch,n(K4) there is some β ∈ Ch+1,n(K4) such that β′ = α.
To see this, let β be the canonical formula of height h satisfied by α in Ch+1,n. This model
is transitive, so β is consistent in K4. We have ` β → α by properties of Ch,n, and so indeed
α = β′.

Lemma 4 of [4] tells us that if α is K4-suited, then α′ is K4-suitable. Combined with the
results of the last two paragraphs, we see that indeed every α ∈ Ch,n(K4) is K4-suitable.

Theorem 5 in [4] proves that (Ch,n, α) |= α for all K4-suitable α. Further, R is transitive
on the model. So we see that each K4-suitable α is consistent in K4. Thus, the two models
Ch,n(K4)and Ch,n have the same worlds. If is immediate from the definitions that the two
relations →m and R are the same, as are their valuations. a

8 Conclusions and open problems

This paper has not presented new results. We take its main contribution to be a demonstration
that model constructions can be based on canonical formulas. To put things in a different light,
recall that in first-order model theory, one of the basic constructions is the Henkin model: one
build a model from a set of first-order sentences. One would think that finite models could
be built from sentences in certain settings. This idea cannot work out for first-order logic in
general, since the logic lacks the finite model property. But for modal logic, or any logic with the
finite model property, it is natural to ask for model constructions that based on the syntactic
objects and closely related notions (such as the consistency of some formula in some logic). This
is what we studied in this paper. The fact that the results could have been obtained otherwise
does not detract from a direct development.

After seeing Theorem 7.1 on filtration, one might question this paper. After all, if the specific
completeness results are already known and if the particular models happen to be obtainable
as special cases of known work, what exactly is gained? There are several responses. Even if
one is happier with the classical development than with our re-working of it, it still might be
useful to know about the minimal filtration of the canonical model through Lh,n. So all of our
work could be re-cast as a body of results on that particular topic.

We close the paper by reiterating the open problem from Section 5: is it true that for every
logic L such that K4 ≤ L, Ch,n(L) is transitive for almost all h? This turns out to be true for
the extensions of K4 in this paper, but the proofs are so different that one doubts that a single
result is behind them.

We also think it would be interesting to pursue other aspects of modal logic using the
model constructions from this paper. For example, one might hope for a treatment of the
computational complexity of various logics based on the models Ch,n(L).
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