Modal Logic PHIL 858P

Eric Pacuit

Department of Philosophy
University of Maryland
pacuit.org
epacuit@umd.edu
January 28, 2019

Let $A t=\left\{p_{1}, p_{2}, \ldots, p_{n}, \ldots\right\}$ and \mathcal{L} be the basic modal language:

$$
p|\neg \varphi| \varphi \vee \psi \mid \diamond \varphi
$$

where $p \in A t$ is a propositional variable.

The height of $\varphi \in \mathcal{L}_{\diamond}$, denoted $\operatorname{ht}(\varphi)$, is:

$$
\begin{array}{ll}
\operatorname{ht}\left(p_{n}\right) & =0 \\
\operatorname{ht}(\neg \varphi) & =\operatorname{ht}(\varphi) \\
\operatorname{ht}(\varphi \vee \psi) & =\max \{\operatorname{ht}(\varphi), \operatorname{ht}(\psi)\} \\
\operatorname{ht}(\diamond \varphi) & =1+\operatorname{ht}(\varphi)
\end{array}
$$

The order of φ, written $\operatorname{ord}(\varphi)$, is

$$
\begin{array}{ll}
\operatorname{ord}\left(p_{n}\right) & =n \\
\operatorname{ord}(\neg \varphi) & =\operatorname{ord}(\varphi) \\
\operatorname{ord}(\varphi \vee \psi) & =\max \{\operatorname{ord}(\varphi), \operatorname{ord}(\psi)\} \\
\operatorname{ord}\left(\diamond_{n} \varphi\right) & =\operatorname{ord}(\varphi)
\end{array}
$$

$$
\mathcal{L}_{h, n}=\{\varphi \mid \varphi \in \mathcal{L}, \text { ht }(\varphi) \leq h \text { and } \operatorname{ord}(\varphi) \leq n\}
$$

Propositional Logic

$\mathcal{L}_{0, n}$ is the propositional language built from $\left\{p_{1}, \ldots, p_{n}\right\}$ of propositional variables.

For any $T \subseteq\left\{p_{1}, \ldots, p_{m}\right\}$, let

$$
\widehat{T}=\bigwedge_{p \in T} p \wedge \bigwedge_{p \in\left\{p_{1}, \ldots, p_{n}\right\}-T} \neg p
$$

- For each $\varphi \in \mathcal{L}_{0, m}$, exactly one of the following holds: $\vdash \widehat{T} \rightarrow \varphi$ or $\vdash \widehat{T} \rightarrow \neg \varphi$.
- For each $\varphi \in \mathcal{L}_{0, m}, \vdash \varphi \leftrightarrow \bigvee\{\widehat{T} \mid \vdash \widehat{T} \rightarrow \varphi\}$.

Canonical sentences

$$
\begin{aligned}
\mathcal{C}_{0, n} & =\left\{\hat{T} \mid T \subseteq\left\{p_{1}, \ldots, p_{n}\right\}\right\} \\
\mathcal{C}_{h+1, n} & =\left\{\alpha_{S, T} \mid S \subseteq \mathcal{C}_{h, n}, T \subseteq\left\{p_{1}, \ldots, p_{n}\right\}\right\}
\end{aligned}
$$

where

$$
\alpha_{S, T}:=\bigwedge_{\psi \in S} \diamond \psi \wedge \square \bigvee S \wedge \hat{T}
$$

Examples

$$
\begin{aligned}
& \text { At }=\{p\} \\
& \mathcal{C}_{0,1}=\{p, \neg p\}
\end{aligned}
$$

Examples

$$
\begin{aligned}
& \text { At }=\{p\} \\
& \mathcal{C}_{0,1}=\{p, \neg p\} \\
& \mathcal{C}_{1,1}=\left\{\alpha_{1}, \ldots, \alpha_{8}\right\}, \text { where } \\
& \alpha_{1}=\widehat{\emptyset} \wedge p=\square \perp \wedge p \\
& \alpha_{2}=\widehat{\emptyset} \wedge \neg p=\square \perp \wedge \neg p
\end{aligned}
$$

Examples

$$
\begin{aligned}
& \text { At }=\{p\} \\
& \mathcal{C}_{0,1}=\{p, \neg p\} \\
& \mathcal{C}_{1,1}=\left\{\alpha_{1}, \ldots, \alpha_{8}\right\}, \text { where }
\end{aligned}
$$

$$
\alpha_{1}=\widehat{\emptyset} \wedge p \quad=\square \perp \wedge p
$$

$$
\alpha_{2}=\widehat{\emptyset} \wedge \neg p \quad=\square \perp \wedge \neg p
$$

$$
\alpha_{3}=\widehat{\{p\}} \wedge p=\diamond p \wedge \square p \wedge p
$$

$$
\alpha_{4}=\widehat{\{p\}} \wedge \neg p=\diamond p \wedge \square p \wedge \neg p
$$

Examples

$$
\begin{aligned}
& \text { At }=\{p\} \\
& \mathcal{C}_{0,1}=\{p, \neg p\} \\
& \mathcal{C}_{1,1}=\left\{\alpha_{1}, \ldots, \alpha_{8}\right\}, \text { where } \\
& \alpha_{1}=\widehat{\emptyset} \wedge p=\square \perp \wedge p \\
& \alpha_{2}=\widehat{\emptyset} \wedge \neg p=\square \perp \wedge \neg p \\
& \alpha_{3}=\widehat{\{p\}} \wedge p=\diamond p \wedge \square p \wedge p \\
& \alpha_{4}=\widehat{\{p\}} \wedge \neg p=\diamond p \wedge \square p \wedge \neg p \\
& \alpha_{5}=\widehat{\{\neg p\}} \wedge p=\diamond \neg p \wedge \square \neg p \wedge p \\
& \alpha_{6}=\widehat{\{\neg p\}} \wedge \neg p=\diamond \neg p \wedge \square \neg p \wedge \neg p
\end{aligned}
$$

Examples

$$
\begin{aligned}
& \text { At }=\{p\} \\
& \mathcal{C}_{0,1}=\{p, \neg p\} \\
& \mathcal{C}_{1,1}=\left\{\alpha_{1}, \ldots, \alpha_{8}\right\}, \text { where } \\
& \alpha_{1}=\widehat{\emptyset} \wedge p=\square \perp \wedge p \\
& \alpha_{2}=\widehat{\emptyset} \wedge \neg p=\square \perp \wedge \neg p \\
& \alpha_{3}=\widehat{\{p\}} \wedge p=\diamond p \wedge \square p \wedge p \\
& \alpha_{4}=\widehat{\{p\}} \wedge \neg p=\diamond p \wedge \square p \wedge \neg p \\
& \alpha_{5}=\widehat{\{\neg p\}} \wedge p=\diamond \neg p \wedge \square \neg p \wedge p \\
& \alpha_{6}=\widehat{\{\neg p\}} \wedge \neg p=\diamond \neg p \wedge \square \neg p \wedge \neg p \\
& \alpha_{7}=\widehat{\mathcal{C}_{0,1}} \wedge p=\diamond p \wedge \diamond \neg p \wedge \square(p \vee \neg p) \wedge p \\
& \alpha_{8}=\widehat{\mathcal{C}_{0,1} \wedge \neg p}=\diamond p \wedge \diamond \neg p \wedge \square(p \vee \neg p) \wedge \neg p
\end{aligned}
$$

Lemma. For each h and $n, \mathcal{C}_{h, n}$ is a finite subset of $L_{h, n}$. Moreover, if $F(0, n)=2^{n}$ and $F(h+1, n)=2^{F(h, n)+n}$, then $\left|\mathcal{C}_{h, n}\right|=F(h, n)$

Lemma. For each h and $n, \mathcal{C}_{h, n}$ is a finite subset of $L_{h, n}$. Moreover, if $F(0, n)=2^{n}$ and $F(h+1, n)=2^{F(h, n)+n}$, then $\left|\mathcal{C}_{h, n}\right|=F(h, n)$

Lemma. Let $\chi \in \mathcal{L}_{h, n}$ and $\alpha \in \mathcal{C}_{h, n}$. Then, either $\vdash_{\boldsymbol{K}} \alpha \rightarrow \chi$ or $\vdash_{\mathbf{K}} \alpha \rightarrow \neg \chi$.

Lemma. For each h and $n, \mathcal{C}_{h, n}$ is a finite subset of $L_{h, n}$. Moreover, if $F(0, n)=2^{n}$ and $F(h+1, n)=2^{F(h, n)+n}$, then $\left|\mathcal{C}_{h, n}\right|=F(h, n)$

Lemma. Let $\chi \in \mathcal{L}_{h, n}$ and $\alpha \in \mathcal{C}_{h, n}$. Then, either $\vdash_{\boldsymbol{K}} \alpha \rightarrow \chi$ or $\vdash_{\mathbf{K}} \alpha \rightarrow \neg \chi$.

Definition. Given a set of formulas X, let $\bigoplus X$ denote exactly one of X. Formally, if $X=\left\{\varphi_{1}, \ldots, \varphi_{n}\right\}$, then $\bigoplus X$ is short for $\bigvee_{i=1, \ldots, n}\left(\varphi_{i} \wedge \neg \bigvee_{j \neq i} \varphi_{j}\right)$.

Lemma. For each h and $n, \mathcal{C}_{h, n}$ is a finite subset of $L_{h, n}$. Moreover, if $F(0, n)=2^{n}$ and $F(h+1, n)=2^{F(h, n)+n}$, then $\left|\mathcal{C}_{h, n}\right|=F(h, n)$

Lemma. Let $\chi \in \mathcal{L}_{h, n}$ and $\alpha \in \mathcal{C}_{h, n}$. Then, either $\vdash_{\boldsymbol{K}} \alpha \rightarrow \chi$ or $\vdash_{\mathbf{K}} \alpha \rightarrow \neg \chi$.

Definition. Given a set of formulas X, let $\bigoplus X$ denote exactly one of X. Formally, if $X=\left\{\varphi_{1}, \ldots, \varphi_{n}\right\}$, then $\bigoplus X$ is short for $\bigvee_{i=1, \ldots, n}\left(\varphi_{i} \wedge \neg \bigvee_{j \neq i} \varphi_{j}\right)$.

Lemma. For any h and $n, \vdash_{\boldsymbol{K}} \bigoplus \mathcal{C}_{h, n}$ (and hence $\vdash_{\boldsymbol{K}} \bigvee \mathcal{C}_{h, n}$)

Lemma. For each h and $n, \mathcal{C}_{h, n}$ is a finite subset of $L_{h, n}$. Moreover, if $F(0, n)=2^{n}$ and $F(h+1, n)=2^{F(h, n)+n}$, then $\left|\mathcal{C}_{h, n}\right|=F(h, n)$

Lemma. Let $\chi \in \mathcal{L}_{h, n}$ and $\alpha \in \mathcal{C}_{h, n}$. Then, either $\vdash_{\mathbf{K}} \alpha \rightarrow \chi$ or $\vdash_{\mathbf{K}} \alpha \rightarrow \neg \chi$.

Definition. Given a set of formulas X, let $\bigoplus X$ denote exactly one of X. Formally, if $X=\left\{\varphi_{1}, \ldots, \varphi_{n}\right\}$, then $\bigoplus X$ is short for
$\bigvee_{i=1, \ldots, n}\left(\varphi_{i} \wedge \neg \bigvee_{j \neq i} \varphi_{j}\right)$.
Lemma. For any h and $n, \vdash_{\boldsymbol{K}} \bigoplus \mathcal{C}_{h, n}$ (and hence $\vdash_{\boldsymbol{K}} \bigvee \mathcal{C}_{h, n}$)

Lemma. For any formula $\varphi \in \mathcal{L}_{h, n}$,
$\vdash_{\mathbf{K}} \varphi \leftrightarrow \bigvee\left\{\alpha \mid \alpha \in \mathcal{C}_{h, n}, \vdash_{\mathbf{K}} \alpha \rightarrow \varphi\right\}$

Canonical Model

Canonical Model: $\mathcal{M}^{C}=\left\langle W^{C}, R^{C}, V^{C}\right\rangle$ for \mathbf{L}, where $W^{C}=\{\Gamma \mid \Gamma$ is a maximally \mathbf{L}-consistent set $\}$ $\Gamma R^{C} \Delta$ iff $\{\alpha \mid \square \alpha \in \Gamma\} \subseteq \Delta$
$V^{C}(p)=\{\Gamma \mid p \in \Gamma\}$

Fact: $\left\lceil R^{C} \Delta\right.$ iff for all $\varphi \in \mathcal{L}$, if $\varphi \in \Delta$, then $\diamond \varphi \in \Gamma$.

Truth Lemma: For all Γ, for all $\varphi \in \mathcal{L}, \mathcal{M}^{C}, \Gamma \models \varphi$ iff $\varphi \in \Gamma$.

Finite Canonical Model

$\mathbb{C}_{h, n}(\mathbf{L})=\left\langle W^{c}, R^{c}, V^{c}\right\rangle$ for \mathbf{L}, where
$W^{c}=\mathcal{C}_{h, n}(\mathbf{L})=\left\{\alpha \mid \alpha \in \mathcal{C}_{h, n}\right.$ and α is \mathbf{L}-consistent $\}$
$\alpha R^{c} \beta$ iff $\alpha \wedge \diamond \beta$ is L-consistent
$V^{c}(p)=\left\{\alpha \mid \vdash_{\mathbf{L}} \alpha \rightarrow p\right\}$

Figure 1: $\mathbb{C}_{1,1}(L)$ for various logics L. The formulas $\alpha_{1}, \ldots, \alpha_{8}$ are from Example 2.1.

Lemma. $\vdash_{\mathbf{L}} \bigoplus \mathcal{C}_{h, n}(\mathbf{L})$

Lemma. $\vdash_{\mathbf{L}} \bigoplus \mathcal{C}_{h, n}(\mathbf{L})$

Lemma.

${ }^{-} \vdash_{\mathbf{K}} \psi \leftrightarrow \bigvee\left\{\alpha \in \mathcal{C}_{h, n} \mid \vdash_{\mathbf{K}} \alpha \rightarrow \psi\right\}$
$-\vdash_{\mathbf{L}} \psi \leftrightarrow \bigvee\left\{\alpha \in \mathcal{C}_{h, n}(\mathbf{L}) \mid \vdash_{\mathbf{L}} \alpha \rightarrow \psi\right\}$

Lemma. $\vdash_{\mathbf{L}} \bigoplus \mathcal{C}_{h, n}(\mathbf{L})$

Lemma.

- $\vdash_{\mathbf{K}} \psi \leftrightarrow \bigvee\left\{\alpha \in \mathcal{C}_{h, n} \mid \vdash_{\mathbf{K}} \alpha \rightarrow \psi\right\}$
$-\vdash_{\mathbf{L}} \psi \leftrightarrow \bigvee\left\{\alpha \in \mathcal{C}_{h, n}(\mathbf{L}) \mid \vdash_{\mathbf{L}} \alpha \rightarrow \psi\right\}$

Truth Lemma. For all $\alpha \in \mathcal{C}_{h, n}(\mathbf{L})$ and all $\psi \in \mathcal{L}_{h, n}, \mathbb{C}_{h, n}(\mathbf{L}), \alpha \models \psi$ iff $\vdash_{\mathbf{K}} \alpha \rightarrow \psi$.

Existence Lemma. Let $\psi \in \mathcal{L}_{h, n}$ and φ be an aribtrary formula and suppose that $\varphi \wedge \diamond \psi$ is consistent in \mathbf{L}. Then there is some $\alpha \in \mathcal{C}_{h, h}(\mathbf{L})$ such that $\varphi \wedge \diamond \alpha$ is consistent in \mathbf{L} and $\vdash_{\mathbf{K}} \alpha \rightarrow \psi$

Proposition. Every bisimulation on $\mathbb{C}_{h, n}$ is a subrelation of the identity relation.

Proposition. Every bisimulation on $\mathbb{C}_{h, n}$ is a subrelation of the identity relation.

Lemma.

1. If $\mathbf{K} \mathbf{T} \leq \mathbf{L}$, then $\mathbb{C}_{h, n}$ is reflexive.
2. If $\mathbf{K D} \leq \mathbf{L}$, then $\mathbb{C}_{h, n}$ is serial.
3. If $\mathbf{K B} \leq \mathbf{L}$, then $\mathbb{C}_{h, n}$ is symmetric.

Proposition. Every bisimulation on $\mathbb{C}_{h, n}$ is a subrelation of the identity relation.

Lemma.

1. If $\mathbf{K T} \leq \mathbf{L}$, then $\mathbb{C}_{h, n}$ is reflexive.
2. If $\mathbf{K D} \leq \mathbf{L}$, then $\mathbb{C}_{h, n}$ is serial.
3. If $\mathbf{K B} \leq \mathbf{L}$, then $\mathbb{C}_{h, n}$ is symmetric.

Weak Completeness and Decidability. If ψ holds at every world in every symmetric model, then $\vdash_{\text {KB }} \psi$. Moreover, the property of being provable in KB is decidable.

Transitivity

The completeness results for logics containing K4 is more difficult.

We must show that if $\alpha \wedge \diamond \beta$ and $\beta \wedge \diamond \gamma$ are both consistent in K4, then so is $\alpha \wedge \diamond \gamma$.

Transitivity

The completeness results for logics containing K4 is more difficult.

We must show that if $\alpha \wedge \diamond \beta$ and $\beta \wedge \diamond \gamma$ are both consistent in K4, then so is $\alpha \wedge \diamond \gamma$.

This is not true in general: $(p \wedge \square \diamond p) \wedge \diamond \neg p$ and $\neg p \wedge \diamond \square \neg p$ are consistent is K4, but $(p \wedge \square \diamond p) \wedge \diamond \square \neg p$ is not consistent in K4.

Transitivity

The completeness results for logics containing K4 is more difficult.

We must show that if $\alpha \wedge \diamond \beta$ and $\beta \wedge \diamond \gamma$ are both consistent in K4, then so is $\alpha \wedge \diamond \gamma$.

This is not true in general: $(p \wedge \square \diamond p) \wedge \diamond \neg p$ and $\neg p \wedge \diamond \square \neg p$ are consistent is K4, but $(p \wedge \square \diamond p) \wedge \diamond \square \neg p$ is not consistent in K4.

But it is true for $\alpha, \beta, \gamma \in \mathbb{C}_{h, n}(\mathbf{K} 4)$

Open question: Is it true that for all \mathbf{L}, if $\mathbf{K} \mathbf{4} \leq \mathbf{L}$, then $\mathbb{C}_{h, n}(\mathbf{L})$ is transitive?

Lemma. For every $\alpha \in \mathcal{C}_{h+1, n}$, there is a unique $\alpha^{\prime} \in \mathcal{C}_{h, n}$, called the derivative of α, such that $\vdash_{\mathbf{K}} \alpha \rightarrow \alpha^{\prime}$. Moreover for all logics \mathbf{L}, if $\alpha \in \mathcal{C}_{h+1, n}(\mathbf{L})$, then $\alpha^{\prime} \in \mathcal{C}_{h, n}(\mathbf{L})$.

Lemma. For every $\alpha \in \mathcal{C}_{h+1, n}$, there is a unique $\alpha^{\prime} \in \mathcal{C}_{h, n}$, called the derivative of α, such that $\vdash_{\mathbf{K}} \alpha \rightarrow \alpha^{\prime}$. Moreover for all logics \mathbf{L}, if $\alpha \in \mathcal{C}_{h+1, n}(\mathbf{L})$, then $\alpha^{\prime} \in \mathcal{C}_{h, n}(\mathbf{L})$.

Lemma. Suppose that $\alpha R^{c} \beta$ in $\mathbb{C}_{h, n}(\mathbf{L})$, then $\vdash_{\mathbf{K}} \alpha \rightarrow \diamond \beta^{\prime}$.

Lemma. For every $\alpha \in \mathcal{C}_{h+1, n}$, there is a unique $\alpha^{\prime} \in \mathcal{C}_{h, n}$, called the derivative of α, such that $\vdash_{\mathbf{K}} \alpha \rightarrow \alpha^{\prime}$. Moreover for all logics \mathbf{L}, if $\alpha \in \mathcal{C}_{h+1, n}(\mathbf{L})$, then $\alpha^{\prime} \in \mathcal{C}_{h, n}(\mathbf{L})$.

Lemma. Suppose that $\alpha R^{c} \beta$ in $\mathbb{C}_{h, n}(\mathbf{L})$, then $\vdash_{\mathbf{K}} \alpha \rightarrow \diamond \beta^{\prime}$.

Lemma. Let $\mathbf{K} 4 \leq \mathbf{L}$ and let $\alpha R^{c} \beta$ in $\mathbb{C}_{h+1, n}(\mathbf{L})$. Then, if $\varphi \in \mathcal{L}_{h, n}$ and $\vdash_{\text {K } 4} \beta \rightarrow \diamond \varphi$, then $\vdash_{\text {K } 4} \alpha \rightarrow \diamond \varphi$

1. $\mathbb{M}_{0, n}(\mathbf{L})=\mathbb{C}_{0, n}(\mathbf{L})$
2. The valuation on $\mathbb{M}_{h+1, n}(\mathbf{L})$ is $V\left(p_{i}\right)=\left\{\alpha \mid \vdash \alpha \rightarrow p_{i}\right\}$
3. The accessibility relation R^{m} in $\mathbb{M}_{h+1, n}(\mathbf{L})$ is defined by $\alpha R^{m} \beta$ iff $3.1 \vdash \alpha \rightarrow \diamond \beta^{\prime}$
3.2 for all $\gamma \in \mathcal{C}_{h, n}$, if $\vdash \beta \rightarrow \diamond \gamma$, then $\vdash \alpha \rightarrow \diamond \gamma$
4. $\mathbb{M}_{0, n}(\mathbf{L})=\mathbb{C}_{0, n}(\mathbf{L})$
5. The valuation on $\mathbb{M}_{h+1, n}(\mathbf{L})$ is $V\left(p_{i}\right)=\left\{\alpha \mid \vdash \alpha \rightarrow p_{i}\right\}$
6. The accessibility relation R^{m} in $\mathbb{M}_{h+1, n}(\mathbf{L})$ is defined by $\alpha R^{m} \beta$ iff $3.1 \vdash \alpha \rightarrow \diamond \beta^{\prime}$
3.2 for all $\gamma \in \mathcal{C}_{h, n}$, if $\vdash \beta \rightarrow \diamond \gamma$, then $\vdash \alpha \rightarrow \diamond \gamma$

Lemma. If $\mathbf{K} 4 \leq \mathbf{L}$, then if $\alpha R^{c} \beta$, then $\alpha R^{m} \beta$

A relation \rightsquigarrow on $\mathcal{C}_{h, n}(\mathbf{L})$ is suitable if the following two properties hold:

1. If $\alpha R^{c} \beta$ in $\mathbb{C}_{h, n}(\mathbf{L})$, then $\alpha \rightsquigarrow \beta$
2. If $\alpha \rightsquigarrow \beta$, then $\vdash \alpha \rightarrow \beta^{\prime}$

A relation \rightsquigarrow on $\mathcal{C}_{h, n}(\mathbf{L})$ is suitable if the following two properties hold:

1. If $\alpha R^{c} \beta$ in $\mathbb{C}_{h, n}(\mathbf{L})$, then $\alpha \rightsquigarrow \beta$
2. If $\alpha \rightsquigarrow \beta$, then $\vdash \alpha \rightarrow \beta^{\prime}$

Generalized Truth Lemma Let \rightsquigarrow be a suitable relation on $\mathcal{C}_{h, n}(\mathbf{L})$. Then, for all $\alpha \in \mathcal{C}_{h, n}(\mathbf{L})$ and all $\psi \in \mathcal{L}_{h, n}$,

$$
\left(\left(\mathcal{C}_{h, n}, \rightsquigarrow\right), \alpha \models \psi \quad \text { iff } \quad \vdash_{\boldsymbol{K}} \alpha \rightarrow \psi\right.
$$

Lemma. $\mathbb{C}_{h, n}(\mathrm{~K} 4)=\mathbb{M}_{h, n}(\mathrm{~L})$.

Theorem. Every $\alpha \in \mathcal{C}_{h, n}(\mathbf{K} 4)$ is satisfiable in some finite transitive model. Thus, K4 is complete for transitive models, and also decidable.

KL

$\mathbb{D}_{h, n}(\mathbf{L})=\left\langle\mathcal{C}_{h, n}(\mathbf{L}), R^{d}\right\rangle$ where

1. $\alpha R^{d} \beta$ if $\alpha R^{c} \beta$, and for some $\varphi \in \mathcal{L}_{h, n}, \vdash \alpha \rightarrow \diamond \varphi$ and $\vdash \beta \rightarrow \square \neg \varphi$.
$\mathbb{N}_{h, n}^{*}(\mathbf{L})=\left\langle\mathcal{C}_{h, n}(\mathbf{L}), R^{n^{*}}\right\rangle$ where
2. $\mathbb{N}_{0, n}^{*}(\mathbf{L})=\mathbb{C}_{0, n}(\mathbf{L})$
3. The valuation on $\mathbb{N}_{h+1, n}^{*}(\mathbf{L})$ is $V\left(p_{i}\right)=\left\{\alpha \mid \vdash \alpha \rightarrow p_{i}\right\}$
4. The accessibility relation R^{m} in $\mathbb{N}_{h+1, n}^{*}(\mathbf{L})$ is defined by $\alpha R^{n^{*}} \beta$ iff $3.1 \vdash \alpha \rightarrow \diamond \beta^{\prime}$
3.2 for all $\gamma \in \mathcal{C}_{h, n}$, if $\vdash \beta \rightarrow \diamond \gamma$, then $\vdash \alpha \rightarrow \diamond \gamma$
3.3 there is some $\gamma \in \mathcal{C}_{h, n}$ such that $\vdash \alpha \rightarrow \diamond \gamma$, but $\vdash \beta \rightarrow \square \neg \gamma$

Truth Lemma. Let $\mathbf{K L} \leq \mathbf{L}$. For all $\alpha \in \mathcal{C}_{h, n}(\mathbf{L})$ and all $\psi \in \mathcal{L}_{h, n}$,

$$
\mathbb{N}_{h, n}^{*}(\mathbf{L}), \alpha \models \psi \quad \text { iff } \quad \vdash_{\mathbf{K}} \alpha \rightarrow \psi
$$

Theorem.

1. $\mathbb{N}_{h, n}^{*}(\mathbf{K L})=\mathbb{D}_{h, n}(\mathbf{K L})$.
2. KL is complete for finite transitive, converse wellfounded models.
3. $\mathbb{C}_{h, n}(\mathrm{KL})$ is transitive.

Filtrations

Let $\mathcal{M}=\langle W, R, V\rangle$ be a Kripke model. Suppose that Σ is a set of formulas closed under subformulas. We write say w and v are Σ-equivalent provided:

$$
w \stackrel{\text { hs } \Sigma v}{ } v \text { iff for all } \varphi \in \Sigma, \mathcal{M}, w \models \varphi \text { iff } \mathcal{M}, v \models \varphi \text {. }
$$

Note that ${ }^{4 n \%} \Sigma$ is an equivalence relation. Let $|w|_{\Sigma}=\{v \mid w h i n s v$ denote the equivalence class of w under $\longleftrightarrow \leadsto \Sigma$.

Let $\mathcal{M}=\langle W, R, V\rangle$ be a Kripke model. Given a set of formulas Σ closed under subformulas, a model $\mathcal{M}^{f}=\left\langle W^{f}, R^{f}, V^{f}\right\rangle$ is a filtration of \mathcal{M} through Σ provided

- $W^{f}=\left\{|w|_{\Sigma} \mid w \in W\right\}$
- If $w R v$ then $|w|_{\Sigma} R^{f}|v|_{\Sigma}$
- If $|w|_{\Sigma} R^{f}|v|_{\Sigma}$ then for each $\diamond \varphi \in \Sigma$, if $\mathcal{M}, v \vDash \varphi$ then $\mathcal{M}, w \vDash \diamond \varphi$
- $V^{f}(p)=\left\{|w|_{\Sigma} \mid w \in V(p)\right\}$

Theorem. If \mathcal{M}^{f} is a filtration of \mathcal{M} through Σ, then for all $\varphi \in \Sigma$,

$$
\mathcal{M}, w \models \varphi \quad \text { iff } \quad \mathcal{M}^{f},|w|_{\Sigma} \mid=\varphi
$$

Theorem. If \mathcal{M}^{f} is a filtration of \mathcal{M} through Σ, then for all $\varphi \in \Sigma$,

$$
\mathcal{M}, w \models \varphi \quad \text { iff } \quad \mathcal{M}^{f},|w|_{\Sigma} \models \varphi
$$

Examples of Filtrations

- smallest filtration: $|w|_{\Sigma} R^{s}|v|_{\Sigma}$ iff there is $w^{\prime} \in|w|_{\Sigma}$ and $v^{\prime} \in|v|_{\Sigma}$ such that $w^{\prime} R v^{\prime}$.
- largest filtration: $|w|_{\Sigma} R^{\prime}|v|_{\Sigma}$ iff for all $\diamond \varphi \in \Sigma, \quad \mathcal{M}, v \models \varphi$ implies $\mathcal{M}, w \models \diamond \varphi$
- transitive filtration: $|w|_{\Sigma} R^{t}|v|_{\Sigma}$ iff for all $\diamond \varphi \in \Sigma$, $\mathcal{M}, v \models \varphi \vee \diamond \varphi$ implies $\mathcal{M}, w \models \diamond \varphi$ (assuming R is transitive)

Canonical Model: $\mathcal{M}^{C}=\left\langle W^{C}, R^{C}, V^{C}\right\rangle$ for \mathbf{L}, where $W^{C}=\{\Gamma \mid \Gamma$ is a maximally \mathbf{L}-consistent set $\}$
$\left\ulcorner R^{C} \Delta\right.$ iff $\{\alpha \mid \square \alpha \in \Gamma\} \subseteq \Delta$
$V^{C}(p)=\{\Gamma \mid p \in \Gamma\}$

Canonical Model: $\mathcal{M}^{C}=\left\langle W^{C}, R^{C}, V^{C}\right\rangle$ for \mathbf{L}, where $W^{C}=\{\Gamma \mid \Gamma$ is a maximally \mathbf{L}-consistent set $\}$
$\left\ulcorner R^{C} \Delta\right.$ iff $\{\alpha \mid \square \alpha \in \Gamma\} \subseteq \Delta$
$V^{C}(p)=\{\Gamma \mid p \in \Gamma\}$

For all $\Gamma \in W^{C}$, there is a unique $\alpha \in \mathcal{C}_{h, n}$ such that $\alpha \in \Gamma$ (write α_{Γ} for this formula)

Canonical Model: $\mathcal{M}^{C}=\left\langle W^{C}, R^{C}, V^{C}\right\rangle$ for \mathbf{L}, where $W^{C}=\{\Gamma \mid \Gamma$ is a maximally \mathbf{L}-consistent set $\}$
$\left\ulcorner R^{C} \Delta\right.$ iff $\{\alpha \mid \square \alpha \in \Gamma\} \subseteq \Delta$
$V^{C}(p)=\{\Gamma \mid p \in \Gamma\}$

For all $\Gamma \in W^{C}$, there is a unique $\alpha \in \mathcal{C}_{h, n}$ such that $\alpha \in \Gamma$ (write α_{Γ} for this formula)

The set $\mathcal{L}_{h, n}$ induces an equivalence relation \equiv on W^{C}, where $\Gamma \equiv \Delta$ iff $\alpha_{\Gamma}=\alpha_{\Delta}$.

Canonical Model: $\mathcal{M}^{C}=\left\langle W^{C}, R^{C}, V^{C}\right\rangle$ for \mathbf{L}, where $W^{C}=\{\Gamma \mid \Gamma$ is a maximally \mathbf{L}-consistent set $\}$
$\left\ulcorner R^{C} \Delta\right.$ iff $\{\alpha \mid \square \alpha \in \Gamma\} \subseteq \Delta$
$V^{C}(p)=\{\Gamma \mid p \in \Gamma\}$

For all $\Gamma \in W^{C}$, there is a unique $\alpha \in \mathcal{C}_{h, n}$ such that $\alpha \in \Gamma$ (write α_{Γ} for this formula)

The set $\mathcal{L}_{h, n}$ induces an equivalence relation \equiv on W^{C}, where $\Gamma \equiv \Delta$ iff $\alpha_{\Gamma}=\alpha_{\Delta}$.

We also have $\Gamma \equiv \Delta$ iff $\Gamma \cap \mathcal{L}_{h, n}=\Delta \cap \mathcal{L}_{h, n}$.

Canonical Model: $\mathcal{M}^{C}=\left\langle W^{C}, R^{C}, V^{C}\right\rangle$ for \mathbf{L}, where $W^{C}=\{\Gamma \mid \Gamma$ is a maximally \mathbf{L}-consistent set $\}$
$\left\ulcorner R^{C} \Delta\right.$ iff $\{\alpha \mid \square \alpha \in \Gamma\} \subseteq \Delta$
$V^{C}(p)=\{\Gamma \mid p \in \Gamma\}$

For all $\Gamma \in W^{C}$, there is a unique $\alpha \in \mathcal{C}_{h, n}$ such that $\alpha \in \Gamma$ (write α_{Γ} for this formula)

The set $\mathcal{L}_{h, n}$ induces an equivalence relation \equiv on W^{C}, where $\Gamma \equiv \Delta$ iff $\alpha_{\Gamma}=\alpha_{\Delta}$.

We also have $\Gamma \equiv \Delta$ iff $\Gamma \cap \mathcal{L}_{h, n}=\Delta \cap \mathcal{L}_{h, n}$.
For each $\alpha \in \mathcal{C}_{h, n}(\mathbf{L}), W^{C}$ contains $\operatorname{Th}_{\mathbb{C}}(\alpha)$, the set of formulas satisfied by α in $\mathbb{C}_{h, n}$.

Theorem. There is a one-to-one correspondence between filtrations of \mathcal{M}^{C} for \mathbf{L} through $\mathcal{L}_{h, n}$ and suitable relation \rightsquigarrow on $\mathcal{C}_{h, n}(\mathbf{L})$. The correspondence associates to a filtration R^{f} the suitable relation $\rightsquigarrow R^{f}$ give by:

$$
\alpha \rightsquigarrow_{R^{f}} \beta \quad \text { iff } \quad[\operatorname{Th}(\alpha)] R^{f}[\operatorname{Th}(\beta)]
$$

In the other direction, we associate to a suitable relation \rightsquigarrow the filtration R_{\rightsquigarrow} given by

$$
[\Gamma] R_{\rightsquigarrow}[\Delta] \quad \text { iff } \quad \alpha_{\Gamma} \rightsquigarrow \alpha_{\Delta}
$$

Each of these is monotone with respect to inclusion of relations.

1. The minimal filtration of $\mathcal{L}_{h, n}$ corresponds to the accessibility relation R^{C} of $\mathbb{C}_{h, n}(\mathrm{~L})$
2. The largest filtration on $\mathcal{L}_{h, n}$ corresponds to the suitable relation \rightsquigarrow given by $\alpha \rightsquigarrow \beta$ iff $\vdash_{\mathbf{L}} \alpha \rightarrow \beta^{\prime}$
