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Let At = {p1, p2, . . . , pn, . . .} and L be the basic modal language:

p | ¬ϕ | ϕ ∨ ψ | 3ϕ

where p ∈ At is a propositional variable.
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The height of ϕ ∈ L3, denoted ht(ϕ), is:

ht(pn) = 0
ht(¬ϕ) = ht(ϕ)
ht(ϕ ∨ ψ) = max{ht(ϕ), ht(ψ)}
ht(3ϕ) = 1 + ht(ϕ)

The order of ϕ, written ord(ϕ), is

ord(pn) = n
ord(¬ϕ) = ord(ϕ)
ord(ϕ ∨ ψ) = max{ord(ϕ), ord(ψ)}
ord(3nϕ) = ord(ϕ)
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Lh,n = {ϕ | ϕ ∈ L, ht(ϕ) ≤ h and ord(ϕ) ≤ n}
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Propositional Logic

L0,n is the propositional language built from {p1, . . . , pn} of
propositional variables.

For any T ⊆ {p1, . . . , pm}, let

T̂ =
∧
p∈T

p ∧
∧

p∈{p1,...,pn}−T

¬p

I For each ϕ ∈ L0,m, exactly one of the following holds: ` T̂ → ϕ or

` T̂ → ¬ϕ.

I For each ϕ ∈ L0,m, ` ϕ↔
∨
{T̂ | ` T̂ → ϕ}.
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Canonical sentences

C0,n = {T̂ | T ⊆ {p1, . . . , pn}}
Ch+1,n = {αS ,T | S ⊆ Ch,n, T ⊆ {p1, . . . , pn}}

where

αS ,T :=
∧
ψ∈S

3ψ ∧ 2
∨

S ∧ T̂
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Examples

At = {p}
C0,1 = {p,¬p}

C1,1 = {α1, . . . , α8}, where

α1 = ∅̂ ∧ p = 2⊥ ∧ p

α2 = ∅̂ ∧ ¬p = 2⊥ ∧ ¬p

α3 = {̂p} ∧ p = 3p ∧2p ∧ p

α4 = {̂p} ∧ ¬p = 3p ∧2p ∧ ¬p

α5 = {̂¬p} ∧ p = 3¬p ∧2¬p ∧ p

α6 = {̂¬p} ∧ ¬p = 3¬p ∧2¬p ∧ ¬p

α7 = Ĉ0,1 ∧ p = 3p ∧3¬p ∧2(p ∨ ¬p) ∧ p

α8 = Ĉ0,1 ∧ ¬p = 3p ∧3¬p ∧2(p ∨ ¬p) ∧ ¬p
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Lemma. For each h and n, Ch,n is a finite subset of Lh,n. Moreover, if
F (0, n) = 2n and F (h + 1, n) = 2F (h,n)+n, then |Ch,n| = F (h, n)

Lemma. Let χ ∈ Lh,n and α ∈ Ch,n. Then, either `K α→ χ or
`K α→ ¬χ.

Definition. Given a set of formulas X , let
⊕

X denote exactly one of X .
Formally, if X = {ϕ1, . . . , ϕn}, then

⊕
X is short for∨

i=1,...,n(ϕi ∧ ¬
∨

j 6=i ϕj).

Lemma. For any h and n, `K
⊕
Ch,n (and hence `K

∨
Ch,n)

Lemma. For any formula ϕ ∈ Lh,n,
`K ϕ↔

∨
{α | α ∈ Ch,n, `K α→ ϕ}
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Canonical Model

Canonical Model: MC = 〈W C ,RC ,V C 〉 for L, where

W C = {Γ | Γ is a maximally L-consistent set}
ΓRC∆ iff {α | 2α ∈ Γ} ⊆ ∆

V C (p) = {Γ | p ∈ Γ}

Fact: ΓRC∆ iff for all ϕ ∈ L, if ϕ ∈ ∆, then 3ϕ ∈ Γ.

Truth Lemma: For all Γ, for all ϕ ∈ L, MC , Γ |= ϕ iff ϕ ∈ Γ.
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Finite Canonical Model

Ch,n(L) = 〈W c ,Rc ,V c〉 for L, where

W c = Ch,n(L) = {α | α ∈ Ch,n and α is L-consistent}

αRcβ iff α ∧3β is L-consistent

V c(p) = {α | `L α→ p}
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Figure 1: C1,1(L) for various logics L. The formulas ↵1, . . ., ↵8 are from Example 2.1.
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Lemma. `L
⊕
Ch,n(L)

Lemma.

I `K ψ ↔
∨
{α ∈ Ch,n | `K α→ ψ}

I `L ψ ↔
∨
{α ∈ Ch,n(L) | `L α→ ψ}

Truth Lemma. For all α ∈ Ch,n(L) and all ψ ∈ Lh,n, Ch,n(L), α |= ψ iff
`K α→ ψ.

Existence Lemma. Let ψ ∈ Lh,n and ϕ be an aribtrary formula and
suppose that ϕ ∧3ψ is consistent in L. Then there is some α ∈ Ch,h(L)
such that ϕ ∧3α is consistent in L and `K α→ ψ
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Proposition. Every bisimulation on Ch,n is a subrelation of the identity
relation.

Lemma.

1. If KT ≤ L, then Ch,n is reflexive.

2. If KD ≤ L, then Ch,n is serial.

3. If KB ≤ L, then Ch,n is symmetric.

Weak Completeness and Decidability. If ψ holds at every world in
every symmetric model, then `KB ψ. Moreover, the property of being
provable in KB is decidable.
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Transitivity

The completeness results for logics containing K4 is more difficult.

We must show that if α ∧3β and β ∧3γ are both consistent in K4,
then so is α ∧3γ.

This is not true in general: (p ∧23p) ∧3¬p and ¬p ∧32¬p are
consistent is K4, but (p ∧23p) ∧32¬p is not consistent in K4.

But it is true for α, β, γ ∈ Ch,n(K4)

Open question: Is it true that for all L, if K4 ≤ L, then Ch,n(L) is
transitive?
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Lemma. For every α ∈ Ch+1,n, there is a unique α′ ∈ Ch,n, called the
derivative of α, such that `K α→ α′. Moreover for all logics L, if
α ∈ Ch+1,n(L), then α′ ∈ Ch,n(L).

Lemma. Suppose that αRcβ in Ch,n(L), then `K α→ 3β′.

Lemma. Let K4 ≤ L and let αRcβ in Ch+1,n(L). Then, if ϕ ∈ Lh,n and
`K4 β → 3ϕ, then `K4 α→ 3ϕ
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1. M0,n(L) = C0,n(L)

2. The valuation on Mh+1,n(L) is V (pi ) = {α | ` α→ pi}
3. The accessibility relation Rm in Mh+1,n(L) is defined by αRmβ iff

3.1 ` α→ 3β′

3.2 for all γ ∈ Ch,n, if ` β → 3γ, then ` α→ 3γ

Lemma. If K4 ≤ L, then if αRcβ, then αRmβ
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A relation  on Ch,n(L) is suitable if the following two properties hold:

1. If αRcβ in Ch,n(L), then α β

2. If α β, then ` α→ β′

Generalized Truth Lemma Let  be a suitable relation on Ch,n(L).
Then, for all α ∈ Ch,n(L) and all ψ ∈ Lh,n,

((Ch,n, ), α |= ψ iff `K α→ ψ
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Lemma. Ch,n(K4) = Mh,n(L).

Theorem. Every α ∈ Ch,n(K4) is satisfiable in some finite transitive
model. Thus, K4 is complete for transitive models, and also decidable.
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KL

Dh,n(L) = 〈Ch,n(L),Rd〉 where

1. αRdβ if αRcβ, and for some ϕ ∈ Lh,n, ` α→ 3ϕ and ` β → 2¬ϕ.

N∗h,n(L) = 〈Ch,n(L),Rn∗〉 where

1. N∗0,n(L) = C0,n(L)

2. The valuation on N∗h+1,n(L) is V (pi ) = {α | ` α→ pi}
3. The accessibility relation Rm in N∗h+1,n(L) is defined by αRn∗β iff

3.1 ` α→ 3β′

3.2 for all γ ∈ Ch,n, if ` β → 3γ, then ` α→ 3γ
3.3 there is some γ ∈ Ch,n such that ` α→ 3γ, but ` β → 2¬γ

Eric Pacuit 18



Truth Lemma. Let KL ≤ L. For all α ∈ Ch,n(L) and all ψ ∈ Lh,n,

N∗h,n(L), α |= ψ iff `K α→ ψ

Theorem.

1. N∗h,n(KL) = Dh,n(KL).

2. KL is complete for finite transitive, converse wellfounded models.

3. Ch,n(KL) is transitive.
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Filtrations
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Let M = 〈W ,R,V 〉 be a Kripke model. Suppose that Σ is a set of
formulas closed under subformulas. We write say w and v are
Σ-equivalent provided:

w !Σ v iff for all ϕ ∈ Σ, M,w |= ϕ iff M, v |= ϕ.

Note that !Σ is an equivalence relation. Let |w |Σ = {v | w !Σ v}
denote the equivalence class of w under !Σ.
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Let M = 〈W ,R,V 〉 be a Kripke model. Given a set of formulas Σ
closed under subformulas, a model Mf = 〈W f ,R f ,V f 〉 is a filtration of
M through Σ provided

I W f = {|w |Σ | w ∈W }
I If wRv then |w |ΣR f |v |Σ
I If |w |ΣR f |v |Σ then for each 3ϕ ∈ Σ, if M, v |= ϕ then
M,w |= 3ϕ

I V f (p) = {|w |Σ | w ∈ V (p)} /

Eric Pacuit 22



Theorem. If Mf is a filtration of M through Σ, then for all ϕ ∈ Σ,

M,w |= ϕ iff Mf , |w |Σ |= ϕ

Examples of Filtrations

I smallest filtration: |w |ΣRs |v |Σ iff there is w ′ ∈ |w |Σ and v ′ ∈ |v |Σ
such that w ′Rv ′.

I largest filtration: |w |ΣR l |v |Σ iff for all 3ϕ ∈ Σ, M, v |= ϕ
implies M,w |= 3ϕ

I transitive filtration: |w |ΣRt |v |Σ iff for all 3ϕ ∈ Σ,
M, v |= ϕ ∨3ϕ implies M,w |= 3ϕ (assuming R is transitive)
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Canonical Model: MC = 〈W C ,RC ,V C 〉 for L, where

W C = {Γ | Γ is a maximally L-consistent set}
ΓRC∆ iff {α | 2α ∈ Γ} ⊆ ∆

V C (p) = {Γ | p ∈ Γ}

For all Γ ∈W C , there is a unique α ∈ Ch,n such that α ∈ Γ (write αΓ for
this formula)

The set Lh,n induces an equivalence relation ≡ on W C , where Γ ≡ ∆ iff
αΓ = α∆.

We also have Γ ≡ ∆ iff Γ ∩ Lh,n = ∆ ∩ Lh,n.

For each α ∈ Ch,n(L), W C contains ThC(α), the set of formulas satisfied
by α in Ch,n.
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Theorem. There is a one-to-one correspondence between filtrations of
MC for L through Lh,n and suitable relation  on Ch,n(L). The
correspondence associates to a filtration R f the suitable relation  R f

give by:
α R f β iff [Th(α)]R f [Th(β)]

In the other direction, we associate to a suitable relation  the filtration
R given by

[Γ]R [∆] iff αΓ  α∆

Each of these is monotone with respect to inclusion of relations.
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1. The minimal filtration of Lh,n corresponds to the accessibility
relation RC of Ch,n(L)

2. The largest filtration on Lh,n corresponds to the suitable relation  
given by α β iff `L α→ β′
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