Modal Logic PHIL 858P

Eric Pacuit

Department of Philosophy University of Maryland pacuit.org epacuit@umd.edu

January 28, 2019

Let At = { $p_1, p_2, \dots, p_n, \dots$ } and \mathcal{L} be the basic modal language: $p \mid \neg \varphi \mid \varphi \lor \psi \mid \diamondsuit \varphi$

where $p \in At$ is a propositional variable.

The **height** of $\varphi \in \mathcal{L}_{\Diamond}$, denoted ht(φ), is:

The **order** of φ , written $\operatorname{ord}(\varphi)$, is

$$\operatorname{ord}(p_n) = n$$

 $\operatorname{ord}(\neg \varphi) = \operatorname{ord}(\varphi)$
 $\operatorname{ord}(\varphi \lor \psi) = \max{\operatorname{ord}(\varphi), \operatorname{ord}(\psi)}$
 $\operatorname{ord}(\diamondsuit_n \varphi) = \operatorname{ord}(\varphi)$

 $\mathcal{L}_{h,n} = \{ \varphi \mid \varphi \in \mathcal{L}, \ \mathsf{ht}(\varphi) \leq h \text{ and } \operatorname{ord}(\varphi) \leq n \}$

Propositional Logic

 $\mathcal{L}_{0,n}$ is the propositional language built from $\{p_1, \ldots, p_n\}$ of propositional variables.

For any $T \subseteq \{p_1, \ldots, p_m\}$, let

$$\widehat{T} = \bigwedge_{p \in T} p \land \bigwedge_{p \in \{p_1, \dots, p_n\} - T} \neg p$$

▶ For each $\varphi \in \mathcal{L}_{0,m}$, exactly one of the following holds: $\vdash \widehat{T} \rightarrow \varphi$ or $\vdash \widehat{T} \rightarrow \neg \varphi$.

▶ For each $\varphi \in \mathcal{L}_{0,m}$, $\vdash \varphi \leftrightarrow \bigvee \{ \widehat{T} \mid \vdash \widehat{T} \rightarrow \varphi \}.$

Canonical sentences

$$\begin{aligned} \mathcal{C}_{0,n} &= \{ \widehat{T} \mid T \subseteq \{p_1, \dots, p_n\} \} \\ \mathcal{C}_{h+1,n} &= \{ \alpha_{S,T} \mid S \subseteq \mathcal{C}_{h,n}, \ T \subseteq \{p_1, \dots, p_n\} \} \end{aligned}$$

where

$$\alpha_{\mathcal{S},\mathcal{T}} := \bigwedge_{\psi \in \mathcal{S}} \diamondsuit \psi \land \Box \bigvee \mathcal{S} \land \widehat{\mathcal{T}}$$

$$\begin{array}{l} \mathsf{At} = \{p\} \\ \mathcal{C}_{0,1} = \{p, \neg p\} \end{array}$$

 $\begin{aligned} \mathsf{At} &= \{p\}\\ \mathcal{C}_{0,1} &= \{p, \neg p\}\\ \mathcal{C}_{1,1} &= \{\alpha_1, \dots, \alpha_8\}, \text{ where}\\ \alpha_1 &= \widehat{\emptyset} \land p &= \Box \bot \land p\\ \alpha_2 &= \widehat{\emptyset} \land \neg p &= \Box \bot \land \neg p \end{aligned}$

 $At = \{p\}$ $C_{0,1} = \{p, \neg p\}$ $C_{1,1} = \{\alpha_1, \dots, \alpha_8\}, \text{ where}$ $\alpha_1 = \widehat{\emptyset} \land p = \Box \bot \land p$ $\alpha_2 = \widehat{\emptyset} \land \neg p = \Box \bot \land \neg p$ $\alpha_3 = \widehat{\{p\}} \land p = \Diamond p \land \Box p \land p$ $\alpha_4 = \widehat{\{p\}} \land \neg p = \Diamond p \land \Box p \land \neg p$

$\begin{array}{l} At = \{ p \} \\ \mathcal{C}_{0,1} = \{ p, \neg p \} \end{array}$								
$\mathcal{C}_{1,1}=\{lpha_1,\ldots,lpha_8\}$, where								
α_1	=	$\widehat{\emptyset} \wedge {m ho}$	=	$\Box \bot \land p$				
α_2	=	$\widehat{\emptyset} \wedge eg m{p}$	=	$\Box ot \wedge eg p$				
α_3	=	$\widehat{\{p\}} \wedge p$	=	$\Diamond p \land \Box p \land p$				
$lpha_4$	=	$\widehat{\{p\}} \land \neg p$	=	$\Diamond p \land \Box p \land \neg p$				
α_5	=	$\widehat{\{\neg p\}} \land p$	=	$\Diamond \neg p \land \Box \neg p \land p$				
$lpha_{6}$	=	$\widehat{\{\neg p\}} \land \neg p$	=	$\Diamond \neg p \land \Box \neg p \land \neg p$				

$\begin{array}{l} At = \{ p \} \\ \mathcal{C}_{0,1} = \{ p, \neg p \} \end{array}$								
$\mathcal{C}_{1,1} = \{ \alpha_1, \dots, \alpha_8 \}$, where								
α_1	=	$\widehat{\emptyset} \wedge {m ho}$	=	$\Box \bot \wedge p$				
α_2	=	$\widehat{\emptyset} \wedge eg oldsymbol{p}$	=	$\Box \bot \land \neg p$				
α_3	=	$\widehat{\{p\}} \wedge p$	=	$\Diamond p \land \Box p \land p$				
$lpha_{4}$	=	$\widehat{\{p\}} \land \neg p$	=	$\Diamond p \land \Box p \land \neg p$				
α_{5}	=	$\widehat{\{\neg p\}} \land p$	=	$\Diamond \neg p \land \Box \neg p \land p$				
α_{6}	=	$\widehat{\{\neg p\}} \land \neg p$	=	$\Diamond \neg p \land \Box \neg p \land \neg p$				
α_7	=	$\widehat{\mathcal{C}_{0,1}} \wedge p$	=	$\Diamond p \land \Diamond \neg p \land \Box (p \lor \neg p) \land p$				
α_8	=	$\widehat{\mathcal{C}_{0,1}} \land \neg p$	=	$\Diamond p \land \Diamond \neg p \land \Box (p \lor \neg p) \land \neg p$				

Lemma. Let $\chi \in \mathcal{L}_{h,n}$ and $\alpha \in \mathcal{C}_{h,n}$. Then, either $\vdash_{\mathbf{K}} \alpha \to \chi$ or $\vdash_{\mathbf{K}} \alpha \to \neg \chi$.

Lemma. Let $\chi \in \mathcal{L}_{h,n}$ and $\alpha \in \mathcal{C}_{h,n}$. Then, either $\vdash_{\mathbf{K}} \alpha \to \chi$ or $\vdash_{\mathbf{K}} \alpha \to \neg \chi$.

Definition. Given a set of formulas X, let $\bigoplus X$ denote *exactly one of* X. Formally, if $X = \{\varphi_1, \dots, \varphi_n\}$, then $\bigoplus X$ is short for $\bigvee_{i=1,\dots,n} (\varphi_i \land \neg \bigvee_{j \neq i} \varphi_j)$.

Lemma. Let $\chi \in \mathcal{L}_{h,n}$ and $\alpha \in \mathcal{C}_{h,n}$. Then, either $\vdash_{\mathbf{K}} \alpha \to \chi$ or $\vdash_{\mathbf{K}} \alpha \to \neg \chi$.

Definition. Given a set of formulas X, let $\bigoplus X$ denote *exactly one of* X. Formally, if $X = \{\varphi_1, \ldots, \varphi_n\}$, then $\bigoplus X$ is short for $\bigvee_{i=1,\ldots,n} (\varphi_i \land \neg \bigvee_{j \neq i} \varphi_j)$.

Lemma. For any *h* and *n*, $\vdash_{\mathbf{K}} \bigoplus C_{h,n}$ (and hence $\vdash_{\mathbf{K}} \bigvee C_{h,n}$)

Lemma. Let $\chi \in \mathcal{L}_{h,n}$ and $\alpha \in \mathcal{C}_{h,n}$. Then, either $\vdash_{\mathbf{K}} \alpha \to \chi$ or $\vdash_{\mathbf{K}} \alpha \to \neg \chi$.

Definition. Given a set of formulas X, let $\bigoplus X$ denote *exactly one of* X. Formally, if $X = \{\varphi_1, \ldots, \varphi_n\}$, then $\bigoplus X$ is short for $\bigvee_{i=1,\ldots,n} (\varphi_i \land \neg \bigvee_{j \neq i} \varphi_j)$.

Lemma. For any *h* and *n*, $\vdash_{\mathbf{K}} \bigoplus C_{h,n}$ (and hence $\vdash_{\mathbf{K}} \bigvee C_{h,n}$)

Lemma. For any formula $\varphi \in \mathcal{L}_{h,n}$, $\vdash_{\mathbf{K}} \varphi \leftrightarrow \bigvee \{ \alpha \mid \alpha \in \mathcal{C}_{h,n}, \vdash_{\mathbf{K}} \alpha \rightarrow \varphi \}$

Canonical Model

Canonical Model: $\mathcal{M}^{C} = \langle W^{C}, R^{C}, V^{C} \rangle$ for **L**, where $W^{C} = \{ \Gamma \mid \Gamma \text{ is a maximally L-consistent set} \}$ $\Gamma R^{C} \Delta \text{ iff } \{ \alpha \mid \Box \alpha \in \Gamma \} \subseteq \Delta$ $V^{C}(p) = \{ \Gamma \mid p \in \Gamma \}$

Fact: $\Gamma R^{C} \Delta$ iff for all $\varphi \in \mathcal{L}$, if $\varphi \in \Delta$, then $\Diamond \varphi \in \Gamma$.

Truth Lemma: For all Γ , for all $\varphi \in \mathcal{L}$, $\mathcal{M}^{\mathcal{C}}, \Gamma \models \varphi$ iff $\varphi \in \Gamma$.

Finite Canonical Model

$$\mathbb{C}_{h,n}(\mathbf{L}) = \langle W^c, R^c, V^c \rangle \text{ for } \mathbf{L}, \text{ where}$$
$$W^c = \mathcal{C}_{h,n}(\mathbf{L}) = \{ \alpha \mid \alpha \in \mathcal{C}_{h,n} \text{ and } \alpha \text{ is } \mathbf{L}\text{-consistent} \}$$
$$\alpha R^c \beta \text{ iff } \alpha \land \Diamond \beta \text{ is } \mathbf{L}\text{-consistent}$$
$$V^c(p) = \{ \alpha \mid \vdash_{\mathbf{L}} \alpha \to p \}$$

Figure 1: $\mathbb{C}_{1,1}(L)$ for various logics L. The formulas $\alpha_1, \ldots, \alpha_8$ are from Example 2.1.

Lemma. $\vdash_{\mathsf{L}} \bigoplus \mathcal{C}_{h,n}(\mathsf{L})$

Lemma. $\vdash_{\mathsf{L}} \bigoplus \mathcal{C}_{h,n}(\mathsf{L})$

Lemma.

$$\blacktriangleright \vdash_{\mathbf{K}} \psi \leftrightarrow \bigvee \{ \alpha \in \mathcal{C}_{h,n} \mid \vdash_{\mathbf{K}} \alpha \to \psi \}$$

 $\blacktriangleright \vdash_{\mathsf{L}} \psi \leftrightarrow \bigvee \{ \alpha \in \mathcal{C}_{h,n}(\mathsf{L}) \mid \vdash_{\mathsf{L}} \alpha \to \psi \}$

Lemma. $\vdash_{\mathsf{L}} \bigoplus \mathcal{C}_{h,n}(\mathsf{L})$

Lemma.

$$\vdash_{\mathbf{K}} \psi \leftrightarrow \bigvee \{ \alpha \in \mathcal{C}_{h,n} \mid \vdash_{\mathbf{K}} \alpha \to \psi \}$$
$$\vdash_{\mathbf{L}} \psi \leftrightarrow \bigvee \{ \alpha \in \mathcal{C}_{h,n}(\mathbf{L}) \mid \vdash_{\mathbf{L}} \alpha \to \psi \}$$

Truth Lemma. For all $\alpha \in C_{h,n}(\mathsf{L})$ and all $\psi \in \mathcal{L}_{h,n}$, $\mathbb{C}_{h,n}(\mathsf{L}), \alpha \models \psi$ iff $\vdash_{\mathsf{K}} \alpha \rightarrow \psi$.

Existence Lemma. Let $\psi \in \mathcal{L}_{h,n}$ and φ be an aribtrary formula and suppose that $\varphi \land \Diamond \psi$ is consistent in **L**. Then there is some $\alpha \in \mathcal{C}_{h,h}(\mathsf{L})$ such that $\varphi \land \Diamond \alpha$ is consistent in **L** and $\vdash_{\mathsf{K}} \alpha \to \psi$

Proposition. Every bisimulation on $\mathbb{C}_{h,n}$ is a subrelation of the identity relation.

Proposition. Every bisimulation on $\mathbb{C}_{h,n}$ is a subrelation of the identity relation.

Lemma.

- 1. If $\mathbf{KT} \leq \mathbf{L}$, then $\mathbb{C}_{h,n}$ is reflexive.
- 2. If $KD \leq L$, then $\mathbb{C}_{h,n}$ is serial.
- 3. If $\mathbf{KB} \leq \mathbf{L}$, then $\mathbb{C}_{h,n}$ is symmetric.

Proposition. Every bisimulation on $\mathbb{C}_{h,n}$ is a subrelation of the identity relation.

Lemma.

- 1. If $\mathbf{KT} \leq \mathbf{L}$, then $\mathbb{C}_{h,n}$ is reflexive.
- 2. If $KD \leq L$, then $\mathbb{C}_{h,n}$ is serial.
- 3. If $\mathbf{KB} \leq \mathbf{L}$, then $\mathbb{C}_{h,n}$ is symmetric.

Weak Completeness and Decidability. If ψ holds at every world in every symmetric model, then $\vdash_{\mathbf{KB}} \psi$. Moreover, the property of being provable in **KB** is decidable.

Transitivity

The completeness results for logics containing K4 is more difficult.

We must show that if $\alpha \land \Diamond \beta$ and $\beta \land \Diamond \gamma$ are both consistent in K4, then so is $\alpha \land \Diamond \gamma$.

Transitivity

The completeness results for logics containing K4 is more difficult.

We must show that if $\alpha \land \Diamond \beta$ and $\beta \land \Diamond \gamma$ are both consistent in K4, then so is $\alpha \land \Diamond \gamma$.

This is not true in general: $(p \land \Box \diamond p) \land \diamond \neg p$ and $\neg p \land \diamond \Box \neg p$ are consistent is **K4**, but $(p \land \Box \diamond p) \land \diamond \Box \neg p$ is not consistent in **K4**.

Transitivity

The completeness results for logics containing K4 is more difficult.

We must show that if $\alpha \land \Diamond \beta$ and $\beta \land \Diamond \gamma$ are both consistent in K4, then so is $\alpha \land \Diamond \gamma$.

This is not true in general: $(p \land \Box \Diamond p) \land \Diamond \neg p$ and $\neg p \land \Diamond \Box \neg p$ are consistent is **K4**, but $(p \land \Box \Diamond p) \land \Diamond \Box \neg p$ is not consistent in **K4**.

But it is true for $\alpha, \beta, \gamma \in \mathbb{C}_{h,n}(\mathbf{K4})$

Open question: Is it true that for all L, if $K4 \leq L$, then $\mathbb{C}_{h,n}(L)$ is transitive?

Lemma. For every $\alpha \in C_{h+1,n}$, there is a unique $\alpha' \in C_{h,n}$, called the **derivative** of α , such that $\vdash_{\mathbf{K}} \alpha \to \alpha'$. Moreover for all logics \mathbf{L} , if $\alpha \in C_{h+1,n}(\mathbf{L})$, then $\alpha' \in C_{h,n}(\mathbf{L})$.

Lemma. For every $\alpha \in C_{h+1,n}$, there is a unique $\alpha' \in C_{h,n}$, called the **derivative** of α , such that $\vdash_{\mathbf{K}} \alpha \to \alpha'$. Moreover for all logics \mathbf{L} , if $\alpha \in C_{h+1,n}(\mathbf{L})$, then $\alpha' \in C_{h,n}(\mathbf{L})$.

Lemma. Suppose that $\alpha R^c \beta$ in $\mathbb{C}_{h,n}(\mathsf{L})$, then $\vdash_{\mathsf{K}} \alpha \to \Diamond \beta'$.

Lemma. For every $\alpha \in C_{h+1,n}$, there is a unique $\alpha' \in C_{h,n}$, called the **derivative** of α , such that $\vdash_{\mathbf{K}} \alpha \to \alpha'$. Moreover for all logics \mathbf{L} , if $\alpha \in C_{h+1,n}(\mathbf{L})$, then $\alpha' \in C_{h,n}(\mathbf{L})$.

Lemma. Suppose that $\alpha R^c \beta$ in $\mathbb{C}_{h,n}(\mathbf{L})$, then $\vdash_{\mathbf{K}} \alpha \to \Diamond \beta'$.

Lemma. Let $\mathbf{K4} \leq \mathbf{L}$ and let $\alpha R^c \beta$ in $\mathbb{C}_{h+1,n}(\mathbf{L})$. Then, if $\varphi \in \mathcal{L}_{h,n}$ and $\vdash_{\mathbf{K4}} \beta \rightarrow \Diamond \varphi$, then $\vdash_{\mathbf{K4}} \alpha \rightarrow \Diamond \varphi$

- 1. $\mathbb{M}_{0,n}(\mathsf{L}) = \mathbb{C}_{0,n}(\mathsf{L})$
- 2. The valuation on $\mathbb{M}_{h+1,n}(\mathsf{L})$ is $V(p_i) = \{ \alpha \mid \vdash \alpha \to p_i \}$
- 3. The accessibility relation R^m in $\mathbb{M}_{h+1,n}(\mathbf{L})$ is defined by $\alpha R^m \beta$ iff 3.1 $\vdash \alpha \rightarrow \Diamond \beta'$
 - **3.2** for all $\gamma \in \mathcal{C}_{h,n}$, if $\vdash \beta \to \Diamond \gamma$, then $\vdash \alpha \to \Diamond \gamma$

- 1. $\mathbb{M}_{0,n}(\mathsf{L}) = \mathbb{C}_{0,n}(\mathsf{L})$
- 2. The valuation on $\mathbb{M}_{h+1,n}(\mathsf{L})$ is $V(p_i) = \{ \alpha \mid \vdash \alpha \to p_i \}$
- 3. The accessibility relation R^m in $\mathbb{M}_{h+1,n}(\mathbf{L})$ is defined by $\alpha R^m \beta$ iff 3.1 $\vdash \alpha \rightarrow \Diamond \beta'$
 - 3.2 for all $\gamma \in \mathcal{C}_{h,n}$, if $\vdash \beta \to \Diamond \gamma$, then $\vdash \alpha \to \Diamond \gamma$

Lemma. If $K4 \leq L$, then if $\alpha R^c \beta$, then $\alpha R^m \beta$

A relation \rightsquigarrow on $\mathcal{C}_{h,n}(\mathbf{L})$ is **suitable** if the following two properties hold:

1. If
$$\alpha R^c \beta$$
 in $\mathbb{C}_{h,n}(\mathbf{L})$, then $\alpha \rightsquigarrow \beta$

2. If $\alpha \rightsquigarrow \beta$, then $\vdash \alpha \rightarrow \beta'$

A relation \rightsquigarrow on $\mathcal{C}_{h,n}(\mathsf{L})$ is **suitable** if the following two properties hold:

1. If
$$\alpha R^c \beta$$
 in $\mathbb{C}_{h,n}(\mathsf{L})$, then $\alpha \rightsquigarrow \beta$

2. If
$$\alpha \rightsquigarrow \beta$$
, then $\vdash \alpha \rightarrow \beta'$

Generalized Truth Lemma Let \rightsquigarrow be a suitable relation on $C_{h,n}(L)$. Then, for all $\alpha \in C_{h,n}(L)$ and all $\psi \in \mathcal{L}_{h,n}$,

$$((\mathcal{C}_{h,n}, \rightsquigarrow), \alpha \models \psi \quad \text{iff} \quad \vdash_{\mathsf{K}} \alpha \to \psi$$

Lemma. $\mathbb{C}_{h,n}(\mathsf{K4}) = \mathbb{M}_{h,n}(\mathsf{L}).$

Theorem. Every $\alpha \in C_{h,n}(\mathbf{K4})$ is satisfiable in some finite transitive model. Thus, **K4** is complete for transitive models, and also decidable.

KL

 $\mathbb{D}_{h,n}(\mathsf{L}) = \langle \mathcal{C}_{h,n}(\mathsf{L}), R^d
angle$ where

1. $\alpha R^d \beta$ if $\alpha R^c \beta$, and for some $\varphi \in \mathcal{L}_{h,n}$, $\vdash \alpha \to \Diamond \varphi$ and $\vdash \beta \to \Box \neg \varphi$.

 $\mathbb{N}^*_{h,n}(\mathsf{L}) = \langle \mathcal{C}_{h,n}(\mathsf{L}), R^{n^*}
angle$ where

1.
$$\mathbb{N}^*_{0,n}(\mathsf{L}) = \mathbb{C}_{0,n}(\mathsf{L})$$

- 2. The valuation on $\mathbb{N}_{h+1,n}^*(\mathbf{L})$ is $V(p_i) = \{ \alpha \mid \vdash \alpha \to p_i \}$
- The accessibility relation R^m in N^{*}_{h+1,n}(L) is defined by αR^{n*}β iff
 1 ⊢ α → ◊β'
 2 for all γ ∈ C_{h,n}, if ⊢ β → ◊γ, then ⊢ α → ◊γ
 3.3 there is some γ ∈ C_{h,n} such that ⊢ α → ◊γ, but ⊢ β → □¬γ

Truth Lemma. Let $\mathsf{KL} \leq \mathsf{L}$. For all $\alpha \in \mathcal{C}_{h,n}(\mathsf{L})$ and all $\psi \in \mathcal{L}_{h,n}$,

$$\mathbb{N}_{h,n}^*(\mathbf{L}), \alpha \models \psi \quad \text{iff} \quad \vdash_{\mathbf{K}} \alpha \to \psi$$

Theorem.

- 1. $\mathbb{N}_{h,n}^*(\mathsf{KL}) = \mathbb{D}_{h,n}(\mathsf{KL}).$
- 2. KL is complete for finite transitive, converse wellfounded models.
- 3. $\mathbb{C}_{h,n}(\mathsf{KL})$ is transitive.

Filtrations

Let $\mathcal{M} = \langle W, R, V \rangle$ be a Kripke model. Suppose that Σ is a set of formulas closed under subformulas. We write say w and v are Σ -equivalent provided:

$$w \longleftrightarrow_{\Sigma} v$$
 iff for all $\varphi \in \Sigma$, $\mathcal{M}, w \models \varphi$ iff $\mathcal{M}, v \models \varphi$.

Note that $\longleftrightarrow_{\Sigma}$ is an equivalence relation. Let $|w|_{\Sigma} = \{v \mid w \longleftrightarrow_{\Sigma} v\}$ denote the equivalence class of w under $\longleftrightarrow_{\Sigma}$.

Let $\mathcal{M} = \langle W, R, V \rangle$ be a Kripke model. Given a set of formulas Σ closed under subformulas, a model $\mathcal{M}^f = \langle W^f, R^f, V^f \rangle$ is a filtration of \mathcal{M} through Σ provided

- $\blacktriangleright W^f = \{ |w|_{\Sigma} \mid w \in W \}$
- If wRv then $|w|_{\Sigma}R^{f}|v|_{\Sigma}$
- ► If $|w|_{\Sigma}R^{f}|v|_{\Sigma}$ then for each $\Diamond \varphi \in \Sigma$, if $\mathcal{M}, v \models \varphi$ then $\mathcal{M}, w \models \Diamond \varphi$

$$\blacktriangleright V^f(p) = \{ |w|_{\Sigma} \mid w \in V(p) \}$$

 \triangleleft

Theorem. If \mathcal{M}^f is a filtration of \mathcal{M} through Σ , then for all $\varphi \in \Sigma$, $\mathcal{M}, w \models \varphi \quad \text{iff} \quad \mathcal{M}^f, |w|_{\Sigma} \models \varphi$ **Theorem**. If \mathcal{M}^{f} is a filtration of \mathcal{M} through Σ , then for all $\varphi \in \Sigma$,

$$\mathcal{M}, w \models \varphi \quad \text{iff} \quad \mathcal{M}^f, |w|_{\Sigma} \models \varphi$$

Examples of Filtrations

- smallest filtration: |w|_ΣR^s|v|_Σ iff there is w' ∈ |w|_Σ and v' ∈ |v|_Σ such that w'Rv'.
- ► largest filtration: $|w|_{\Sigma}R'|v|_{\Sigma}$ iff for all $\Diamond \varphi \in \Sigma$, $\mathcal{M}, v \models \varphi$ implies $\mathcal{M}, w \models \Diamond \varphi$
- ► transitive filtration: $|w|_{\Sigma}R^t|v|_{\Sigma}$ iff for all $\Diamond \varphi \in \Sigma$, $\mathcal{M}, v \models \varphi \lor \Diamond \varphi$ implies $\mathcal{M}, w \models \Diamond \varphi$ (assuming *R* is transitive)

For all $\Gamma \in W^{C}$, there is a unique $\alpha \in C_{h,n}$ such that $\alpha \in \Gamma$ (write α_{Γ} for this formula)

For all $\Gamma \in W^{C}$, there is a unique $\alpha \in C_{h,n}$ such that $\alpha \in \Gamma$ (write α_{Γ} for this formula)

The set $\mathcal{L}_{h,n}$ induces an equivalence relation \equiv on $W^{\mathcal{C}}$, where $\Gamma \equiv \Delta$ iff $\alpha_{\Gamma} = \alpha_{\Delta}$.

For all $\Gamma \in W^{C}$, there is a unique $\alpha \in C_{h,n}$ such that $\alpha \in \Gamma$ (write α_{Γ} for this formula)

The set $\mathcal{L}_{h,n}$ induces an equivalence relation \equiv on $W^{\mathcal{C}}$, where $\Gamma \equiv \Delta$ iff $\alpha_{\Gamma} = \alpha_{\Delta}$.

We also have $\Gamma \equiv \Delta$ iff $\Gamma \cap \mathcal{L}_{h,n} = \Delta \cap \mathcal{L}_{h,n}$.

For all $\Gamma \in W^{C}$, there is a unique $\alpha \in C_{h,n}$ such that $\alpha \in \Gamma$ (write α_{Γ} for this formula)

The set $\mathcal{L}_{h,n}$ induces an equivalence relation \equiv on $W^{\mathcal{C}}$, where $\Gamma \equiv \Delta$ iff $\alpha_{\Gamma} = \alpha_{\Delta}$.

We also have $\Gamma \equiv \Delta$ iff $\Gamma \cap \mathcal{L}_{h,n} = \Delta \cap \mathcal{L}_{h,n}$.

For each $\alpha \in C_{h,n}(\mathbf{L})$, W^{C} contains $Th_{\mathbb{C}}(\alpha)$, the set of formulas satisfied by α in $\mathbb{C}_{h,n}$.

Theorem. There is a one-to-one correspondence between filtrations of \mathcal{M}^{C} for **L** through $\mathcal{L}_{h,n}$ and suitable relation \rightsquigarrow on $\mathcal{C}_{h,n}(\mathsf{L})$. The correspondence associates to a filtration R^{f} the suitable relation $\rightsquigarrow_{R^{f}}$ give by:

$$\alpha \rightsquigarrow_{R^f} \beta$$
 iff $[Th(\alpha)]R^f[Th(\beta)]$

$$[\Gamma] R_{\leadsto}[\Delta] \quad \text{iff} \quad \alpha_{\Gamma} \rightsquigarrow \alpha_{\Delta}$$

Each of these is monotone with respect to inclusion of relations.

- 1. The minimal filtration of $\mathcal{L}_{h,n}$ corresponds to the accessibility relation R^{C} of $\mathbb{C}_{h,n}(\mathbf{L})$
- 2. The largest filtration on $\mathcal{L}_{h,n}$ corresponds to the suitable relation \rightsquigarrow given by $\alpha \rightsquigarrow \beta$ iff $\vdash_{\mathbf{L}} \alpha \rightarrow \beta'$