Lecture 6: Incompleteness

Eric Pacuit*

March 1, 2019

1 Tutorial Questions

General Frames: A general frame is a tuple $\langle W, R, A \rangle$ where A is a collection of *admissible* subsets of W closed under the following operations:

- If $X, Y \in A$ then $X \cap Y \in A$
- If $X \in A$ then $\overline{X} \in A$
- If $X \in A$ then $l(X) = \{w \mid \text{ for all } v \text{ if } wRv \text{ then } v \in X\} \in A.$

A model based on a general frame $\mathcal{F} = \langle W, R, A \rangle$ is a tuple $\mathcal{M} = \langle W, R, A, V \rangle$ where for each $p \in At$, $V(p) \in A$.

- Consider the frame $\langle \mathbb{N}, \langle \rangle$. Prove that the McKinsey formula $\Box \Diamond \varphi \to \Diamond \Box \varphi$ is not valid on this frame.
- Consider the general frame $\langle \mathbb{N}, \langle, A \rangle$, where A is the set of all finite or cofinite subsets of N. Prove that the McKinsey formula is valid on this general frame.

Convince yourself that the following are true:

- $\mathcal{F} \models (\Diamond \varphi \land \Diamond \psi) \rightarrow (\Diamond (\varphi \land \Diamond \psi) \lor \Diamond (\varphi \land \psi) \lor \Diamond (\Diamond \varphi \land \psi))$ iff \mathcal{F} non-branching to the right (for all w, v, x if wRv and wRx then either vRx or xRv or v = x).
- $\mathcal{F} \models \Box \varphi \rightarrow \Diamond \varphi$ iff \mathcal{F} is unbounded (to the right: for all w there is a v such that wRv).
- $\mathcal{F} \models \Box(\Box \varphi \rightarrow \varphi) \rightarrow \Box \varphi$ iff \mathcal{F} is transitive and converse well-founded.

^{*} Webpage: pacuit.org, Email: epacuit@umd.edu

Temporal Logic: Let $\mathcal{M} = \langle T, R, V \rangle$ be a Kripke model.

- $\mathcal{M}, t \models F\varphi$ iff there exists a t' such that tRt' and $\mathcal{M}, t' \models \varphi$
- $\mathcal{M}, t \models P\varphi$ iff there exists a t' such that t'Rt and $\mathcal{M}, t' \models \varphi$
- $\mathcal{M}, t \models G\varphi$ iff for all t', if tRt' then $\mathcal{M}, t' \models \varphi$
- $\mathcal{M}, t \models H\varphi$ iff for all t', if t'Rt then $\mathcal{M}, t' \models \varphi$

The minimal temporal logic $\mathbf{K}_{\mathbf{t}}$ contains the following axiom schemes and rules:

- Propositional logic
- $G(\varphi \to \psi) \to (G\varphi \to G\psi)$
- $G(\varphi \to \psi) \to (G\varphi \to G\psi)$
- $\bullet \ \varphi \to GP\varphi$
- $\bullet \ \varphi \to HF\varphi$
- From φ derive $\bigcirc \varphi$ where $\bigcirc = G, H$
- Modus Ponens

Let $\mathbf{K_t}\mathbf{Tho}$ be the temporal logic extending $\mathbf{K_t}$ with the axiom schemes

- $Fp \wedge Fq \rightarrow (F(p \wedge Fq) \vee F(p \wedge q) \vee F(Fp \wedge q))$
- $Gp \to Fp$
- $H(Hp \rightarrow p) \rightarrow Hp$

Fact 1 K_tTho is consistent.

Fact 2 If $\mathcal{F} = \langle T, R \rangle$ is a frame for $\mathbf{K_tTho}$, then for $t \in T$, $\{u \mid tRu\}$ is an unbounded strict total order.

Fact 3 If $\mathcal{F} = \langle T, R \rangle$ is a frame for $\mathbf{K_tTho}$, then $\mathcal{F} \not\models GFp \rightarrow FGp$.

Fact 4 The logic $\mathbf{K_t ThoM}$ which extends $\mathbf{K_t Tho}$ with the axiom scheme $GF\varphi \rightarrow FG\varphi$ is consistent and incomplete (*I.e.*, $\mathbf{K_t ThoM}$ is not the logic for any class of frames).