Lecture 5: Completeness II

Eric Pacuit*

February 22, 2019

1 Tutorial Questions

A **logic** is a set of formulas Γ satisfying certain closure conditions. We write $\vdash_{\Gamma} \varphi$ iff $\varphi \in \Gamma$.

Rule of inference: $\frac{\varphi_1, \varphi_2, \dots, \varphi_n}{\varphi}$ where $n \geq 0$. A logic is closed under a rule of inference means that if $\{\varphi_1, \varphi_2, \dots, \varphi_n\} \subseteq \Gamma$, then $\varphi \in \Gamma$

• MP
$$\frac{\varphi \quad \varphi \to \psi}{\psi}$$

• N
$$\frac{\varphi}{\Box \varphi}$$

• RE
$$\varphi \leftrightarrow \psi$$
 $\Box \varphi \leftrightarrow \Box \psi$

- US $\frac{\varphi}{\psi}$, where ψ is obtained from φ by uniformly replacing propositional atoms in φ by arbitrary formulas.
- RPL $\frac{\varphi_1 \quad \varphi_2 \quad \cdots \quad \varphi_n}{\varphi}$, where φ is a tautological consequence of $\varphi_1, \ldots, \varphi_n$ (i.e., $(\varphi_1 \land \cdots \land \varphi_n) \rightarrow \varphi$ is a propositional tautology).

A set of formulas Γ is a **system of modal logic** iff it contains all propositional tautologies (PL) and is closed under modus ponens (MP) and uniform substitution (US). Note: Sometimes one does not include closure under uniform substitution in the definition of a logic.

^{*} Webpage: pacuit.org, Email: epacuit@umd.edu

A **normal modal logic** is a system of modal logic that contains all instances of K: $\Box(\varphi \to \psi) \to (\Box\varphi \to \Box\psi)$, $Dual: \Diamond\varphi \leftrightarrow \neg\Box\neg\varphi$, and is closed under $Nec: \frac{\varphi}{\Box\varphi}$. Show that the following are equivalent definitions of normal modal logics:

- a system of modal logic that contains all instances of *Dual*: $\Diamond \varphi \leftrightarrow \neg \Box \neg \varphi$, and is closed under RK: $\frac{(\varphi_1 \wedge \cdots \wedge \varphi_n) \to \varphi}{(\Box \varphi_1 \wedge \cdots \wedge \Box \varphi_n) \to \Box \varphi} \ (n \ge 0).$
- a system of modal logic that contains all instances of

$$- Dual: \diamond \varphi \leftrightarrow \neg \Box \neg \varphi,$$

$$-M: \Box(\varphi \wedge \psi) \to (\Box\varphi \wedge \Box\psi)$$

$$- C: (\Box \varphi \wedge \Box \psi) \to \Box (\varphi \wedge \psi)$$

$$-N:\Box\top$$

and is closed under RE: $\frac{\varphi \leftrightarrow \psi}{\Box \varphi \leftrightarrow \Box \psi}$

Show that the following rules and axiom schemes are derivable in any normal modal logic:

•
$$RM$$
 $\varphi \to \psi$ $\Box \varphi \to \Box \psi$

•
$$RR$$

$$\frac{(\varphi \land \varphi_2) \to \psi}{(\Box \varphi \land \Box \varphi_2) \to \Box \psi}$$

$$\bullet \ \frac{\varphi \to \psi}{\Diamond \varphi \to \Diamond \psi}$$

$$\bullet \ \frac{\varphi \to (\psi_1 \lor \psi_2)}{\diamondsuit \varphi \to (\diamondsuit \psi_1 \lor \diamondsuit \psi_2)}$$

$$\bullet \ \Box \neg \varphi \to \Box (\varphi \to \psi)$$

•
$$\Diamond(\varphi \lor \psi) \leftrightarrow (\Diamond \varphi \lor \Diamond \psi)$$

•
$$\Diamond \top \leftrightarrow (\Box \varphi \rightarrow \Diamond \varphi)$$

A rule of inference is **admissible** if adding it to a logic does not change the set of theorems. Show that the rule $\frac{\Box \varphi}{\varphi}$ is admissible in the minimal normal modal logic **K** (hint: you will need to use the completeness and soundness theorem).

Some Axioms

Some Modal Logics

K	$\Box(\varphi \to \psi) \to (\Box\varphi \to \Box\psi)$	\mathbf{K}	K + PC + Nec
D	$\Box \varphi \to \Diamond \varphi$	${f T}$	K + T + PC + Nec
T	$\Box \varphi \to \varphi$	S4	K + T + 4 + PC + Nec
4	$\Box \varphi \to \Box \Box \varphi$	S5	K+T+4+5+PC+Nec
5	$\neg \Box \varphi \to \Box \neg \Box \varphi$	KD45	K+D+4+5+PC+Nec
L	$\Box(\Box\varphi\to\varphi)\to\Box\varphi$	\mathbf{GL}	K + L + PC + Nec

One of the following is a theorem of K and one is not a theorem of K but is a theorem of K4 (K with all instances of the 4 axiom scheme). Determine which is which and give proofs in the appropriate logic:

- $(\Box \Diamond \varphi \land \Diamond \Box \psi) \rightarrow \Diamond \Diamond (\varphi \land \psi)$
- $(\Box \varphi \land \Diamond \Box \psi) \rightarrow \Diamond \Box (\varphi \land \psi)$

Prove that in **S5**, every formula is equivalent to one of modal depth ≤ 1 . I.e., there are only three non-equivalent modalities in **S5**: The empty modality, \Box and \Diamond .

2 Modal Axioms

Validity: Suppose that $\mathcal{F} = \langle W, R \rangle$ is a frame and $\mathcal{M} = \langle W, R, V \rangle$ is a model.

- φ is satisfiable when there is a model $\mathcal{M} = \langle W, R, V \rangle$ with a state $w \in W$ such that $\mathcal{M}, w \models \varphi$
- Valid on a model, $\mathcal{M} \models \varphi$: for all $w \in W$, $\mathcal{M}, w \models \varphi$
- Valid on a frame, $\mathcal{F} \models \varphi$: for all \mathcal{M} based on \mathcal{F} , for all $w \in W$, $\mathcal{M}, w \models \varphi$
- Valid at a state on a frame at a state $w \in W$, $\mathcal{F}, w \models \varphi$: for all \mathcal{M} based on $\mathcal{F}, \mathcal{M}, w \models \varphi$
- Valid in a class F of frames, $\models_{\mathsf{F}} \varphi$: for all $\mathcal{F} \in \mathsf{F}$, $\mathcal{F} \models \varphi$

Logical Consequence: Suppose that Γ is a set of modal formulas and Γ is a class of frames. $\Gamma \models_{\Gamma} \varphi$ iff for all frames $\mathcal{F} \in \Gamma$, for all models based on \mathcal{M} , for all w in the domain of \mathcal{M} , if $\mathcal{M}, w \models \Gamma$, then $\mathcal{M}, w \models \varphi$.

Modal Deduction with Assumptions: Let Γ be a set of modal formulas. A modal deduction of φ from Γ , denoted $\Gamma \vdash_{\mathbf{K}} \varphi$ is a finite sequence of formulas $\langle \alpha_1, \ldots, \alpha_n \rangle$ where for each $i \leq n$ either

- 1. α_i is a tautology
- 2. $\alpha_i \in \Gamma$
- 3. α_i is a substitution instance of $\Box(p \to q) \to (\Box p \to \Box q)$
- 4. α_i is of the form $\Box \alpha_j$ for some j < i and $\vdash_{\mathbf{K}} \alpha_j$
- 5. α_i follows by modus ponens from earlier formulas (i.e., there is j, k < i such that α_k is of the form $\alpha_j \to \alpha_i$).

Soundness/Completeness: Suppose that F is a class of relational frames.

- A logic **L** is **sound** with respect to F provided, for all sets of formulas Γ , if $\Gamma \vdash_{\mathbf{L}} \varphi$, then $\Gamma \models_{\mathsf{F}} \varphi$.
- A logic **L** is **strongly complete** with respect to F provided for all sets of formulas Γ , if $\Gamma \models_{\mathsf{F}} \varphi$, then $\Gamma \vdash_{\mathsf{L}} \varphi$.
- A logic L is weakly complete with respect to F provided that for all $\varphi \in \mathcal{L}$, if $\models_{\mathsf{F}} \varphi$, then $\vdash_{\mathsf{L}} \varphi$.

Some Axioms

Some Modal Logics

K	$\Box(\varphi \to \psi) \to (\Box\varphi \to \Box\psi)$	\mathbf{K}	K + PC + Nec
D	$\Box \varphi \to \Diamond \varphi$	${f T}$	K + T + PC + Nec
T	$\Box \varphi \to \varphi$	S4	K + T + 4 + PC + Nec
4	$\Box \varphi \to \Box \Box \varphi$	S5	K+T+4+5+PC+Nec
5	$\neg\Box\varphi\rightarrow\Box\neg\Box\varphi$	KD45	K+D+4+5+PC+Nec
L	$\Box(\Box\varphi\to\varphi)\to\Box\varphi$	\mathbf{GL}	K + L + PC + Nec

Completeness Theorems

- T is sound and strongly complete with respect to the class reflexive Kripke frames
- **S4** is sound and strongly complete with respect to the class reflexive Kripke frames.
- **S5** is sound and strongly complete with respect to the class reflexive Kripke frames.
- **KD45** is sound and strongly complete with respect to the class reflexive Kripke frames.

3 Canonical Model

Notation:

- Let **K** denote the minimal modal logic and $\vdash \varphi$ mean φ is derivable in **K**. If Γ is a set of formulas, we write $\Gamma \vdash \varphi$ if $\vdash (\psi_1 \land \cdots \land \psi_k) \rightarrow \varphi$ for some finite set $\psi_1, \ldots, \psi_k \in \Gamma$.
- Let Γ be a set of formulas. If \mathcal{F} is a frame, then we write $\mathcal{F} \models \Gamma$ for $\mathcal{F} \models \varphi$ for each $\varphi \in \Gamma$. We write $\Gamma \models \varphi$ provided for all frames \mathcal{F} , if $\mathcal{F} \models \Gamma$ then $\mathcal{F} \models \varphi$.
- A set of formulas Γ is **consistent** provided $\Gamma \not\vdash \bot$.
- Γ is a maximally consistent set if Γ is consistent and for each $\varphi \in \mathcal{L}$ either $\varphi \in \Gamma$ of $\neg \varphi \in \Gamma$. Alternatively, Γ is consistent and every Γ' such that $\Gamma \subseteq \Gamma'$ is inconsistent.
- A logic is strongly complete if $\Gamma \models \varphi$ implies $\Gamma \vdash \varphi$. It is weakly complete if $\models \varphi$ implies $\vdash \varphi$. Strong completeness implies weak completeness, but weak completeness does not imply strong completeness.

Important facts about maximally consistent sets: Suppose that Γ is a maximally consistent set,

- 1. If $\vdash \varphi$ then $\varphi \in \Gamma$
- 2. If $\varphi \to \psi \in \Gamma$ and $\varphi \in \Gamma$ then $\psi \in \Gamma$
- 3. $\neg \varphi \in \Gamma \text{ iff } \varphi \notin \Gamma$
- 4. $\varphi \wedge \psi \in \Gamma$ iff $\varphi \in \Gamma$ and $\psi \in \Gamma$
- 5. $\varphi \lor \psi \in \Gamma$ iff $\varphi \in \Gamma$ or $\psi \in \Gamma$

Lemma 1 (Lindenbaum's Lemma) For each consistent set Γ , there is a maximally consistent set Γ' such that $\Gamma \subseteq \Gamma'$. In other words, every consistent set Γ can be extended to a maximally consistent set.

Definition 2 (Canonical Model) The canonical model for **K** is the model $\mathcal{M}^c = \langle W^c, R^c, V^c \rangle$ where

- $W^c = \{ \Gamma \mid \Gamma \text{ is a maximally consistent set} \}$
- $\Gamma R^c \Delta$ iff $\Gamma^{\square} = \{ \varphi \mid \square \varphi \in \Gamma \} \subseteq \Delta$

$$\bullet \ V^c(p) = \{\Gamma \mid p \in \Gamma\}$$

Lemma 3 (Truth Lemma) For every $\varphi \in \mathcal{L}$, \mathcal{M}^c , $\Gamma \models \varphi$ iff $\varphi \in \Gamma$

Theorem 4 Every maximally consistent set Γ has a model (i.e., there is a models \mathcal{M} and state w such that for all $\varphi \in \Gamma$, $\mathcal{M}, w \models \varphi$.

Proof. Suppose that Γ is a consistent set. By Lindenbaum's Lemma, there is a maximally consistent set Γ' such that $\Gamma \subseteq \Gamma'$. Then, by the Truth Lemma, for each $\varphi \in \Gamma'$, we have $\mathcal{M}^c, \Gamma' \models \varphi$. Then, in particular, every formula in Γ is true at Γ' in the canonical model.

Theorem 5 If $\Gamma \models \varphi$ then $\Gamma \vdash \varphi$

Proof. Suppose that $\Gamma \not\vdash \varphi$. Then, $\Gamma \cup \{\neg \varphi\}$ is consistent. By the above theorem, there is a model of $\Gamma \cup \{\neg \varphi\}$. Hence, $\Gamma \not\models \varphi$.

Suppose that \mathbf{L} is a logic extending \mathbf{K} . We can build a canonical model for \mathbf{L} as above. The question is: Is the canonical model in the appropriate class of models?

Lemma 6 If $\Box \varphi \rightarrow \varphi \in \mathbf{L}$, then the canonical model for \mathbf{L} is reflexive.

Proof. Suppose that $\Box \varphi \to \varphi$ is derivable in **L**. We must show that for any MCS Γ , $\Gamma R^c \Gamma$. That is, $\Gamma^{\Box} = \{ \varphi \mid \Box \varphi \in \Gamma \} \subseteq \Gamma$. Suppose that $\Box \psi \in \Gamma$. We must show that $\psi \in \Gamma$. This follows since $\Box \psi \to \psi \in \Gamma$ and Γ is closed under modus ponens. QED

Lemma 7 If $\Box \varphi \rightarrow \Box \Box \varphi \in \mathbf{L}$, then the canonical model for \mathbf{L} is transitive.

Proof. Suppose that $\Box \varphi \to \Box \Box \varphi$ is derivable in **L**. We must show that for MCS $\Gamma, \Gamma', \Gamma''$, if $\Gamma R^c \Gamma'$ and $\Gamma' R^c \Gamma''$, then $\Gamma R^c \Gamma''$. Suppose that $\Gamma R^c \Gamma'$ and $\Gamma' R^c \Gamma''$. Then, $\{\varphi \mid \Box \varphi \in \Gamma\} \subseteq \Gamma'$ and $\{\varphi \mid \Box \varphi \in \Gamma'\} \subseteq \Gamma''$. We must show $\{\varphi \mid \Box \varphi \in \Gamma\} \subseteq \Gamma''$. Suppose that $\Box \psi \in \Gamma$. Then, since $\Box \psi \to \Box \Box \psi \in \Gamma$, we have $\Box \Box \psi \in \Gamma$. This means, $\Box \psi \in \Gamma'$ and $\psi \in \Gamma''$, as desired.

Theorem 8 S4 is sound and strongly complete with respect to the class of Kripke structures that are reflexive and transitive.

Lemma 9 If $\neg \Box \varphi \rightarrow \Box \neg \Box \varphi \in \mathbf{L}$, then the canonical model for \mathbf{L} is Euclidean.

Proof. Suppose that $\neg \Box \varphi \to \Box \neg \Box \varphi$ is derivable in **L**. We must show that for MCS $\Gamma, \Gamma', \Gamma''$, if $\Gamma R^c \Gamma'$ and $\Gamma R^c \Gamma''$, then $\Gamma' R^c \Gamma''$. Suppose that $\Gamma R^c \Gamma'$ and $\Gamma R^c \Gamma''$. Then, $\{\varphi \mid \Box \varphi \in \Gamma\} \subseteq \Gamma'$ and $\{\varphi \mid \Box \varphi \in \Gamma\} \subseteq \Gamma''$. We must show $\{\varphi \mid \Box \varphi \in \Gamma'\} \subseteq \Gamma''$. Suppose that $\Box \psi \in \Gamma'$. If $\psi \notin \Gamma''$, then $\neg \psi \in \Gamma''$. This implies that $\Box \psi \notin \Gamma$, and hence, $\neg \Box \psi \in \Gamma$. Since $\neg \Box \psi \to \Box \neg \Box \psi \in \Gamma$, we have $\Box \neg \Box \psi \in \Gamma$. This implies that $\neg \Box \psi \in \Gamma'$, a contradiction. Hence, $\psi \in \Gamma''$, as desired.

Theorem 10 S5 is sound and strongly complete with respect to the class of Kripke structures that are equivalence relations (reflexive, transitive and symmetric).

Completeness-via-canonicity: Let φ be a modal formula and P a property. If every normal modal logic containing φ has property P and φ is valid on any class of frames with property P, then φ is canonical for P.

Limitations to the above approach:

- Undefinable Properties: Completeness by transforming the canonical model: S4 is sound and strongly complete with respect to the class of reflexive and transitive trees. What is the modal logic of strict total orders?
- Weak Completeness: there are normal modal logics that are not strongly complete. Eg., KL (K plus $\Box(\Box\varphi\to\varphi)\to\Box\varphi$) is not strongly complete.
- **Incompleteness** There are *consistent* normal modal logics that are not complete with respect to any class of frames (more on this later).

4 Alternative Proof of Weak Completeness

In this section we illustrate a technique for by proving weak completeness invented by Larry Moss in [1]. Since we are only interested in illustrating the technique, we focus on the smallest normal modal logic (\mathbf{K}). Recall that the basic modal language is generated by the following grammar:

$$p \mid \neg \varphi \mid \varphi \wedge \psi \mid \Diamond \varphi$$

where p is a propositional variable (let $At = \{p_1, p_2, \ldots, p_n, \ldots\}$ deonte the set of propositional variables). Define the usual boolean connectives and the modal operator \square as usual. Let $\mathcal{L}_{\diamondsuit}$ be the set of well-formed formulas.

Some notation is useful at this stage. The **height**, or **modal depth**, of a formula $\varphi \in \mathcal{L}_{\diamondsuit}$, denoted $\mathsf{ht}(\varphi)$, is longest sequence of nested modal operators. Formally, define ht as follows

$$\begin{array}{lll} \operatorname{ht}(p_n) & = & 0 \\ \operatorname{ht}(\neg\varphi) & = & \operatorname{ht}(\varphi) \\ \operatorname{ht}(\varphi \vee \psi) & = & \max\{\operatorname{ht}(\varphi),\operatorname{ht}(\psi)\} \\ \operatorname{ht}(\diamond\varphi) & = & 1 + \operatorname{ht}(\varphi) \end{array}$$

The **order** of a modal formula φ , written $\operatorname{ord}(\varphi)$, is the largest index of a propositional formula that appears in φ . Formally,

$$\begin{array}{lll} \operatorname{ord}(p_n) & = & n \\ \operatorname{ord}(\neg\varphi) & = & \operatorname{ord}(\varphi) \\ \operatorname{ord}(\varphi \vee \psi) & = & \max\{\operatorname{ord}(\varphi),\operatorname{ord}(\psi)\} \\ \operatorname{ord}(\diamondsuit_n\varphi) & = & \operatorname{ord}(\varphi) \end{array}$$

Let $\mathcal{L}_{h,n} = \{ \varphi \mid \varphi \in \mathcal{L}_{\diamondsuit}, \ \mathsf{ht}(\varphi) \leq h \ \mathsf{and} \ \mathsf{ord}(\varphi) \leq n \}$. Thus, for example, $\mathcal{L}_{0,n}$ is the propositional language (finite up to logical equivalence) built from the set $\{p_1, \ldots, p_n\}$ of propositional variables.

A set $T \subseteq \{p_1, \ldots, p_m\}$ corresponds to a partial valuation on At if we think of the elements of T as being true and the elements of $\{p_1, \ldots, p_m\} - T$ as being false. This partial valuation can be described by the following formula of $\mathcal{L}_{0,m}$

$$\widehat{T} = \bigwedge_{p \in T} p \wedge \bigwedge_{p \in \{p_1, \dots, p_n\} - T} \neg p$$

Now, for each $\varphi \in \mathcal{L}_{0,m}$ it is easy to see that exactly one of the following holds: $\vdash \widehat{T} \to \varphi$ or $\vdash \widehat{T} \to \neg \varphi$. Furthermore, it is easy to show that for each $\varphi \in \mathcal{L}_{0,m}$, $\vdash \varphi \leftrightarrow \bigvee \{\widehat{T} \mid \vdash \widehat{T} \to \varphi\}$. The central idea of Moss' technique is to generalize these facts to modal logic.

It is well-known that modal logic has the *finite tree property*, i.e., when evaluating a formula φ it is enough to consider only paths of length at most the modal

depth of φ . The modal generalization of the formulas described above are called **canonical sentences**. Fix a natural number n and construct a set of canonical sentences, denoted $\mathcal{C}_{h,n}$, by induction on h. Let $\mathcal{C}_{0,n} = \{\widehat{T} \mid T \subseteq \{p_1,\ldots,p_n\}\}$. Suppose that $\mathcal{C}_{h,n}$ has been defined and that $S \subseteq \mathcal{C}_{h,n}$ and $T \subseteq \{p_1,\ldots,p_n\}$. Define the formula

$$\alpha_{S,T} := \bigwedge_{\psi \in S} \Diamond \psi \wedge \Box \bigvee S \wedge \widehat{T}$$

and let $C_{h+1,n} = \{\alpha_{S,T} \mid S \subseteq C_{h,n}, T \subseteq \{p_1,\ldots,p_n\}\}$. It is not hard to see that formulas of the form $\alpha_{S,T}$ play the same role in modal logic as the formulas \widehat{T} in propositional logic. That is, $\alpha_{S,T}$ can be thought of as a complete description of a modal state of affairs. This is justified by the following Lemma from [1]. The proof can be found in [1] although we will repeat it here in the interest of exposition.

Lemma 11 For any modal formula φ of modal depth at most h built from propositional variables $\{p_1, \ldots, p_n\}$ and any $\alpha_{S,T} \in \mathcal{C}_{h+1,n}$ exactly one of the following $holds \vdash \alpha_{S,T} \to \varphi$ or $\vdash \alpha_{S,T} \to \neg \varphi$.

Proof. The proof is by induction on φ . The base case is obvious as are the boolean connectives. We consider only the modal case. Suppose that statement holds for ψ and consider the formula $\diamondsuit \psi$. Note that for each $\beta \in S$, the induction hypothesis applies to β and ψ . Thus for each $\beta \in S$, either $\vdash \beta \to \psi$ or $\vdash \beta \to \neg \psi$. There are two cases: 1. there is some $\beta \in S$ such that $\vdash \beta \to \psi$ and 2. for each $\beta \in S$, $\vdash \beta \to \neg \psi$. Suppose case 1 holds and $\beta \in S$ is such that $\vdash \beta \to \psi$. Then, it is easy to show that in \mathbf{K} , $\vdash \diamondsuit \beta \to \diamondsuit \psi$. Hence, by construction of $\alpha_{S,T}$, $\vdash \alpha_{S,T} \to \diamondsuit \psi$. Suppose we are in the second case. Using propositional reasoning, $\vdash \bigvee S \to \neg \psi$. Then, $\vdash \Box \bigvee S \to \Box \neg \psi$. Hence, by construction of $\alpha_{S,T}$, $\vdash \alpha_{S,T} \to \neg \diamondsuit \psi$.

This lemma demonstrates that we can think of these formulas as complete descriptions of a state (up to finite depth) in some Kripke structure. There are a few other facts that are relevant at this point. The proofs can be found in [1] and we will not repeat them here. Given a set of formulas X, let $\bigoplus X$ denote exactly one of X. Formally, if $X = \{\varphi_1, \ldots, \varphi_n\}$, then $\bigoplus X$ is short for $\bigvee_{i=1,\ldots,n} (\varphi_i \land \neg \bigvee_{j\neq i} \varphi_j)$.

Lemma 12 1. For any $h, \vdash \bigoplus C_{h,n}$ (and hence $\vdash \bigvee C_{h,n}$)

2. For any formula φ of height $h, \vdash \varphi \leftrightarrow \bigvee \{\alpha \mid \alpha \in \mathcal{C}_{h,n}, \vdash \alpha \rightarrow \varphi\}$

Moss constructs a (finite) Kripke model from the set of formulas $C_{h,n}$ as follows. Let $\mathbb{C}_{h,n} = \langle \mathcal{C}, R, V \rangle$ where

- 1. $\mathcal{C} \subseteq \mathcal{C}_{h,n}$ is the set of all **K-consistent** formulas from $\mathcal{C}_{h,n}$
- 2. For $\alpha, \beta \in \mathcal{C}$, $\alpha R\beta$ provided $\alpha \land \Diamond \beta$ is consistent

3. for $p \in \{p_1, \ldots, p_n\}$, $V(p) = \{\alpha \mid \alpha \in \mathcal{C}, \vdash \alpha \to p\}$.

The truth Lemma connects truth of φ at a state α and the derivability of the implication $\alpha \to \varphi$. We first need an existence Lemma whose proof can be found in [1]

Lemma 13 (Existence Lemma, [1]) Suppose that $\varphi \in \mathcal{L}_{h,n}$ and $\mathbb{C}_{h,n} = \langle \mathcal{C}, R, V \rangle$ is as defined above. If $\alpha \land \Diamond \varphi$ is **K**-consistent then there is a $\beta \in \mathcal{C}$ such that $\alpha \land \Diamond \beta$ is **K**-consistent and $\vdash \beta \to \varphi$.

The proof uses Lemma 12 and can be found in [1].

Lemma 14 (Truth Lemma, [1]) Suppose that $\varphi \in \mathcal{L}_{h,n}$ and $\mathbb{C}_{h,n} = \langle \mathcal{C}, R, V \rangle$ is as defined above. Then for each $\alpha \in \mathcal{C}$, $\mathbb{C}_{h,n}$, $\alpha \models \varphi$ iff $\vdash_{\mathbf{K}} \alpha \to \varphi$.

Proof. As usual, the proof is by induction on φ . The base case and boolean connectives are straightforward. The only interesting case is the modal operator. Suppose that $\mathbb{C}_{h,n}$, $\alpha \models \Diamond \psi$. Then there is some $\beta \in \mathcal{C}$ such that $\alpha R\beta$ and $\mathbb{C}_{h,n}$, $\beta \models \psi$. By the definition of R, $\alpha \land \Diamond \beta$ is **K**-consistent. By Lemma 11, either $\vdash \alpha \to \Diamond \psi$ or $\vdash \alpha \to \neg \Diamond \psi$. If $\vdash \alpha \to \Diamond \psi$ we are done. Suppose that $\vdash \alpha \to \neg \Diamond \psi$. Now, by the induction hypothesis, $\vdash \beta \to \psi$. Hence $\vdash \Diamond \beta \to \Diamond \psi$. But this contradicts the assumption that $\alpha \land \Diamond \beta$ is **K**-consistent. Suppose that $\vdash \alpha \to \Diamond \psi$. Then $\alpha \land \Diamond \psi$ is **K**-consistent. Hence by Lemma 13, there is a $\beta \in \mathcal{C}$ such that $\alpha \land \Diamond \beta$ is **K**-consistent and $\vdash \beta \to \psi$. But this means that $\mathbb{C}_{h,n}$, $\alpha \models \Diamond \psi$.

The weak completeness theorem easily follows from the above Lemmas.

Theorem 15 K is weakly complete, i.e., for each $\varphi \in \mathcal{L}_{\diamondsuit}$, if $\models \varphi$, then $\vdash_{\mathbf{K}} \varphi$.

Proof. Let h and n be large enough so that $\varphi \in \mathcal{L}_{h,n}$ and suppose that $\models \varphi$. Then, in particular, φ is valid in $\mathbb{C}_{h,n}$. Thus for each $\alpha \in \mathcal{C}$, $\mathbb{C}_{h,n}$, $\alpha \models \varphi$. Hence by Lemma 14, for each $\alpha \in \mathcal{C}$, $\vdash \alpha \to \varphi$. Hence, $\vdash \bigvee \mathcal{C} \to \varphi$. By Lemma 12, $\vdash \bigvee \mathcal{C}$. Therefore, $\vdash \varphi$.

In [1], Moss uses the above technique to show that a number of well-known modal logics are weakly complete.

References

[1] Larry Moss Finite models constructed from canonical formulas. Journal of Philosophical Logic, 36:6, pp. 605 - 640, 2005.