Lecture 2: Expressivity and Invariance

Eric Pacuit
Department of Philosophy
University of Maryland
pacuit.org
epacuit@umd.edu

February 4, 2019

1 Propositional Modal Logic

- Language: $p|\neg \varphi| \varphi \vee \psi \mid \diamond \psi, p \in$ At (atomic propositions), Boolean connectives defined as usual, $\square \varphi:=\neg \diamond \neg \varphi$
- Frame: $\langle W, R\rangle$, where $W \neq \emptyset$ and $R \subseteq W \times W$
- Model: $\langle W, R, V\rangle$, where $\langle W, R\rangle$ is a frame and $V:$ At $\rightarrow \wp(W)$ (Kripke structure)
- Truth at a state in a model: $\mathcal{M}, w \models \varphi$
$-\mathcal{M}, w \models p$ iff $w \in V(p)$
- $\mathcal{M}, w \models \neg \varphi$ iff $\mathcal{M}, w \not \vDash \varphi$
$-\mathcal{M}, w \models \varphi \wedge \psi$ iff $\mathcal{M}, w \models \varphi$ and $\mathcal{M}, w \models \psi$
$-\mathcal{M}, w \models \diamond \varphi$ iff there is a $v \in W$ such that $w R v$ and $\mathcal{M}, v \models \varphi$
Since $\square \varphi$ is defined to be $\neg \diamond \neg \varphi$, we have
$-\mathcal{M}, w \models \square \varphi$ iff for all $v \in W$, if $w R v$ then $\mathcal{M}, v \models \varphi$
- Validity: Suppose that $\mathcal{F}=\langle W, R\rangle$ is a frame and $\mathcal{M}=\langle W, R, V\rangle$ is a model.
- φ is satisfiable when there is a model $\mathcal{M}=\langle W, R, V\rangle$ with a state $w \in W$ such that $\mathcal{M}, w \models \varphi$
- Valid on a model, $\mathcal{M} \models \varphi$: for all $w \in W, \mathcal{M}, w \models \varphi$
- Valid on a frame, $\mathcal{F} \models \varphi$: for all \mathcal{M} based on \mathcal{F}, for all $w \in W, \mathcal{M}, w \models \varphi$ for all functions V, for all $w \in W,\langle W, R, V\rangle, w \models \varphi$
- Valid at a state on a frame at a state $w \in W, \mathcal{F}, w \models \varphi$: for all \mathcal{M} based on $\mathcal{F}, \mathcal{M}, w \models \varphi$
- Valid in a class F of frames, $\models_{\mathrm{F}} \varphi$: for all $\mathcal{F} \in \mathrm{F}, \mathcal{F} \models \varphi$

2 Tutorial Questions

- Consider the following model:

Determine which of the following formulas are true at w_{1} (explain your answer)

1. $\diamond(q \wedge \diamond q)$
2.

$\square \perp$
3. $\square \diamond \diamond p$
4. $\square \square \square p$

- Determine which of the following formulas are valid on the above model (explain your answer)

1. $\diamond \diamond \square \perp$
2. $q \rightarrow \diamond q$
3. $\diamond \square p \vee \square \diamond p$

- Let $\mathcal{F}=\left\langle B, R_{1}, R_{2}\right\rangle$ be a frame where B is the set of all finite strings of 0 s and 1 s , and the relations R_{1} and R_{2} are defined by:

$$
\begin{aligned}
& s R_{1} t \text { iff } t=s 0 \text { or } t=s 1 \\
& s R_{2} t \text { iff } t \text { is a proper initial segment of } s .
\end{aligned}
$$

Which of the following formulas are valid on this frame?

1. $\left(\diamond_{1} p \wedge \diamond_{1} q\right) \rightarrow \diamond_{1}(p \wedge q)$
2. $\left(\diamond_{1} p \wedge \diamond_{1} q \wedge \diamond_{1} r\right) \rightarrow\left(\diamond_{1}(p \wedge q) \vee \diamond_{1}(p \wedge r) \vee \diamond_{1}(q \wedge r)\right)$
3. $\left(\diamond_{2} p \wedge \diamond_{2} q \wedge \diamond_{2} r\right) \rightarrow\left(\diamond_{2}(p \wedge q) \vee \diamond_{2}(p \wedge r) \vee \diamond_{2}(q \wedge r)\right)$

- Find a model with a state that makes $p \rightarrow \diamond p$ false. Show that if the frame is reflexive, then $p \rightarrow \diamond p$ is valid.
- Find a model with a state that makes $\diamond \diamond p \rightarrow \diamond p$ false. Show that if the frame is transitive, then $\diamond \diamond p \rightarrow \diamond p$ is valid.

3 Expressivity and Invariance

Consider the following modalities:

- $\mathcal{M}, w \models A \varphi$ iff for all $w \in W, \mathcal{M}, w \models \varphi$
- $\mathcal{M}, w \models \diamond^{\leftarrow} \varphi$ iff there is a $v \in W, v R w$ and $\mathcal{M}, v \models \varphi$.
- $\mathcal{M}, w \models \diamond_{n} \varphi$ iff there are v_{1}, \ldots, v_{n} such that for all $1 \leq j \neq k \leq n, v_{j} \neq v_{k}$, for all $j=1, \ldots, n$, $w R v_{j}$ and for all $j=1, \ldots, n, \mathcal{M}, v_{j} \models \varphi$.
For instance, $\diamond_{2} \varphi$ is true at a state if there are at least two accessible states that satisfy φ.
- $\mathcal{M}, w \models \circlearrowleft$ iff $w R w$

Are these modalities definable using the basic modal language? Intuitively, the answer is "no", but how do we prove this?

Model Constructions

- Disjoint Union: Let $\mathcal{M}_{1}=\left\langle W_{1}, R_{1}, V_{1}\right\rangle$ and $\mathcal{M}_{2}=\left\langle W_{2}, R_{2}, V_{2}\right\rangle$. The disjoint union is the structure $\mathcal{M}_{1} \uplus \mathcal{M}_{2}=\langle W, R, V\rangle$ where
- $W=W_{1} \cup W_{2}$ (disjoint union)
$-R=R_{1} \cup R_{2}$
- for all $p \in$ At, $V(p)=V_{1}(p) \cup V_{2}(p)$

Lemma For each collection of Kripke structures $\left\{\mathcal{M}_{i} \mid i \in I\right\}$, for each $w \in W_{i}, \mathcal{M}_{i}, w \models \varphi$ iff $\biguplus_{i \in I} \mathcal{M}_{i}, w \models \varphi$

Fact The universal modality is not definable in the basic modal language.

- Generated Submodel: $\mathcal{M}^{\prime}=\left\langle W^{\prime}, R^{\prime}, V^{\prime}\right\rangle$ is a generated submodel of $\mathcal{M}=\langle W, R, V\rangle$ provided
- $W^{\prime} \subseteq W$ is R-closed:
for each $w^{\prime} \in W$ and $v \in W$, if $w R v$ then $v \in W^{\prime}$.
- $R^{\prime}=R \cap W^{\prime} \times W^{\prime}$
- for all $p \in \mathrm{At}, V^{\prime}(p)=V(p) \cap W^{\prime}$

Lemma If \mathcal{M}^{\prime} is a generated submodel of \mathcal{M} then for each $w \in W^{\prime}, \mathcal{M}^{\prime}, w \models \varphi$ iff $\mathcal{M}, w \models \varphi$

Fact The backwards looking modality is not definable in the basic modal language.

- Bounded Morphism A bounded morphism between models $\mathcal{M}=\langle W, R, V\rangle$ and $\mathcal{M}^{\prime}=\left\langle W^{\prime}, R^{\prime}, V^{\prime}\right\rangle$ is a function f with domain W and range W^{\prime} such that:

Atomic harmony: for each $p \in \mathrm{At}, w \in V(p)$ iff $f(w) \in V^{\prime}(p)$
Morphism: if $w R v$ then $f(w) R f(v)$
Zag: if $f(w) R^{\prime} v^{\prime}$ then $\exists v \in W$ such that $f(v)=v^{\prime}$ and $w R v$

Lemma If \mathcal{M}^{\prime} is a bounded morphic image of \mathcal{M} then for each $w \in W, \mathcal{M}, w \models \varphi$ iff $\mathcal{M}^{\prime}, f(w) \models \varphi$

Fact Counting modalities are not definable in the basic modal language (eg., $\diamond_{1} \varphi$ iff φ is true in more than 1 accessible world).

- Tree Unfoldings: The unfolding of $\mathcal{M}=\langle W, R, V\rangle$ with root w is $\overrightarrow{\mathcal{M}}=\langle\vec{W}, \vec{R}, \vec{V}\rangle$, where \vec{W} is the set of paths starting at $w,\left(w, \ldots, w_{n}\right) \vec{R}\left(w, \ldots, w_{n}, w_{n+1}\right)$ iff $w_{n} R w_{n+1}$ and $\left(w, \ldots, w_{n}\right) \in V(p)$ iff $w_{n} \in V(p)$.

Lemma. Every satisfiable modal formula is satisfiable at the root of a tree.

- Bisimulation: A bisimulation between $\mathcal{M}=\langle W, R, V\rangle$ and $\mathcal{M}^{\prime}=\left\langle W^{\prime}, R^{\prime}, V^{\prime}\right\rangle$ is a non-empty binary relation $Z \subseteq W \times W^{\prime}$ such that whenever $w Z w^{\prime}$:

Atomic harmony: for each $p \in \mathrm{At}, w \in V(p)$ iff $w^{\prime} \in V^{\prime}(p)$
Zig: if $w R v$, then $\exists v^{\prime} \in W^{\prime}$ such that $v Z v^{\prime}$ and $w^{\prime} R^{\prime} v^{\prime}$
Zag: if $w^{\prime} R^{\prime} v^{\prime}$ then $\exists v \in W$ such that $v Z v^{\prime}$ and $w R v$

- We write $\mathcal{M}, w \leftrightarrows \mathcal{M}^{\prime}, w^{\prime}$ if there is a Z such that $w Z w^{\prime}$.
- We write \mathcal{M}, w ans $\mathcal{M}^{\prime}, w^{\prime}$ iff for all $\varphi \in \mathcal{L}, \mathcal{M}, w \models \varphi$ iff $\mathcal{M}^{\prime}, w^{\prime} \models \varphi$.
- Lemma If $\mathcal{M}, w \leftrightarrows \mathcal{M}^{\prime}, w^{\prime}$ then $\mathcal{M}, w \leftrightarrow \mathcal{M}^{\prime}, w^{\prime}$.
- Lemma On finite models, if \mathcal{M}, w an $\mathcal{M}^{\prime}, w^{\prime}$ then $\mathcal{M}, w \leftrightarrow \mathcal{M}^{\prime}, w^{\prime}$.
- Lemma On m-saturated models, if $\mathcal{M}, w \leftrightarrow \mathcal{M}^{\prime}, w^{\prime}$ then $\mathcal{M}, w \leftrightarrow \mathcal{M}^{\prime}, w^{\prime}$.

Proposition. Any Kripke structure is the bounded morphic image of a disjoint union of rooted Kripke structures (in fact, tree structures).

$\underline{\text { Defining classes of models/frames }}$

- $\operatorname{PKS}(\varphi)=\{(\mathcal{M}, w) \mid \mathcal{M}, w \vDash \varphi\}$
- $K S(\varphi)=\{\mathcal{M} \mid \mathcal{M}=\varphi\}$
- $\operatorname{PFR}(\varphi)=\{(\mathcal{F}, w) \mid(\mathcal{F}, V), w \models \varphi$ for all valuations $V\}$
- $F R(\varphi)=\{\mathcal{F} \mid(\mathcal{F}, V), w \models \varphi$ for all $w \in \operatorname{dom}(\mathcal{M})$ and valuations $V\}$

Advanced Topic: Ultrafilter extensions

Fact. Closure under generated subframe, bounded morphic images, and disjoint unions is not sufficient to guarantee definability by a modal formula for a class of frames. (eg., frames defined by $\forall x \exists y(x R y \wedge y R y)$).

- Ultrafilter Extensions: Let $m(X)=\{w \mid$ there is a v such that $w R v$ and $v \in X\}$ and $l(X)=$ $\overline{m(\bar{X})}=\{w \mid$ for all v, if $w R v$ then $v \in X\}$. An ultrafilter extension is a model

$$
u e(\mathcal{M})=\left\langle U f(W), R^{u e}, V^{u e}\right\rangle
$$

where $U f(W)=\{u \mid u$ is an ultrafilter over $W\}, u R^{u e} u^{\prime}$ iff for all $X \subseteq W$, if $X \in u^{\prime}$ then $m(X) \in u$, and $V(p)=\{u \mid V(p) \in u\}$.

Fact. For all models $\mathcal{M}, w \nsim u_{w}$, where u_{w} is the principle ultrafilter generated by w.
Fact. For all models \mathcal{M}, $u e(\mathcal{M})$ is m-saturated.
Fact. $\mathcal{M}, w \leadsto \mathcal{M}^{\prime}, w^{\prime}$ iff $u e(\mathcal{M}), u_{w} \leftrightarrow u e\left(\mathcal{M}^{\prime}\right), u_{w^{\prime}}$

