Lecture 2: Expressivity and Invariance

Eric Pacuit Department of Philosophy University of Maryland pacuit.org epacuit@umd.edu

February 4, 2019

1 Propositional Modal Logic

- Language: $p \mid \neg \varphi \mid \varphi \lor \psi \mid \diamond \psi, p \in At$ (atomic propositions), Boolean connectives defined as usual, $\Box \varphi := \neg \diamond \neg \varphi$
- Frame: $\langle W, R \rangle$, where $W \neq \emptyset$ and $R \subseteq W \times W$
- Model: $\langle W, R, V \rangle$, where $\langle W, R \rangle$ is a frame and $V : At \to \wp(W)$ (Kripke structure)
- Truth at a state in a model: $\mathcal{M}, w \models \varphi$
 - $-\mathcal{M}, w \models p \text{ iff } w \in V(p)$
 - $-\mathcal{M},w\models\neg\varphi$ iff $\mathcal{M},w\not\models\varphi$
 - $-\mathcal{M},w\models\varphi\wedge\psi$ iff $\mathcal{M},w\models\varphi$ and $\mathcal{M},w\models\psi$
 - $-\mathcal{M}, w \models \Diamond \varphi$ iff there is a $v \in W$ such that w R v and $\mathcal{M}, v \models \varphi$

Since $\Box \varphi$ is defined to be $\neg \Diamond \neg \varphi$, we have

- $-\mathcal{M}, w \models \Box \varphi$ iff for all $v \in W$, if w R v then $\mathcal{M}, v \models \varphi$
- Validity: Suppose that $\mathcal{F} = \langle W, R \rangle$ is a frame and $\mathcal{M} = \langle W, R, V \rangle$ is a model.
 - $-\varphi$ is satisfiable when there is a model $\mathcal{M} = \langle W, R, V \rangle$ with a state $w \in W$ such that $\mathcal{M}, w \models \varphi$
 - Valid on a model, $\mathcal{M} \models \varphi$: for all $w \in W$, $\mathcal{M}, w \models \varphi$
 - Valid on a frame, $\mathcal{F} \models \varphi$: for all \mathcal{M} based on \mathcal{F} , for all $w \in W$, $\mathcal{M}, w \models \varphi$ for all functions V, for all $w \in W$, $\langle W, R, V \rangle, w \models \varphi$
 - Valid at a state on a frame at a state $w \in W$, $\mathcal{F}, w \models \varphi$: for all \mathcal{M} based on $\mathcal{F}, \mathcal{M}, w \models \varphi$
 - Valid in a class F of frames, $\models_{\mathsf{F}} \varphi$: for all $\mathcal{F} \in \mathsf{F}, \mathcal{F} \models \varphi$

2 Tutorial Questions

• Consider the following model:

Determine which of the following formulas are true at w_1 (explain your answer)

1. $\Diamond(q \land \Diamond q)$

2. $\Box \bot$

3. $\Box \diamondsuit \diamondsuit p$

- 4. $\Box\Box\Box p$
- Determine which of the following formulas are valid on the above model (explain your answer)
 - 1. $\diamond \diamond \Box \bot$
 - 2. $q \rightarrow \Diamond q$
 - 3. $\Diamond \Box p \lor \Box \Diamond p$

• Let $\mathcal{F} = \langle B, R_1, R_2 \rangle$ be a frame where B is the set of all finite strings of 0s and 1s, and the relations R_1 and R_2 are defined by:

 sR_1t iff t = s0 or t = s1

 sR_2t iff t is a proper initial segment of s.

Which of the following formulas are valid on this frame?

1. $(\diamondsuit_1 p \land \diamondsuit_1 q) \to \diamondsuit_1 (p \land q)$

2. $(\Diamond_1 p \land \Diamond_1 q \land \Diamond_1 r) \to (\Diamond_1 (p \land q) \lor \Diamond_1 (p \land r) \lor \Diamond_1 (q \land r))$

3. $(\diamond_2 p \land \diamond_2 q \land \diamond_2 r) \to (\diamond_2 (p \land q) \lor \diamond_2 (p \land r) \lor \diamond_2 (q \land r))$

• Find a model with a state that makes $p \to \Diamond p$ false. Show that if the frame is reflexive, then $p \to \Diamond p$ is valid.

• Find a model with a state that makes $\Diamond \Diamond p \to \Diamond p$ false. Show that if the frame is transitive, then $\Diamond \Diamond p \to \Diamond p$ is valid.

3 Expressivity and Invariance

Consider the following modalities:

- $\mathcal{M}, w \models A\varphi$ iff for all $w \in W, \mathcal{M}, w \models \varphi$
- $\mathcal{M}, w \models \diamond \leftarrow \varphi$ iff there is a $v \in W, vRw$ and $\mathcal{M}, v \models \varphi$.
- $\mathcal{M}, w \models \Diamond_n \varphi$ iff there are v_1, \ldots, v_n such that for all $1 \leq j \neq k \leq n, v_j \neq v_k$, for all $j = 1, \ldots, n$, wRv_j and for all $j = 1, \ldots, n, \mathcal{M}, v_j \models \varphi$.

For instance, $\diamond_2 \varphi$ is true at a state if there are at least two accessible states that satisfy φ .

• $\mathcal{M}, w \models \circlearrowleft \text{ iff } wRw$

Are these modalities definable using the basic modal language? Intuitively, the answer is "no", but how do we *prove* this?

Model Constructions

- **Disjoint Union**: Let $\mathcal{M}_1 = \langle W_1, R_1, V_1 \rangle$ and $\mathcal{M}_2 = \langle W_2, R_2, V_2 \rangle$. The disjoint union is the structure $\mathcal{M}_1 \uplus \mathcal{M}_2 = \langle W, R, V \rangle$ where
 - $-W = W_1 \cup W_2$ (disjoint union)
 - $-R = R_1 \cup R_2$
 - for all $p \in \mathsf{At}$, $V(p) = V_1(p) \cup V_2(p)$

Lemma For each collection of Kripke structures $\{\mathcal{M}_i \mid i \in I\}$, for each $w \in W_i$, $\mathcal{M}_i, w \models \varphi$ iff $\biguplus_{i \in I} \mathcal{M}_i, w \models \varphi$

Fact The universal modality is not definable in the basic modal language.

- Generated Submodel: $\mathcal{M}' = \langle W', R', V' \rangle$ is a generated submodel of $\mathcal{M} = \langle W, R, V \rangle$ provided
 - W' ⊆ W is R-closed: for each w' ∈ W and v ∈ W, if wRv then v ∈ W'.
 R' = R ∩ W' × W'
 - for all $p \in \mathsf{At}, V'(p) = V(p) \cap W'$

Lemma If \mathcal{M}' is a generated submodel of \mathcal{M} then for each $w \in W'$, $\mathcal{M}', w \models \varphi$ iff $\mathcal{M}, w \models \varphi$

Fact The backwards looking modality is not definable in the basic modal language.

• Bounded Morphism A bounded morphism between models $\mathcal{M} = \langle W, R, V \rangle$ and $\mathcal{M}' = \langle W', R', V' \rangle$ is a function f with domain W and range W' such that:

Atomic harmony: for each $p \in At$, $w \in V(p)$ iff $f(w) \in V'(p)$ Morphism: if wRv then f(w)Rf(v)Zag: if f(w)R'v' then $\exists v \in W$ such that f(v) = v' and wRv **Lemma** If \mathcal{M}' is a bounded morphic image of \mathcal{M} then for each $w \in W$, $\mathcal{M}, w \models \varphi$ iff $\mathcal{M}', f(w) \models \varphi$

Fact Counting modalities are not definable in the basic modal language (eg., $\diamond_1 \varphi$ iff φ is true in more than 1 accessible world).

• Tree Unfoldings: The unfolding of $\mathcal{M} = \langle W, R, V \rangle$ with root w is $\overrightarrow{\mathcal{M}} = \langle \overrightarrow{W}, \overrightarrow{R}, \overrightarrow{V} \rangle$, where \overrightarrow{W} is the set of paths starting at w, $(w, \ldots, w_n) \stackrel{\rightarrow}{R} (w, \ldots, w_n, w_{n+1})$ iff $w_n R w_{n+1}$ and $(w, \ldots, w_n) \in V(p)$ iff $w_n \in V(p)$.

Lemma. Every satisfiable modal formula is satisfiable at the root of a tree.

• **Bisimulation**: A bisimulation between $\mathcal{M} = \langle W, R, V \rangle$ and $\mathcal{M}' = \langle W', R', V' \rangle$ is a non-empty binary relation $Z \subseteq W \times W'$ such that whenever wZw':

Atomic harmony: for each $p \in At$, $w \in V(p)$ iff $w' \in V'(p)$ Zig: if wRv, then $\exists v' \in W'$ such that vZv' and w'R'v'Zag: if w'R'v' then $\exists v \in W$ such that vZv' and wRv

- We write $\mathcal{M}, w \leftrightarrow \mathcal{M}', w'$ if there is a Z such that wZw'.
- We write $\mathcal{M}, w \leftrightarrow \mathcal{M}', w'$ iff for all $\varphi \in \mathcal{L}, \mathcal{M}, w \models \varphi$ iff $\mathcal{M}', w' \models \varphi$.
- Lemma If $\mathcal{M}, w \leftrightarrow \mathcal{M}', w'$ then $\mathcal{M}, w \leftrightarrow \mathcal{M}', w'$.
- Lemma On finite models, if $\mathcal{M}, w \leftrightarrow \mathcal{M}', w'$ then $\mathcal{M}, w \leftrightarrow \mathcal{M}', w'$.
- Lemma On *m*-saturated models, if $\mathcal{M}, w \leftrightarrow \mathcal{M}', w'$ then $\mathcal{M}, w \leftrightarrow \mathcal{M}', w'$.

Proposition. Any Kripke structure is the bounded morphic image of a disjoint union of rooted Kripke structures (in fact, tree structures).

Defining classes of models/frames

- $PKS(\varphi) = \{(\mathcal{M}, w) \mid \mathcal{M}, w \models \varphi\}$
- $KS(\varphi) = \{\mathcal{M} \mid \mathcal{M} \models \varphi\}$
- $PFR(\varphi) = \{(\mathcal{F}, w) \mid (\mathcal{F}, V), w \models \varphi \text{ for all valuations } V\}$
- $FR(\varphi) = \{ \mathcal{F} \mid (\mathcal{F}, V), w \models \varphi \text{ for all } w \in dom(\mathcal{M}) \text{ and valuations } V \}$

Advanced Topic: Ultrafilter extensions

Fact. Closure under generated subframe, bounded morphic images, and disjoint unions is not sufficient to guarantee definability by a modal formula for a class of frames. (eg., frames defined by $\forall x \exists y (xRy \land yRy)$).

• Ultrafilter Extensions: Let $m(X) = \{w \mid \text{there is a } v \text{ such that } wRv \text{ and } v \in X\}$ and $l(X) = \overline{m(\overline{X})} = \{w \mid \text{ for all } v, \text{ if } wRv \text{ then } v \in X\}$. An ultrafilter extension is a model

$$ue(\mathcal{M}) = \langle Uf(W), R^{ue}, V^{ue} \rangle$$

where $Uf(W) = \{u \mid u \text{ is an ultrafilter over } W\}$, $uR^{ue}u'$ iff for all $X \subseteq W$, if $X \in u'$ then $m(X) \in u$, and $V(p) = \{u \mid V(p) \in u\}$.

Fact. For all models $\mathcal{M}, w \leftrightarrow u_w$, where u_w is the principle ultrafilter generated by w. **Fact.** For all models $\mathcal{M}, ue(\mathcal{M})$ is *m*-saturated. **Fact.** $\mathcal{M}, w \leftrightarrow \mathcal{M}', w'$ iff $ue(\mathcal{M}), u_w \leftrightarrow ue(\mathcal{M}'), u_{w'}$