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1 Bisimulation Review

• Tree Unfoldings: The unfolding ofM = 〈W,R, V 〉 with root w is
→
M= 〈

→
W,
→
R,
→
V 〉, where

→
W is the

set of paths starting at w, (w, . . . , wn)
→
R (w, . . . , wn, wn+1) iff wnRwn+1 and (w, . . . , wn) ∈ V (p) iff

wn ∈ V (p).

Lemma. Tree-model property: If a formula is satisfiable, then it is satisfiable on a tree structure.

• Bisimulation: A bisimulation between M = 〈W,R, V 〉and M′ = 〈W ′, R′, V ′〉 is a non-empty
binary relation Z ⊆W ×W ′ such that whenever wZw′:

Atomic harmony: for each p ∈ At, w ∈ V (p) iff w′ ∈ V ′(p)
Zig: if wRv, then ∃v′ ∈W ′ such that vZv′ and w′R′v′

Zag: if w′R′v′ then ∃v ∈W such that vZv′ and wRv

– We write M, w ↔M′, w′ if there is a Z such that wZw′.

– We write M, w!M′, w′ iff for all ϕ ∈ L, M, w |= ϕ iff M′, w′ |= ϕ.

– Lemma If M, w ↔M′, w′ then M, w!M′, w′.
– Lemma On finite models, if M, w!M′, w′ then M, w ↔M′, w′.
– Lemma On m-saturated models, if M, w!M′, w′ then M, w ↔M′, w′.

Proposition. Any Kripke structure is the bounded morphic image of a disjoint union of rooted Kripke
structures (in fact, tree structures).

Defining classes of models/frames

• PKS(ϕ) = {(M, w) | M, w |= ϕ}

• KS(ϕ) = {M | M |= ϕ}

• PFR(ϕ) = {(F , w) | (F , V ), w |= ϕ for all valuations V }

• FR(ϕ) = {F | (F , V ), w |= ϕ for all w ∈ dom(M) and valuations V }
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2 Tutorial Questions

• Show that there is no bisimulation between M, w and M′, w′.

p

w

p

v

M

p

v′

p

w′

p

v′′

M′

• Find frames F1 = 〈W1, R1〉 and F2 = 〈W2, R2〉 such that there is a modal formula ϕ ∈ L such that

F1 |= ϕ and F2 6|= ϕ.

Furthermore, find valuations V1 and V2 on F1 and F2 respectively such that

(F1, V1), w1 ↔ (F2, V2), w2

for all w1 ∈W1 and all w2 ∈W2.

• We have seen that the universal modality Aϕ, where M, w |= Aϕ iff for all v ∈ W , M, v |= ϕ, is
not definable in the basic modal language. How do we modify the definition of bisimulation so that
it preserves truth in a basic modal language with a a universal modality?

• Prove that the difference modality Dϕ defined asM, w |= Dϕ iff there is a v ∈W such that w 6= v
and M, v |= ϕ is not definable in the basic modal language. Show that the universal modality is
expressive in a language with the difference modality.
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• The basic temporal language has two modalities: Fϕ with the intended meaning “ϕ is true at
some point in the future” and Pϕ with the intended meaning “ϕ is true at some point in the
past”. This language can be interpreted on a model M = 〈W,R, V 〉. Use the converse of R,
R−1 = {(v, w) | (w, v) ∈ R}, when interpreting the past modality. Truth for the basic temporal
language is (I only give the definition for the modalities):

– M, w |= Fϕ iff for all v ∈W , if wRv then M, v |= ϕ

– M, w |= Pϕ iff for all v ∈W , if wR−1v, then M, v |= ϕ

Does bisimulation preserve truth for the basic temporal language? Hint: note that 〈Z, <, V 〉, 0 and
〈N, <, V 〉, 0 are bisimilar. How do you modify the definition of bisimulation so that it preserves
truth for the temporal modal language?

• Show that the until operator U(ϕ,ψ) with the intended meaning ψ is true until ϕ is true is not
definable in the basic temporal language. The definition of the until operator is: M, w |= U(ϕ,ψ)
iff there is a v ∈W , wRv such thatM, v |= ϕ and for all u ∈W , if wRu and uRv, thenM, u |= ψ.
Hint: consider the following model. Does s0 satisfy U(q, p)? What about if the states s1, t1 and v1
are removed?

p

t0

p

u

p

t1

q

v0

p

s0

q

v1

p

s1
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3 Correspondence Theory

Definition 3.1 (Frame) A pair 〈W,R〉 with W a nonempty set of states and R ⊆ W ×W is called
a frame. Given a frame F = 〈W,R〉, we say the model M is based on the frame F = 〈W,R〉 if
M = 〈W,R, V 〉 for some valuation function V . /

Definition 3.2 (Frame Validity) Given a frame F = 〈W,R〉, a modal formula ϕ is valid on F ,
denoted F |= ϕ, provided M |= ϕ for all models M based on F . /

Suppose that P is a property of relations (eg., reflexivity or transitivity). We say a frame F = 〈W,R〉
has property P provided R has property P . For example,

• F = 〈W,R〉 is called a reflexive frame provided R is reflexive, i.e., for all w ∈W , wRw.

• F = 〈W,R〉 is called a transitive frame provided R is transitive, i.e., for all w, x, v ∈ W , if wRx
and xRv then wRv.

Definition 3.3 (Defining a Class of Frames) A modal formula ϕ defines the class of frames
with property P provided for all frames F , F |= ϕ iff F has property P . /

Remark 3.4 Note that if F |= ϕ where ϕ is some modal formula, then F |= ϕ∗ where ϕ∗ is any
substitution instance of ϕ. That is, ϕ∗ is obtained by replacing sentence letters in ϕ with modal
formulas. In particular, this means, for example, that in order to show that F 6|= 2ϕ → ϕ it is enough
to show that F 6|= 2p→ p where p is a sentence letter. (This will be used in the proofs below).

Fact 3.5 2ϕ→ ϕ defines the class of reflexive frames.

Proof. We must show for any frame F , F |= 2ϕ→ ϕ iff F is reflexive.

(⇐) Suppose that F = 〈W,R〉 is reflexive and let M = 〈W,R, V 〉 be any model based on F . Given
w ∈ W , we must show M, w |= 2ϕ → ϕ. Suppose that M, w |= 2ϕ. Then for all v ∈ W , if wRv then
M, v |= ϕ. Since R is reflexive, we have wRw. Hence,M, w |= ϕ. Therefore,M, w |= 2ϕ→ ϕ, as desired.

(⇒) We argue by contraposition. Suppose that F is not reflexive. We must show F 6|= 2ϕ→ ϕ. By the
above Remark, it is enough to show F 6|= 2p → p for some sentence letter p. Since F is not reflexive,
there is a state w ∈W such that it is not the case that wRw. Consider the modelM = 〈W,R, V 〉 based
on F with V (p) = {v | v 6= w}. Then M, w |= 2p since, by assumption, for all v ∈ W if wRv, then
v 6= w and so v ∈ V (p). Also, notice that by the definition of V ,M, w 6|= p. Therefore,M, w |= 2p∧¬p,
and so, F 6|= 2p→ p.

(⇒, directly) Suppose that F |= 2ϕ → ϕ. We must show that for all x if xRx. Let x be any state and
consider a model M based on F with a valuation V (p) = {u | xRu}. Since 2p is true at x we also have
p true at x. This means that x ∈ V (p), hence, xRx. qed
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Fact 3.6 2ϕ→ 22ϕ defines the class of transitive frames.

Proof. We must show for any frame F , F |= 2ϕ→ 22ϕ iff F is transitive.

(⇐) Suppose that F = 〈W,R〉 is transitive and let M = 〈W,R, V 〉 be any model based on F . Given
w ∈ W , we must show M, w |= 2ϕ → 22ϕ. Suppose that M, w |= 2ϕ. We must show M, w |= 22ϕ.
Suppose that v ∈ W and wRv. We must show M, v |= 2ϕ. To that end, let x ∈ W be any state with
vRx. Since R is transitive and wRv and vRx, we have wRx. Since M, w |= 2ϕ, we have M, x |= ϕ.
Therefore, since x is an arbitrary state accessible from v, M, v |= 2ϕ. Hence, M, w |= 22ϕ, and so,
M, w |= 2ϕ→ 22ϕ, as desired.

(⇒, by contraposition) We argue by contraposition. Suppose that F is not transitive. We must show
F 6|= 2ϕ→ 22ϕ. By the above Remark, it is enough to show F 6|= 2p→ 22p for some sentence letter p.
Since F is not transitive, there are states w, v, x ∈W with wRv and vRx but it is not the case that wRx.
Consider the model M = 〈W,R, V 〉 based on F with V (p) = {y | y 6= x}. Since M, x 6|= p and wRv and
vRx, we have M, w 6|= 22p. Furthermore, M, w |= 2p since the only state where p is false is x and it is
assumed that it is not the case that wRx. Therefore, M, w |= 2p ∧ ¬22p, and so, F 6|= 2p → 22p, as
desired.

(⇒, directly) Suppose that F |= 2ϕ→ 22ϕ. We must show that for all x, y, z if xRy and yRz then xRz.
Let x be any state and consider a model M based on F with a valuation V (p) = {u | xRu}. Since 2p
is true at x we also have 22p true at x. This means that for all y if xRy then (for all z if yRz we have
z ∈ V (p)). Recall that z ∈ V (p) means that xRz. Putting everything together we have: for all y if xRy
then for all z if yRz then xRz. qed

Fact 3.7 ϕ→ 23ϕ defines the class of symmetric frames.

Proof. We must show for any frame F , F |= ϕ→ 23ϕ iff F is symmetric.

(⇐) Suppose that F = 〈W,R〉 is symmetric and let M = 〈W,R, V 〉 be any model based on F . Given
w ∈ W , we must show M, w |= ϕ → 23ϕ. Suppose that M, w |= ϕ. We must show M, w |= 23ϕ.
Suppose that v ∈ W and wRv. We must show M, v |= 3ϕ. Since R is symmetric and wRv, we have
vRw. Since M, w |= ϕ, we have M, v |= 3ϕ. Hence, M, w |= 23ϕ, as desired.

(⇒, by contraposition) We argue by contraposition. Suppose that F is not symmetric. We must show
F 6|= ϕ → 23ϕ. By the above Remark, it is enough to show F 6|= p → 23p for some sentence letter p.
Since F is not symmetric, there are states w, v ∈W with wRv but it is not the case that vRw. Consider
the model M = 〈W,R, V 〉 based on F with V (p) = {w}. Then, M, w |= p. Since it is not the case that
vRw and w is the only state satisfying p, we have M, v 6|= 3p. This means that M, w 6|= 23p (since
wRv and M, v 6|= 3p).

(⇒, directly) Suppose that F |= ϕ → 23ϕ. We must show that for all x, y if xRy then yRx. Let x be
any state and consider a model M based on F with a valuation V (p) = {u | u = x}. Since p is true at
x we also have 23p true at x. This means that for all y if xRy then there is a z such that yRz and
z ∈ V (p). Recall that z ∈ V (p) means that z = x. Putting everything together we have: for all y if xRy
then there is a z such that z if yRz then x = z. This property is symmetry. qed
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Fact 3.8 32ϕ→ 23ϕ defines the confluence property: for all x, y, z if xRy and xRz then there is a s
such that yRs and zRs.

Proof. We must show for any frame F , F |= 32ϕ → 23ϕ iff F satisfies the confluence property: for
all x, y, z if xRy and xRz then there is a s such that yRs and zRs.

(⇐) Suppose that F = 〈W,R〉 satisfies confluence and let M = 〈W,R, V 〉 be any model based on F .
Given w ∈ W , we must show M, w |= 32ϕ → 23ϕ. Suppose that M, w |= 32ϕ. We must show
M, w |= 23ϕ. Suppose that x ∈ W with wRx. Since M, w |= 32ϕ, there is a y such that wRy and
M, y |= 2ϕ. Since wRx and wRy, by the confluence property, there is a s ∈W with xRs and yRs. Since
yRs and M, y |= 3ϕ, we have M, s |= ϕ. Then, since xRs, we have M, x |= 3ϕ. Hence, M, w |= 23ϕ,
as desired.

(⇒, by contraposition) We argue by contraposition. Suppose that F does not satisfy confluence. We
must show F 6|= 32ϕ → 23ϕ. By the above Remark, it is enough to show F 6|= 32p → 23p for
some sentence letter p. Since F does not satisfy confluence, there are states w, x, y ∈ W with wRx and
wRy but there is no s such that xRs and yRs. Consider the model M = 〈W,R, V 〉 based on F with
V (p) = {v | yRv}. Then, M, y |= 2p (since all states accessible from y satisfy p). Since there is no s
such that xRs and yRs, we also have M, x 6|= 3p. Since wRx and wRy, we have M, w 6|= 23p and
M, w |= 32p. Hence, 32p→ 23p is not valid.

(⇒, directly) Suppose that F |= 32ϕ → 23ϕ. We must show that for all x, y, z if xRy and xRz, then
there is a s such that yRs and zRs. Let x be any state and consider a model M based on F with
a valuation V (p) = {u | yRu}. Let y, z be states with xRy and xRz. Since, M, y |= 2p, we have
M, x |= 32p. This means that M, x |= 23p. Hence, since xRz, we have M, z |= 3p. Thus, there is
a states v such that zRv and v ∈ V (p). Since v ∈ V (p), we have yRv. Putting everything together we
have: for all x, y, z if xRy and xRz, then there is a s such that yRs and zRs. qed

Not all modal formulas correspond to first-order properties:

Basic properties of first-order logic:

• Compactness: Γ is satisfiable iff every finite subset is satisfiable.

• Löwenheim-Skolem Theorem: If Γ is satisfiable, then it is satisfiable on a countable model.

Fact 3.9 F |= 2(2ϕ→ ϕ)→ 2ϕ iff F is transitive and converse well-founded.

Fact 3.10 23ϕ→ 32ϕ does not correspond to a first-order condition.

Theorem 3.11 (Goldblatt-Thomason) A first-order definable class K of frames is modally definable
iff it is closed under taking bounded morphic images, generated subframes, disjoint unions and reflects
ultrafilter extensions.
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Sahlqvist’s Algorithm (see section 9.3 of Modal Logic for Open Minds and Sections 3.5 - 3.7 of Modal
Logic by Blackburn, de Rijke and Venema for an extensive discussion).

Standard Translation

stx : L → L1stx : L → L1

First-order language with
an appropriate signature

stx(p) = Px
stx(¬ϕ) = ¬stx(ϕ)
stx(ϕ ∧ ψ) = stx(ϕ) ∧ stx(ψ)
stx(2ϕ) = ∀y(xRy → sty(ϕ))
stx(3ϕ) = ∃y(xRy ∧ sty(ϕ))

sty : L → L1
sty(p) = Py
sty(¬ϕ) = ¬sty(ϕ)
sty(ϕ ∧ ψ) = sty(ϕ) ∧ stx(ψ)
sty(2ϕ) = ∀x(yRx→ stx(ϕ))
sty(3ϕ) = ∃x(yRx ∧ stx(ϕ))

Fact: Modal logic falls in the two-variable fragment of L1.

Lemma For each w ∈W , M, w |= ϕ iff M  stx(ϕ)[x/w].

Lemma F |= ϕ iff F  ∀P1∀P2 · · · ∀Pn∀x stx(ϕ)
where the Pi correspond to the atomic propositions pi in ϕ.
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