Lecture 3: Frame Definability

Eric Pacuit
Department of Philosophy
University of Maryland
pacuit.org
epacuit@umd.edu

February 8, 2019

1 Bisimulation Review

- Tree Unfoldings: The unfolding of $\mathcal{M}=\langle W, R, V\rangle$ with root w is $\overrightarrow{\mathcal{M}}=\langle\vec{W}, \vec{R}, \vec{V}\rangle$, where \vec{W} is the set of paths starting at $w,\left(w, \ldots, w_{n}\right) \vec{R}\left(w, \ldots, w_{n}, w_{n+1}\right)$ iff $w_{n} R w_{n+1}$ and $\left(w, \ldots, w_{n}\right) \in V(p)$ iff $w_{n} \in V(p)$.

Lemma. Tree-model property: If a formula is satisfiable, then it is satisfiable on a tree structure.

- Bisimulation: A bisimulation between $\mathcal{M}=\langle W, R, V\rangle$ and $\mathcal{M}^{\prime}=\left\langle W^{\prime}, R^{\prime}, V^{\prime}\right\rangle$ is a non-empty binary relation $Z \subseteq W \times W^{\prime}$ such that whenever $w Z w^{\prime}$:

Atomic harmony: for each $p \in \mathrm{At}, w \in V(p)$ iff $w^{\prime} \in V^{\prime}(p)$
Zig: if $w R v$, then $\exists v^{\prime} \in W^{\prime}$ such that $v Z v^{\prime}$ and $w^{\prime} R^{\prime} v^{\prime}$
Zag: if $w^{\prime} R^{\prime} v^{\prime}$ then $\exists v \in W$ such that $v Z v^{\prime}$ and $w R v$

- We write \mathcal{M}, w ans $\mathcal{M}^{\prime}, w^{\prime}$ iff for all $\varphi \in \mathcal{L}, \mathcal{M}, w \models \varphi$ iff $\mathcal{M}^{\prime}, w^{\prime} \models \varphi$.
- Lemma If $\mathcal{M}, w \leftrightarrows \mathcal{M}^{\prime}, w^{\prime}$ then $\mathcal{M}, w \leadsto \mathcal{M}^{\prime}, w^{\prime}$.
- Lemma On finite models, if $\mathcal{M}, w \rightsquigarrow \mathcal{M}^{\prime}, w^{\prime}$ then $\mathcal{M}, w \leftrightarrow \mathcal{M}^{\prime}, w^{\prime}$.
- Lemma On m-saturated models, if $\mathcal{M}, w \leftrightarrow \mathcal{M}^{\prime}, w^{\prime}$ then $\mathcal{M}, w \leftrightarrow \mathcal{M}^{\prime}, w^{\prime}$.

Proposition. Any Kripke structure is the bounded morphic image of a disjoint union of rooted Kripke structures (in fact, tree structures).

Defining classes of models/frames

- $\operatorname{PKS}(\varphi)=\{(\mathcal{M}, w) \mid \mathcal{M}, w \models \varphi\}$
- $K S(\varphi)=\{\mathcal{M} \mid \mathcal{M} \vDash \varphi\}$
- $\operatorname{PFR}(\varphi)=\{(\mathcal{F}, w) \mid(\mathcal{F}, V), w \models \varphi$ for all valuations $V\}$
- $F R(\varphi)=\{\mathcal{F} \mid(\mathcal{F}, V), w \models \varphi$ for all $w \in \operatorname{dom}(\mathcal{M})$ and valuations $V\}$

2 Tutorial Questions

- Show that there is no bisimulation between \mathcal{M}, w and $\mathcal{M}^{\prime}, w^{\prime}$.

- Find frames $\mathcal{F}_{1}=\left\langle W_{1}, R_{1}\right\rangle$ and $\mathcal{F}_{2}=\left\langle W_{2}, R_{2}\right\rangle$ such that there is a modal formula $\varphi \in \mathcal{L}$ such that

$$
\mathcal{F}_{1} \models \varphi \quad \text { and } \quad \mathcal{F}_{2} \not \models \varphi .
$$

Furthermore, find valuations V_{1} and V_{2} on \mathcal{F}_{1} and \mathcal{F}_{2} respectively such that

$$
\left(\mathcal{F}_{1}, V_{1}\right), w_{1} \longleftrightarrow\left(F_{2}, V_{2}\right), w_{2}
$$

for all $w_{1} \in W_{1}$ and all $w_{2} \in W_{2}$.

- We have seen that the universal modality $A \varphi$, where $\mathcal{M}, w \models A \varphi$ iff for all $v \in W, \mathcal{M}, v \models \varphi$, is not definable in the basic modal language. How do we modify the definition of bisimulation so that it preserves truth in a basic modal language with a a universal modality?
- Prove that the difference modality $D \varphi$ defined as $\mathcal{M}, w \models D \varphi$ iff there is a $v \in W$ such that $w \neq v$ and $\mathcal{M}, v \models \varphi$ is not definable in the basic modal language. Show that the universal modality is expressive in a language with the difference modality.
- The basic temporal language has two modalities: $F \varphi$ with the intended meaning " φ is true at some point in the future" and $P \varphi$ with the intended meaning " φ is true at some point in the past". This language can be interpreted on a model $\mathcal{M}=\langle W, R, V\rangle$. Use the converse of R, $R^{-1}=\{(v, w) \mid(w, v) \in R\}$, when interpreting the past modality. Truth for the basic temporal language is (I only give the definition for the modalities):
$-\mathcal{M}, w \models F \varphi$ iff for all $v \in W$, if $w R v$ then $\mathcal{M}, v=\varphi$
$-\mathcal{M}, w \models P \varphi$ iff for all $v \in W$, if $w R^{-1} v$, then $\mathcal{M}, v \models \varphi$
Does bisimulation preserve truth for the basic temporal language? Hint: note that $\langle\mathbb{Z},<, V\rangle, 0$ and $\langle\mathbb{N},<, V\rangle, 0$ are bisimilar. How do you modify the definition of bisimulation so that it preserves truth for the temporal modal language?
- Show that the until operator $U(\varphi, \psi)$ with the intended meaning ψ is true until φ is true is not definable in the basic temporal language. The definition of the until operator is: $\mathcal{M}, w \models U(\varphi, \psi)$ iff there is a $v \in W, w R v$ such that $\mathcal{M}, v \models \varphi$ and for all $u \in W$, if $w R u$ and $u R v$, then $\mathcal{M}, u=\psi$. Hint: consider the following model. Does s_{0} satisfy $U(q, p)$? What about if the states s_{1}, t_{1} and v_{1} are removed?

3 Correspondence Theory

Definition 3.1 (Frame) A pair $\langle W, R\rangle$ with W a nonempty set of states and $R \subseteq W \times W$ is called a frame. Given a frame $\mathcal{F}=\langle W, R\rangle$, we say the model \mathcal{M} is based on the frame $\mathcal{F}=\langle W, R\rangle$ if $\mathcal{M}=\langle W, R, V\rangle$ for some valuation function V.

Definition 3.2 (Frame Validity) Given a frame $\mathcal{F}=\langle W, R\rangle$, a modal formula φ is valid on \mathcal{F}, denoted $\mathcal{F} \models \varphi$, provided $\mathcal{M} \models \varphi$ for all models \mathcal{M} based on \mathcal{F}.

Suppose that P is a property of relations (eg., reflexivity or transitivity). We say a frame $\mathcal{F}=\langle W, R\rangle$ has property P provided R has property P. For example,

- $\mathcal{F}=\langle W, R\rangle$ is called a reflexive frame provided R is reflexive, i.e., for all $w \in W, w R w$.
- $\mathcal{F}=\langle W, R\rangle$ is called a transitive frame provided R is transitive, i.e., for all $w, x, v \in W$, if $w R x$ and $x R v$ then $w R v$.

Definition 3.3 (Defining a Class of Frames) A modal formula φ defines the class of frames with property P provided for all frames $\mathcal{F}, \mathcal{F} \models \varphi$ iff \mathcal{F} has property P.

Remark 3.4 Note that if $\mathcal{F} \models \varphi$ where φ is some modal formula, then $\mathcal{F} \models \varphi^{*}$ where φ^{*} is any substitution instance of φ. That is, φ^{*} is obtained by replacing sentence letters in φ with modal formulas. In particular, this means, for example, that in order to show that $\mathcal{F} \not \vDash \square \varphi \rightarrow \varphi$ it is enough to show that $\mathcal{F} \not \vDash \square p \rightarrow p$ where p is a sentence letter. (This will be used in the proofs below).

Fact $3.5 \square \varphi \rightarrow \varphi$ defines the class of reflexive frames.
Proof. We must show for any frame $\mathcal{F}, \mathcal{F} \models \square \varphi \rightarrow \varphi$ iff \mathcal{F} is reflexive.
(\Leftarrow) Suppose that $\mathcal{F}=\langle W, R\rangle$ is reflexive and let $\mathcal{M}=\langle W, R, V\rangle$ be any model based on \mathcal{F}. Given $w \in W$, we must show $\mathcal{M}, w \models \square \varphi \rightarrow \varphi$. Suppose that $\mathcal{M}, w \models \square \varphi$. Then for all $v \in W$, if $w R v$ then $\mathcal{M}, v \models \varphi$. Since R is reflexive, we have $w R w$. Hence, $\mathcal{M}, w \models \varphi$. Therefore, $\mathcal{M}, w \models \square \varphi \rightarrow \varphi$, as desired.
(\Rightarrow) We argue by contraposition. Suppose that \mathcal{F} is not reflexive. We must show $\mathcal{F} \not \vDash \square \varphi \rightarrow \varphi$. By the above Remark, it is enough to show $\mathcal{F} \not \vDash \square p \rightarrow p$ for some sentence letter p. Since \mathcal{F} is not reflexive, there is a state $w \in W$ such that it is not the case that $w R w$. Consider the model $\mathcal{M}=\langle W, R, V\rangle$ based on \mathcal{F} with $V(p)=\{v \mid v \neq w\}$. Then $\mathcal{M}, w \models \square p$ since, by assumption, for all $v \in W$ if $w R v$, then $v \neq w$ and so $v \in V(p)$. Also, notice that by the definition of $V, \mathcal{M}, w \not \vDash p$. Therefore, $\mathcal{M}, w \vDash \square p \wedge \neg p$, and so, $\mathcal{F} \not \vDash \square p \rightarrow p$.
(\Rightarrow, directly) Suppose that $\mathcal{F} \models \square \varphi \rightarrow \varphi$. We must show that for all x if $x R x$. Let x be any state and consider a model \mathcal{M} based on \mathcal{F} with a valuation $V(p)=\{u \mid x R u\}$. Since $\square p$ is true at x we also have p true at x. This means that $x \in V(p)$, hence, $x R x$.

Fact 3.6 $\square \varphi \rightarrow \square \square \varphi$ defines the class of transitive frames.

Proof. We must show for any frame $\mathcal{F}, \mathcal{F} \models \square \varphi \rightarrow \square \square \varphi$ iff \mathcal{F} is transitive.
(\Leftarrow) Suppose that $\mathcal{F}=\langle W, R\rangle$ is transitive and let $\mathcal{M}=\langle W, R, V\rangle$ be any model based on \mathcal{F}. Given $w \in W$, we must show $\mathcal{M}, w \vDash \square \varphi \rightarrow \square \square \varphi$. Suppose that $\mathcal{M}, w \vDash \square \varphi$. We must show $\mathcal{M}, w \vDash \square \square \varphi$. Suppose that $v \in W$ and $w R v$. We must show $\mathcal{M}, v \vDash \square \varphi$. To that end, let $x \in W$ be any state with $v R x$. Since R is transitive and $w R v$ and $v R x$, we have $w R x$. Since $\mathcal{M}, w \vDash \square \varphi$, we have $\mathcal{M}, x \vDash \varphi$. Therefore, since x is an arbitrary state accessible from $v, \mathcal{M}, v \vDash \square \varphi$. Hence, $\mathcal{M}, w \vDash \square \square \varphi$, and so, $\mathcal{M}, w \mid \square \varphi \rightarrow \square \square \varphi$, as desired.
$(\Rightarrow$, by contraposition) We argue by contraposition. Suppose that \mathcal{F} is not transitive. We must show $\mathcal{F} \not \vDash \square \varphi \rightarrow \square \square \varphi$. By the above Remark, it is enough to show $\mathcal{F} \not \vDash \square p \rightarrow \square \square p$ for some sentence letter p. Since \mathcal{F} is not transitive, there are states $w, v, x \in W$ with $w R v$ and $v R x$ but it is not the case that $w R x$. Consider the model $\mathcal{M}=\langle W, R, V\rangle$ based on \mathcal{F} with $V(p)=\{y \mid y \neq x\}$. Since $\mathcal{M}, x \not \vDash p$ and $w R v$ and $v R x$, we have $\mathcal{M}, w \not \vDash \square \square p$. Furthermore, $\mathcal{M}, w \vDash \square p$ since the only state where p is false is x and it is assumed that it is not the case that $w R x$. Therefore, $\mathcal{M}, w \vDash \square p \wedge \neg \square \square p$, and so, $\mathcal{F} \not \vDash \square p \rightarrow \square \square p$, as desired.
(\Rightarrow, directly) Suppose that $\mathcal{F} \models \square \varphi \rightarrow \square \square \varphi$. We must show that for all x, y, z if $x R y$ and $y R z$ then $x R z$. Let x be any state and consider a model \mathcal{M} based on \mathcal{F} with a valuation $V(p)=\{u \mid x R u\}$. Since $\square p$ is true at x we also have $\square \square p$ true at x. This means that for all y if $x R y$ then (for all z if $y R z$ we have $z \in V(p))$. Recall that $z \in V(p)$ means that $x R z$. Putting everything together we have: for all y if $x R y$ then for all z if $y R z$ then $x R z$.

Fact $3.7 \varphi \rightarrow \square \diamond \varphi$ defines the class of symmetric frames.
Proof. We must show for any frame $\mathcal{F}, \mathcal{F} \models \varphi \rightarrow \square \diamond \varphi$ iff \mathcal{F} is symmetric.
(\Leftarrow) Suppose that $\mathcal{F}=\langle W, R\rangle$ is symmetric and let $\mathcal{M}=\langle W, R, V\rangle$ be any model based on \mathcal{F}. Given $w \in W$, we must show $\mathcal{M}, w \vDash \varphi \rightarrow \square \diamond \varphi$. Suppose that $\mathcal{M}, w \vDash \varphi$. We must show $\mathcal{M}, w \vDash \square \diamond \varphi$. Suppose that $v \in W$ and $w R v$. We must show $\mathcal{M}, v \vDash \diamond \varphi$. Since R is symmetric and $w R v$, we have $v R w$. Since $\mathcal{M}, w \models \varphi$, we have $\mathcal{M}, v \vDash \diamond \varphi$. Hence, $\mathcal{M}, w \models \square \diamond \varphi$, as desired.
$(\Rightarrow$, by contraposition) We argue by contraposition. Suppose that \mathcal{F} is not symmetric. We must show $\mathcal{F} \not \vDash \varphi \rightarrow \square \diamond \varphi$. By the above Remark, it is enough to show $\mathcal{F} \not \vDash p \rightarrow \square \diamond p$ for some sentence letter p. Since \mathcal{F} is not symmetric, there are states $w, v \in W$ with $w R v$ but it is not the case that $v R w$. Consider the model $\mathcal{M}=\langle W, R, V\rangle$ based on \mathcal{F} with $V(p)=\{w\}$. Then, $\mathcal{M}, w \vDash p$. Since it is not the case that $v R w$ and w is the only state satisfying p, we have $\mathcal{M}, v \not \vDash \diamond p$. This means that $\mathcal{M}, w \not \vDash \square \diamond p$ (since $w R v$ and $\mathcal{M}, v \nLeftarrow \diamond p)$.
(\Rightarrow, directly) Suppose that $\mathcal{F} \models \varphi \rightarrow \square \diamond \varphi$. We must show that for all x, y if $x R y$ then $y R x$. Let x be any state and consider a model \mathcal{M} based on \mathcal{F} with a valuation $V(p)=\{u \mid u=x\}$. Since p is true at x we also have $\square \diamond p$ true at x. This means that for all y if $x R y$ then there is a z such that $y R z$ and $z \in V(p)$. Recall that $z \in V(p)$ means that $z=x$. Putting everything together we have: for all y if $x R y$ then there is a z such that z if $y R z$ then $x=z$. This property is symmetry.

Fact $3.8 \diamond \square \varphi \rightarrow \square \diamond \varphi$ defines the confluence property: for all x, y, z if $x R y$ and $x R z$ then there is a s such that $y R s$ and $z R s$.

Proof. We must show for any frame $\mathcal{F}, \mathcal{F} \models \diamond \square \varphi \rightarrow \square \diamond \varphi$ iff \mathcal{F} satisfies the confluence property: for all x, y, z if $x R y$ and $x R z$ then there is a s such that $y R s$ and $z R s$.
(\Leftarrow) Suppose that $\mathcal{F}=\langle W, R\rangle$ satisfies confluence and let $\mathcal{M}=\langle W, R, V\rangle$ be any model based on \mathcal{F}. Given $w \in W$, we must show $\mathcal{M}, w \vDash \diamond \square \varphi \rightarrow \square \diamond \varphi$. Suppose that $\mathcal{M}, w \vDash \diamond \square \varphi$. We must show $\mathcal{M}, w \models \square \diamond \varphi$. Suppose that $x \in W$ with $w R x$. Since $\mathcal{M}, w \models \diamond \square \varphi$, there is a y such that $w R y$ and $\mathcal{M}, y \models \square \varphi$. Since $w R x$ and $w R y$, by the confluence property, there is a $s \in W$ with $x R s$ and $y R s$. Since $y R s$ and $\mathcal{M}, y \models \diamond \varphi$, we have $\mathcal{M}, s \models \varphi$. Then, since $x R s$, we have $\mathcal{M}, x \models \diamond \varphi$. Hence, $\mathcal{M}, w \models \square \diamond \varphi$, as desired.
(\Rightarrow, by contraposition) We argue by contraposition. Suppose that \mathcal{F} does not satisfy confluence. We must show $\mathcal{F} \not \vDash \diamond \square \varphi \rightarrow \square \diamond \varphi$. By the above Remark, it is enough to show $\mathcal{F} \not \vDash \diamond \square p \rightarrow \square \diamond p$ for some sentence letter p. Since \mathcal{F} does not satisfy confluence, there are states $w, x, y \in W$ with $w R x$ and $w R y$ but there is no s such that $x R s$ and $y R s$. Consider the model $\mathcal{M}=\langle W, R, V\rangle$ based on \mathcal{F} with $V(p)=\{v \mid y R v\}$. Then, $\mathcal{M}, y \models \square p$ (since all states accessible from y satisfy p). Since there is no s such that $x R s$ and $y R s$, we also have $\mathcal{M}, x \not \vDash \diamond p$. Since $w R x$ and $w R y$, we have $\mathcal{M}, w \not \vDash \square \diamond p$ and $\mathcal{M}, w \models \diamond \square p$. Hence, $\diamond \square p \rightarrow \square \diamond p$ is not valid.
(\Rightarrow, directly) Suppose that $\mathcal{F} \models \diamond \square \varphi \rightarrow \square \diamond \varphi$. We must show that for all x, y, z if $x R y$ and $x R z$, then there is a s such that $y R s$ and $z R s$. Let x be any state and consider a model \mathcal{M} based on \mathcal{F} with a valuation $V(p)=\{u \mid y R u\}$. Let y, z be states with $x R y$ and $x R z$. Since, $\mathcal{M}, y \models \square p$, we have $\mathcal{M}, x \vDash \diamond \square p$. This means that $\mathcal{M}, x \models \square \diamond p$. Hence, since $x R z$, we have $\mathcal{M}, z \vDash \diamond p$. Thus, there is a states v such that $z R v$ and $v \in V(p)$. Since $v \in V(p)$, we have $y R v$. Putting everything together we have: for all x, y, z if $x R y$ and $x R z$, then there is a s such that $y R s$ and $z R s$.

QED

Not all modal formulas correspond to first-order properties:
Basic properties of first-order logic:

- Compactness: Γ is satisfiable iff every finite subset is satisfiable.
- Löwenheim-Skolem Theorem: If Γ is satisfiable, then it is satisfiable on a countable model.

Fact 3.9 $\mathcal{F} \models \square(\square \varphi \rightarrow \varphi) \rightarrow \square \varphi$ iff \mathcal{F} is transitive and converse well-founded.
Fact $3.10 \square \diamond \varphi \rightarrow \diamond \square \varphi$ does not correspond to a first-order condition.
Theorem 3.11 (Goldblatt-Thomason) A first-order definable class K of frames is modally definable iff it is closed under taking bounded morphic images, generated subframes, disjoint unions and reflects ultrafilter extensions.

Sahlqvist's Algorithm (see section 9.3 of Modal Logic for Open Minds and Sections 3.5-3.7 of Modal Logic by Blackburn, de Rijke and Venema for an extensive discussion).

Standard Translation

```
\(s t_{x}: \mathcal{L} \rightarrow \mathcal{L}_{1} \sim \underbrace{\begin{array}{l}\text { First-order language with } \\ \text { an appropriate signature }\end{array}}\)
\(s t_{x}(p)=P x\)
\(s t_{x}(\neg \varphi)=\neg s t_{x}(\varphi)\)
\(s t_{x}(\varphi \wedge \psi)=s t_{x}(\varphi) \wedge s t_{x}(\psi)\)
\(s t_{x}(\square \varphi)=\forall y\left(x R y \rightarrow s t_{y}(\varphi)\right)\)
\(s t_{x}(\diamond \varphi)=\exists y\left(x R y \wedge s t_{y}(\varphi)\right)\)
\(s t_{y}: \mathcal{L} \rightarrow \mathcal{L}_{1}\)
\(s t y_{y}(p)=P y\)
\(s t_{y}(\neg \varphi)=\neg s t_{y}(\varphi)\)
\(s t_{y}(\varphi \wedge \psi)=s t_{y}(\varphi) \wedge s t_{x}(\psi)\)
\(s t_{y}(\square \varphi)=\forall x\left(y R x \rightarrow s t_{x}(\varphi)\right)\)
\(s t_{y}(\diamond \varphi)=\exists x\left(y R x \wedge s t_{x}(\varphi)\right)\)
```

Fact: Modal logic falls in the two-variable fragment of \mathcal{L}_{1}.

Lemma For each $w \in W, \mathcal{M}, w \models \varphi$ iff $\mathcal{M} \Vdash s t_{x}(\varphi)[x / w]$.

Lemma $\mathcal{F} \models \varphi$ iff $\mathcal{F} \Vdash \forall P_{1} \forall P_{2} \cdots \forall P_{n} \forall x s t_{x}(\varphi)$
where the P_{i} correspond to the atomic propositions p_{i} in φ.

