Modal Logic PHIL 858P

Eric Pacuit

Department of Philosophy
University of Maryland
pacuit.org
epacuit@umd.edu
January 28, 2019

Course Information

$$
\begin{aligned}
\text { Email: } & \text { epacuit@umd.edu } \\
\text { Website: } & \text { pacuit.org } \\
\text { Office: } & \text { Skinner 1103A } \\
\text { Office Hours: } & \text { Thursdays 2:00pm }-3: 00 \mathrm{pm} \text {, or by appointment } \\
\text { Course Website: } & \text { https://myelms.umd.edu/courses/1260230 }
\end{aligned}
$$

Topics

1. Propositional Modal Logic
2. First-Order Modal Logic
3. Non-Normal Modal Logics
4. Applications: (Dynamic) Epistemic Logic, Epistemic Temporal Logic, Logics of Knowledge and Ability

Setting the stage: Classical logic

Propositional Logic (PL)

- Language: $P \wedge Q, P \rightarrow(Q \vee \neg R)$, etc.
- Proof-Theory: Natural Deduction, Hilbert-style Deductions, Tableaux, etc.
- Semantics: Truth functions

Setting the stage: Classical logic

Propositional Logic (PL)

- Language: $P \wedge Q, P \rightarrow(Q \vee \neg R)$, etc.
- Proof-Theory: Natural Deduction, Hilbert-style Deductions, Tableaux, etc.
- Semantics: Truth functions

First-Order Logic (FOL)

- Language: $x=y, \exists x \forall y(P(x) \wedge Q(x, y))$, $\forall x \exists y(F(x) \rightarrow(G(x, y) \wedge \neg R(y)))$, etc.
- Proof-Theory: Natural Deduction, Hilbert-style Deductions, Tableaux, etc.
- Semantics: First-order structures

Reasoning with classical logic: pros and cons

Advantages:

- relatively simple syntax and well-understood semantics
- well-developed deductive systems and tools for automated reasoning

Disadvantages:

- cannot adequately represent some aspects natural language
- cannot adequately capture specific modes of reasoning
- undecidability of logical consequence and validity (for FOL)

Modal Logic

- Modal logic has a long, distinguished history (from Aristotle).
- Until the late 1950s, it largely consisted of a collection of syntactic theories

Modal Logic

- Modal logic has a long, distinguished history (from Aristotle).
- Until the late 1950s, it largely consisted of a collection of syntactic theories
- Modern modal logic started in the early 1960s with the introduction of relational semantics by Saul Kripke (although see the earlier work by McKinsey and Tarski on logic and topology and Gödel on provability logic).

Modal Logic

- Modal logic has a long, distinguished history (from Aristotle).
- Until the late 1950s, it largely consisted of a collection of syntactic theories
- Modern modal logic started in the early 1960s with the introduction of relational semantics by Saul Kripke (although see the earlier work by McKinsey and Tarski on logic and topology and Gödel on provability logic).
- There are a wide variety of modal systems, with different interpretations of the modal operators. Modal logic is an important tool in many disciplines: philosophy, computer science, linguistics, economics

The History of Modal Logic

R. Goldblatt. Mathematical Modal Logic: A View of its Evolution. Handbook of the History of Logic, Vol. 7, 2006.
P. Balckburn, M. de Rijke, and Y. Venema. Modal Logic. Section 1.7, Cambridge University Press, 2001.
R. Ballarin. Modern Origins of Modal Logic. Stanford Encyclopedia of Philosophy, 2010.

What is a modal?

A modality is any word or phrase that can be applied to a statement S to create a new statement that makes an assertion that qualifies the truth of S.

Types of Modal Logics

Alethic logic: Necessary and possible truths.

Temporal logic: Temporal reasoning.

Spatial logics: Reasoning about spatial relations.

Epistemic logics: Reasoning about knowledge.

Doxastic logics: Reasoning about beliefs.

Deontic logics: Reasoning about obligations and permissions.

Types of Modal Logics

Logics of multiagent systems: Reasoning about many agents and their knowledge, beliefs, goals, actions, strategies, etc.

Description logics: Reasoning about ontologies.

Logics of programs: Reasoning about program executions.

Logics of computations: Specification of transition systems.

Provability logic: Reasoning about proofs

Introducing Modal Logic

Modern Modal Logic began with C.I. Lewis' dissatisfaction with the material conditional (\rightarrow).

- Irrelevance/non-causality: If the Sun is hot, then $2+2=4$.
- False antecedents:

If $2+2=5$ then the Moon is made of cheese.

- Monotonicity:

If I put sugar in my coffee, then it will taste good. Therefore, if I put sugar and I put oil in my coffee then it will taste good.

Introducing Modal Logic

C.I. Lewis' idea: Interpret 'If A then B ' as 'It must be the case that A implies B ', or 'It is necessarily the case that A implies B '

Introducing Modal Logic

C.I. Lewis' idea: Interpret 'If A then B ' as 'It must be the case that A implies B ', or 'It is necessarily the case that A implies B '

Prosecutor: "If Eric is guilty then he had an accomplice."

Introducing Modal Logic

C.I. Lewis' idea: Interpret 'If A then B ' as 'It must be the case that A implies B ', or 'It is necessarily the case that A implies B '

Prosecutor: "If Eric is guilty then he had an accomplice."
Defense: "I disagree!"

Introducing Modal Logic

C.I. Lewis' idea: Interpret 'If A then B ' as 'It must be the case that A implies B ', or 'It is necessarily the case that A implies B '

Prosecutor: "If Eric is guilty then he had an accomplice."
Defense: "I disagree!"
Judge: "I agree with the defense."

Introducing Modal Logic

C.I. Lewis' idea: Interpret 'If A then B ' as 'It must be the case that A implies B ', or 'It is necessarily the case that A implies B '

Prosecutor: "If Eric is guilty then he had an accomplice."
Defense: "I disagree!"
Judge: "I agree with the defense."

Prosecutor: $G \rightarrow A$
Defense: $\neg(G \rightarrow A)$
Judge: $\quad \neg(G \rightarrow A)$

Introducing Modal Logic

C.I. Lewis' idea: Interpret 'If A then B ' as 'It must be the case that A implies B ', or 'It is necessarily the case that A implies B '

Prosecutor: "If Eric is guilty then he had an accomplice."
Defense: "I disagree!"
Judge: "I agree with the defense."

Prosecutor: $G \rightarrow A$
Defense: $\neg(G \rightarrow A)$
Judge: $\quad \neg(G \rightarrow A) \Leftrightarrow G \wedge \neg A$, therefore G !

Introducing Modal Logic

C.I. Lewis' idea: Interpret 'If A then B ' as 'It must be the case that A implies B ', or 'It is necessarily the case that A implies B '

Prosecutor: "If Eric is guilty then he had an accomplice."
Defense: "I disagree!"
Judge: "I agree with the defense."

Prosecutor: $\square(G \rightarrow A)$ (It must be the case that \ldots)
Defense: $\quad \neg \square(G \rightarrow A)$
Judge: $\quad \neg \square(G \rightarrow A)$ (What can the Judge conclude?)

Introducing Modal Logic

C.I. Lewis' idea: Interpret 'If A then B ' as 'It must be the case that A implies B ', or 'It is necessarily the case that A implies B '

Prosecutor: "If Eric is guilty then he had an accomplice."
Defense: "I disagree!"
Judge: "I agree with the defense."

Prosecutor: $\square(G \rightarrow A)$ (It must be the case that \ldots)
Defense: $\quad \neg \square(G \rightarrow A)$
Judge: $\quad \neg \square(G \rightarrow A)$ (What can the Judge conclude?)

Introducing Modal Logic

Gradually, the study of the modalities themselves became dominant, with the study of "conditionals" developing into a separate topic.

Books

Lecture Notes

Sccond Edition
Ronisd and Epanded

Robert Goldblat

FIRST-ORDER MODAL LOGIC
-

Books

Modal Languages

Modal languages extend some logical language (e.g., propositional logic, first-order logic, second-order logic, etc.) with (at least) two new symbols ' \square ' and ' \diamond '.

Modal Languages

Modal languages extend some logical language (e.g., propositional logic, first-order logic, second-order logic, etc.) with (at least) two new symbols ' \square ' and ' \diamond '.
$\square \varphi$: "it is necessary that φ is true"
$\diamond \psi$: "it is possible that φ is true"

Modal Languages

Modal languages extend some logical language (e.g., propositional logic, first-order logic, second-order logic, etc.) with (at least) two new symbols ' \square ' and ' \diamond '.
$\square \varphi$: "it is knowing that φ is true"
$\diamond \psi$: "it is consistent with everything that is known that φ is true"

Modal Languages

Modal languages extend some logical language (e.g., propositional logic, first-order logic, second-order logic, etc.) with (at least) two new symbols ' \square ' and ' \diamond '.
$\square \varphi$: "it is will always be that φ is true"
$\diamond \psi$: "it is will sometimes be that φ is true"

Modal Languages

Modal languages extend some logical language (e.g., propositional logic, first-order logic, second-order logic, etc.) with (at least) two new symbols ' \square ' and ' \diamond '.
$\square \varphi$: "it is ought to be that φ is true"
$\diamond \psi$: "it is permissible that φ is true"

Modal Languages

Modal languages extend some logical language (e.g., propositional logic, first-order logic, second-order logic, etc.) with (at least) two new symbols ' \square ' and ' \diamond '.
$\square \varphi$: "it is \qquad that φ is true"
$\diamond \psi$: "it is \qquad that φ is true"

Modal Languages

The symbols ' \square ' and ' \diamond ' are sentential operators the transform sentences into more complex sentences (similar to the negation operator).

An alternative approach treats modals as predicates that apply to terms (that are Gödel numbers of sentences)
J. Stern. Toward Predicate Approaches to Modality. Springer, 2016.

Modal Languages

More generally, $\triangle\left(\varphi_{1}, \ldots, \varphi_{n}\right)$ is an n-ary modality.

Definition 1.11 of [BdRV]: A modal similarity type is a pair $\tau=(O, \rho)$ where O is a non-empty set and $\rho: O \rightarrow \mathbb{N}$. The elements of O are the modal operator and ρ assigns to each modality an arity.

Narrow vs. Wide Scope

"If you do p, you must also do q "

- $p \rightarrow \square q$
- $\square(p \rightarrow q)$

de dicto vs. de re

"I know that someone appreciates me"

- $\square \exists x A(x, e)$ (de dicto)
- $\exists x \square A(x, e)$ (de re)

Iterations of Modal Operators

$\square \varphi \rightarrow \square \square \varphi:$ If I know, do I know that I know?
$\neg \square \varphi \rightarrow \square \neg \square \varphi$: If I don't know, do I know that I don't know?

Iterations of Modal Operators

$\square \varphi \rightarrow \square \square \varphi$: If I know, do I know that I know?
$\neg \square \varphi \rightarrow \square \neg \square \varphi$: If I don't know, do I know that I don't know?

What about: $\diamond \square \varphi \rightarrow \square \diamond \varphi, \square \diamond \varphi \rightarrow \diamond \square \varphi, \varphi \rightarrow \square \diamond \varphi$, $\diamond \square(\varphi \wedge \psi) \rightarrow \diamond \square \varphi \wedge \diamond \square \psi, \ldots ?$

Propositional Modal Language

Language: Let At be a set of atomic propositions. The set of propositional modal formulas, denoted $\mathcal{L}(\mathrm{At})$, is the smallest set of formulas generated by the following grammar:

$$
p|\perp| \neg \varphi|(\varphi \vee \psi)| \diamond \varphi
$$

where $p \in$ At.

Propositional Modal Language

A formula of Modal Logic is defined inductively:

1. Any element of At (called atomic propositions or propositional variables) is a formula
2. \perp is a formula
3. If φ and ψ are formula, then so are $\neg \varphi$ and $\varphi \vee \psi$
4. If φ is a formula, then so is $\diamond \varphi$
5. Nothing else is a formula

Eg., $\square(p \rightarrow \diamond q) \vee \square \diamond \neg r ; \neg \diamond \neg \perp$

Propositional Modal Language

The other Boolean connectives $(\wedge, \rightarrow$, and $\leftrightarrow)$ are defined as usual
\top is defined as $\neg \perp$.
$\square \varphi$ is defined as $\neg \diamond \neg \varphi$
$\square p \rightarrow p$ is the formula $\neg \neg \diamond \neg p \vee p$

Propositional Modal Language

Language: Let At be a set of atomic propositions. The set of propositional modal formulas, denoted $\mathcal{L}(\mathrm{At})$, is the smallest set of formulas generated by the following grammar:

$$
p|\perp| \neg \varphi|(\varphi \wedge \psi)| \square \varphi
$$

where $p \in$ At.

Propositional Modal Language

Language: Let At be a set of atomic propositions. The set of propositional modal formulas, denoted $\mathcal{L}(\mathrm{At})$, is the smallest set of formulas generated by the following grammar:

$$
p|\perp| \neg \varphi|(\varphi \vee \psi)|(\varphi \wedge \psi)|(\varphi \rightarrow \psi)| \diamond \varphi \mid \square \varphi
$$

where $p \in$ At.

Notation

- Sometimes we'll use lowercase letters p, q, r, \ldots for atomic propositions and other times we'll use uppercase letters A, B, C, \ldots
- The choice of which modal operator is part of the syntax and which is defined is largely conventional. We will use whatever is most convenient.
- When there are multiple modal operators in the language, we will use subscripts $\square_{a}, \diamond_{a}$ or place them "inside" the operators: [a], $\langle a\rangle$

Notation

- Sometimes we'll use lowercase letters p, q, r, \ldots for atomic propositions and other times we'll use uppercase letters A, B, C, \ldots
- The choice of which modal operator is part of the syntax and which is defined is largely conventional. We will use whatever is most convenient.
- When there are multiple modal operators in the language, we will use subscripts $\square_{a}, \diamond_{a}$ or place them "inside" the operators: [a], $\langle a\rangle$
"This practice is not very consistent, but most readers should agree that it is nice to have different clothes to wear, depending on one's mood"
(van Benthem, pg. 11)

Substitution

A function $\sigma: A t \rightarrow \mathcal{L}(A t)$. Extended to all formulas $\bar{\sigma}: \mathcal{L}(A t) \rightarrow \mathcal{L}(A t):$

1. $\bar{\sigma}(p)=\sigma(p)$
2. $\bar{\sigma}(\neg \varphi)=\neg \bar{\sigma}(\varphi)$
3. $\bar{\sigma}(\varphi \vee \psi)=\bar{\sigma}(\varphi) \vee \bar{\sigma}(\psi)$
4. $\bar{\sigma}(\diamond \varphi)=\diamond \bar{\sigma}(\varphi)$

For simplicity, identify σ and $\bar{\sigma}$ and write φ^{σ} for $\sigma(\varphi)$.

Substitution

A function $\sigma:$ At $\rightarrow \mathcal{L}(\mathrm{At})$. Extended to all formulas $\bar{\sigma}: \mathcal{L}(\mathrm{At}) \rightarrow \mathcal{L}(\mathrm{At}):$

1. $\bar{\sigma}(p)=\sigma(p)$
2. $\bar{\sigma}(\neg \varphi)=\neg \bar{\sigma}(\varphi)$
3. $\bar{\sigma}(\varphi \vee \psi)=\bar{\sigma}(\varphi) \vee \bar{\sigma}(\psi)$
4. $\bar{\sigma}(\diamond \varphi)=\diamond \bar{\sigma}(\varphi)$

For simplicity, identify σ and $\bar{\sigma}$ and write φ^{σ} for $\sigma(\varphi)$.

For example, if $\sigma(p)=\square \diamond(p \wedge q)$ and $\sigma(q)=p \wedge \square q$, then

$$
(\square(p \wedge q) \rightarrow \square p)^{\sigma}=\square((\square \diamond(p \wedge q)) \wedge(p \wedge \square q)) \rightarrow \square(\square \diamond(p \wedge q))
$$

Interpreting Modal Languages: Some Warm-up Questions

1. Is $(A \rightarrow B) \vee(B \rightarrow A)$ true or false?

Interpreting Modal Languages: Some Warm-up Questions

1. Is $(A \rightarrow B) \vee(B \rightarrow A)$ true or false? true.

Interpreting Modal Languages: Some Warm-up Questions

1. Is $(A \rightarrow B) \vee(B \rightarrow A)$ true or false? true.
2. Is $A \rightarrow(B \rightarrow \neg A)$ true or false?

Interpreting Modal Languages: Some Warm-up Questions

1. Is $(A \rightarrow B) \vee(B \rightarrow A)$ true or false? true.
2. Is $A \rightarrow(B \rightarrow \neg A)$ true or false? false.

Interpreting Modal Languages: Some Warm-up Questions

1. Is $(A \rightarrow B) \vee(B \rightarrow A)$ true or false? true.
2. Is $A \rightarrow(B \rightarrow \neg A)$ true or false? false.
3. Is $A \rightarrow(B \vee C)$ true or false?

Interpreting Modal Languages: Some Warm-up Questions

1. Is $(A \rightarrow B) \vee(B \rightarrow A)$ true or false? true.
2. Is $A \rightarrow(B \rightarrow \neg A)$ true or false? false.
3. Is $A \rightarrow(B \vee C)$ true or false? It depends!

Interpreting Modal Languages: Some Warm-up Questions

1. Is $(A \rightarrow B) \vee(B \rightarrow A)$ true or false? true.
2. Is $A \rightarrow(B \rightarrow \neg A)$ true or false? false.
3. Is $A \rightarrow(B \vee C)$ true or false? It depends!
4. Is $\square A \rightarrow(B \rightarrow \square A)$ true or false?

Interpreting Modal Languages: Some Warm-up Questions

1. Is $(A \rightarrow B) \vee(B \rightarrow A)$ true or false? true.
2. Is $A \rightarrow(B \rightarrow \neg A)$ true or false? false.
3. Is $A \rightarrow(B \vee C)$ true or false? It depends!
4. Is $\square A \rightarrow(B \rightarrow \square A)$ true or false? true.

Interpreting Modal Languages: Some Warm-up Questions

1. Is $(A \rightarrow B) \vee(B \rightarrow A)$ true or false? true.
2. Is $A \rightarrow(B \rightarrow \neg A)$ true or false? false.
3. Is $A \rightarrow(B \vee C)$ true or false? It depends!
4. Is $\square A \rightarrow(B \rightarrow \square A)$ true or false? true.
5. Is $\neg \square A \wedge \neg(\diamond B \vee \neg \square A)$ true or false?

Interpreting Modal Languages: Some Warm-up Questions

1. Is $(A \rightarrow B) \vee(B \rightarrow A)$ true or false? true.
2. Is $A \rightarrow(B \rightarrow \neg A)$ true or false? false.
3. Is $A \rightarrow(B \vee C)$ true or false? It depends!
4. Is $\square A \rightarrow(B \rightarrow \square A)$ true or false? true.
5. Is $\neg \square A \wedge \neg(\diamond B \vee \neg \square A)$ true or false? false.

Interpreting Modal Languages: Some Warm-up Questions

1. Is $(A \rightarrow B) \vee(B \rightarrow A)$ true or false? true.
2. Is $A \rightarrow(B \rightarrow \neg A)$ true or false? false.
3. Is $A \rightarrow(B \vee C)$ true or false? It depends!
4. Is $\square A \rightarrow(B \rightarrow \square A)$ true or false? true.
5. Is $\neg \square A \wedge \neg(\diamond B \vee \neg \square A)$ true or false? false.
6. Is $\neg \square A \wedge \neg(\diamond B \vee \diamond \neg A)$ true or false?

Interpreting Modal Languages: Some Warm-up Questions

1. Is $(A \rightarrow B) \vee(B \rightarrow A)$ true or false? true.
2. Is $A \rightarrow(B \rightarrow \neg A)$ true or false? false.
3. Is $A \rightarrow(B \vee C)$ true or false? It depends!
4. Is $\square A \rightarrow(B \rightarrow \square A)$ true or false? true.
5. Is $\neg \square A \wedge \neg(\diamond B \vee \neg \square A)$ true or false? false.
6. Is $\neg \square A \wedge \neg(\diamond B \vee \diamond \neg A)$ true or false? false.
(tricky: $\neg \diamond \neg A$ is equivalent to $\square A$.)

Interpreting Modal Languages: Some Warm-up Questions

1. Is $(A \rightarrow B) \vee(B \rightarrow A)$ true or false? true.
2. Is $A \rightarrow(B \rightarrow \neg A)$ true or false? false.
3. Is $A \rightarrow(B \vee C)$ true or false? It depends!
4. Is $\square A \rightarrow(B \rightarrow \square A)$ true or false? true.
5. Is $\neg \square A \wedge \neg(\diamond B \vee \neg \square A)$ true or false? false.
6. Is $\neg \square A \wedge \neg(\diamond B \vee \diamond \neg A)$ true or false? false.
(tricky: $\neg \diamond \neg A$ is equivalent to $\square A$.)
7. Is $\square A \rightarrow A$ true or false?

Interpreting Modal Languages: Some Warm-up Questions

1. Is $(A \rightarrow B) \vee(B \rightarrow A)$ true or false? true.
2. Is $A \rightarrow(B \rightarrow \neg A)$ true or false? false.
3. Is $A \rightarrow(B \vee C)$ true or false? It depends!
4. Is $\square A \rightarrow(B \rightarrow \square A)$ true or false? true.
5. Is $\neg \square A \wedge \neg(\diamond B \vee \neg \square A)$ true or false? false.
6. Is $\neg \square A \wedge \neg(\diamond B \vee \diamond \neg A)$ true or false? false.
(tricky: $\neg \diamond \neg A$ is equivalent to $\square A$.)
7. Is $\square A \rightarrow A$ true or false? It depends!

A few questions to keep you up at night...

- Is $A \rightarrow \square B$ equivalent to $\square(A \rightarrow B)$?
- Is $\square A \rightarrow A$ valid? What about $\square A \rightarrow \square \square A$?
- Can we give a truth-table semantics for the basic modal language? Hint: there are only 4 truth-functions for a unary operator. Suppose we want $\square A \rightarrow A$ to be valid, but not $A \rightarrow \square A$ and $\neg \square A$.

Semantics for Propositional Modal Logic

1. Relational semantics (i.e., Kripke semantics)
2. Neighborhood models
3. Algebraic semantics (BAO: Boolean algebras with operators)
4. Possibility structures
5. Topological semantics (Closure algebras)
6. Category-theoretic (Coalgebras)
7. ...

Semantics for Propositional Modal Logic

1. Relational semantics (i.e., Kripke semantics)
2. Neighborhood models
3. Algebraic semantics (BAO: Boolean algebras with operators)
4. Possibility structures
5. Topological semantics (Closure algebras)
6. Category-theoretic (Coalgebras)
7. ...

Mathematical Background: sets, relations, functions, basic logic, etc.

Mathematical Background: Relations

Suppose that X is a set. A relation on X is a set of ordered pairs from $X: R \subseteq X \times X$.

Mathematical Background: Relations

Suppose that X is a set. A relation on X is a set of ordered pairs from $X: R \subseteq X \times X$.

$$
\text { E.g., } X=\{a, b, c, d\}, R=\{(a, a),(b, a),(c, d),(a, c),(d, d)\}
$$

Mathematical Background: Relations

Suppose that X is a set. A relation on X is a set of ordered pairs from $X: R \subseteq X \times X$.

$$
\text { E.g., } X=\{a, b, c, d\}, R=\{(a, a),(b, a),(c, d),(a, c),(d, d)\}
$$

Mathematical Background: Relations

Suppose that X is a set. A relation on X is a set of ordered pairs from $X: R \subseteq X \times X$.
E.g., $X=\{a, b, c, d\}, R=\{(a, a),(b, a),(c, d),(a, c),(d, d)\}$

b R a

Mathematical Background: Relations

Suppose that X is a set. A relation on X is a set of ordered pairs from $X: R \subseteq X \times X$.

$$
\text { E.g., } X=\{a, b, c, d\}, R=\{(a, a),(b, a),(c, d),(a, c),(d, d)\}
$$

$$
\begin{aligned}
& a R a \\
& b R a
\end{aligned}
$$

$d R d$

Mathematical Background: Relations

Suppose that X is a set. A relation on X is a set of ordered pairs from $X: R \subseteq X \times X$.

$$
\text { E.g., } X=\{a, b, c, d\}, R=\{(a, a),(b, a),(c, d),(a, c),(d, d)\}
$$

$$
\begin{aligned}
& a R a \\
& b R a \\
& c R d \\
& a R c \\
& d R d
\end{aligned}
$$

Mathematical Background: Relations

Suppose that X is a set and $R \subseteq X \times X$ is a relation.
Reflexive relation: for all $x \in X, x R x$

Mathematical Background: Relations

Suppose that X is a set and $R \subseteq X \times X$ is a relation.
Reflexive relation: for all $x \in X, x R x$
E.g., $X=\{a, b, c, d\}$

Mathematical Background: Relations

Suppose that X is a set and $R \subseteq X \times X$ is a relation.
Irreflexive relation: for all $x \in X, x \mathbb{R} \times$ (i.e., $(x, x) \notin R)$

Mathematical Background: Relations

Suppose that X is a set and $R \subseteq X \times X$ is a relation.
Irreflexive relation: for all $x \in X, x \mathbb{R} \times$ (i.e., $(x, x) \notin R)$
E.g., $X=\{a, b, c, d\}$

Mathematical Background: Relations

Suppose that X is a set and $R \subseteq X \times X$ is a relation.
Symmetric relation: for all $x, y \in X$, if $x R y$, then $y R x$

Mathematical Background: Relations

Suppose that X is a set and $R \subseteq X \times X$ is a relation.
Symmetric relation: for all $x, y \in X$, if $x R y$, then $y R x$
E.g., $X=\{a, b, c, d\}$

Mathematical Background: Relations

Suppose that X is a set and $R \subseteq X \times X$ is a relation.
Transitive relation: for all $x, y, z \in X$, if $x R y$ and $y R z$, then $x R z$

Mathematical Background: Relations

Suppose that X is a set and $R \subseteq X \times X$ is a relation.
Transitive relation: for all $x, y, z \in X$, if $x R y$ and $y R z$, then $x R z$
E.g., $X=\{a, b, c, d\}$

Mathematical Background: Relations

Suppose that X is a set and $R \subseteq X \times X$ is a relation.
Transitive relation: for all $x, y, z \in X$, if $x R y$ and $y R z$, then $x R z$
E.g., $X=\{a, b, c, d\}$

Mathematical Background: Relations

Suppose that X is a set and $R \subseteq X \times X$ is a relation.
Transitive relation: for all $x, y, z \in X$, if $x R y$ and $y R z$, then $x R z$
E.g., $X=\{a, b, c, d\}$

Mathematical Background: Relations

Suppose that X is a set and $R \subseteq X \times X$ is a relation.
Transitive relation: for all $x, y, z \in X$, if $x R y$ and $y R z$, then $x R z$
E.g., $X=\{a, b, c, d\}$

Mathematical Background: Relations

Suppose that X is a set and $R \subseteq X \times X$ is a relation.
Transitive relation: for all $x, y, z \in X$, if $x R y$ and $y R z$, then $x R z$
E.g., $X=\{a, b, c, d\}$

Mathematical Background: Relations

Suppose that X is a set and $R \subseteq X \times X$ is a relation.
Transitive relation: for all $x, y, z \in X$, if $x R y$ and $y R z$, then $x R z$
E.g., $X=\{a, b, c, d\}$

Suppose that $R \subseteq W \times W$ is a relation.

- R is reflexive provided that for all $w \in W, w R w$.
- R is irreflexive provided that for all $w \in W$, it is not the case that wRw.
- R is symmetric provided that for all $w, v \in W$, if $w R v$ then $v R w$.
- R is transitive provided that for all $w, v, x \in W$, if $w R v$ and $v R x$ then $w R x$.

Suppose that $R \subseteq W \times W$ is a relation.

- R is complete provided that for all $w, v \in W, w R v$ or $v R w$ (or both).
- R is serial provided that for all $w \in W$, there is a $v \in W$ such that $w R v$
- R is anti-symmetric provided that for all $w, v \in W$, if $w R v$ and $v R w$, then $w=v$.
- R is Euclidean provided that for all $w, v, x \in W$, if $w R v$ and $w R x$ then $v R x$.

Relational Structure

A relational structure is a tuple $\langle W, R\rangle$ where $W \neq \emptyset$ and $R \subseteq W \times W$ is a relation.

- Elements of the domain W are called states, possible worlds, points, or nodes.
- R is called the accessibility relation or the edge relation. When wRv we say " w can see v " or " v is accessible from w ".
- For $w \in W$, let $R(w)=\{v \mid w R v\}$.

Two generalizations:

1. There is more than one relation
2. The relations can be of arbitrary arity

Two generalizations:

1. There is more than one relation
2. The relations can be of arbitrary arity

Relational structure with labels: $\left\langle W, R, P_{1}, P_{2}, \ldots\right\rangle$ where $W \neq \emptyset, R$ is a (binary or n-ary) relation and for each $k \geq 1, P_{k}$ is unary relation (i.e., $P_{k} \subseteq W$).

Two generalizations:

1. There is more than one relation
2. The relations can be of arbitrary arity

Relational structure with labels: $\left\langle W, R, P_{1}, P_{2}, \ldots\right\rangle$ where $W \neq \emptyset, R$ is a (binary or n-ary) relation and for each $k \geq 1, P_{k}$ is unary relation (i.e., $P_{k} \subseteq W$).

Warning: Although a relational structure with labels is just a relational structure (with a binary relation and multiple unary relations), they have a specific interpretation in the theory of modal logic.

Examples

- Epistemic models
- Temporal models
- Transition systems
- Social networks
- Other examples (see [ML], Section 1.1)

Muddy Children

Three children are outside playing. Two of them get mud on their forehead. They cannot see or feel the mud on their own foreheads, but can see who is dirty.

Muddy Children

Three children are outside playing. Two of them get mud on their forehead. They cannot see or feel the mud on their own foreheads, but can see who is dirty.

Their mother enters the room and says "At least one of you have mud on your forehead".

Muddy Children

Three children are outside playing. Two of them get mud on their forehead. They cannot see or feel the mud on their own foreheads, but can see who is dirty.

Their mother enters the room and says "At least one of you have mud on your forehead".

Then the children are repeatedly asked "do you know if you have mud on your forehead?"

Muddy Children

Three children are outside playing. Two of them get mud on their forehead. They cannot see or feel the mud on their own foreheads, but can see who is dirty.

Their mother enters the room and says "At least one of you have mud on your forehead".

Then the children are repeatedly asked "do you know if you have mud on your forehead?"

What happens?

Muddy Children

Three children are outside playing. Two of them get mud on their forehead. They cannot see or feel the mud on their own foreheads, but can see who is dirty.

Their mother enters the room and says "At least one of you have mud on your forehead".

Then the children are repeatedly asked "do you know if you have mud on your forehead?"

What happens?
Claim: After first question, the children answer "I don't know",

Muddy Children

Three children are outside playing. Two of them get mud on their forehead. They cannot see or feel the mud on their own foreheads, but can see who is dirty.

Their mother enters the room and says "At least one of you have mud on your forehead".

Then the children are repeatedly asked "do you know if you have mud on your forehead?"

What happens?

Claim: After first question, the children answer "I don't know", after the second question the muddy children answer "I have mud on my forehead!" (but the clean child is still in the dark).

Muddy Children

Three children are outside playing. Two of them get mud on their forehead. They cannot see or feel the mud on their own foreheads, but can see who is dirty.

Their mother enters the room and says "At least one of you have mud on your forehead".

Then the children are repeatedly asked "do you know if you have mud on your forehead?"

What happens?

Claim: After first question, the children answer "I don't know", after the second question the muddy children answer "I have mud on my forehead!" (but the clean child is still in the dark). Then the clean child says, "Oh, I must be clean."

Muddy Children

Assume:

- There are three children: Ann, Bob and Charles.
- (Only) Ann and Bob have mud on their forehead.

Muddy Children

Assume:

- There are three children: Ann, Bob and Charles.
- (Only) Ann and Bob have mud on their forehead.

Muddy Children

Assume:

- There are three children: Ann, Bob and Charles.
- (Only) Ann and Bob have mud on their forehead.

Muddy Children

Assume:

- There are three children: Ann, Bob and Charles.
- (Only) Ann and Bob have mud on their forehead.

Muddy Children

Assume:

- There are three children: Ann, Bob and Charles.
- (Only) Ann and Bob have mud on their forehead.

Muddy Children

Assume:

- There are three children: Ann, Bob and Charles.
- (Only) Ann and Bob have mud on their forehead.

Muddy Children

Assume:

- There are three children: Ann, Bob and Charles.
- (Only) Ann and Bob have mud on their forehead.

Muddy Children

Assume:

- There are three children: Ann, Bob and Charles.
- (Only) Ann and Bob have mud on their forehead.

Muddy Children

000

000

All 8 possible situations

Muddy Children

000

000

The actual situation

Muddy Children

000000

00

Ann's uncertainty

Muddy Children

Bob's uncertainty

Muddy Children

Charles' uncertainty

Muddy Children

Muddy Children

None of the children know if they are muddy

Muddy Children

None of the children know if they are muddy

Muddy Children

"At least one has mud on their forehead."

Muddy Children

"At least one has mud on their forehead."

Muddy Children

"Who has mud on their forehead?"

Muddy Children

"Who has mud on their forehead?"

Muddy Children

No one steps forward.

Muddy Children

No one steps forward.

Muddy Children

"Who has mud on their forehead?"

Muddy Children

Charles does not know he is clean.

Muddy Children

Ann and Bob step forward.

Muddy Children

Now, Charles knows he is clean.

Muddy Children

00

Now, Charles knows he is clean.

Time

One of the most successful applications of modal logic is in the "logic of time".

Time

One of the most successful applications of modal logic is in the "logic of time".

Many variations

- discrete or continuous
- branching or linear
- point based or interval based
V. Goranko and A. Galton. Temporal Logic. Stanford Encyclopedia of Philosophy: http://plato.stanford.edu/entries/logic-temporal/.
I. Hodkinson and M. Reynolds. Temporal Logic. Handbook of Modal Logic, 2008.

Models of Time

$\mathcal{T}=\langle T,<\rangle$ where

- T is a set of time points (or moments),
- $<\subseteq T \times T$ is the precedence relation: $s<t$ means "time point s precedes time point t (or s occurs earlier than t)" and

Models of Time

$\mathcal{T}=\langle T,<\rangle$ where

- T is a set of time points (or moments),
- $<\subseteq T \times T$ is the precedence relation: $s<t$ means "time point s precedes time point t (or s occurs earlier than t)" and
$<$ is typically assumed to be irreflexive and transitive (a strict partial order).

Models of Time

$\mathcal{T}=\langle T,<\rangle$ where

- T is a set of time points (or moments),
- $<\subseteq T \times T$ is the precedence relation: $s<t$ means "time point s precedes time point t (or s occurs earlier than t)" and
$<$ is typically assumed to be irreflexive and transitive (a strict partial order).

Examples: $\langle\mathbb{N},<\rangle,\langle\mathbb{Z},<\rangle,\langle\mathbb{Q},<\rangle,\langle\mathbb{R},<\rangle$

Other properties of $<$

- Linearity: for all $s, t \in T, s<t$ or $s=t$ of $t<s$
- Past-linear: for all $s, x, y \in T$, if $x<s$ and $y<s$, then either $x<y$ or $x=y$ or $y<x$
- Denseness for all $s, t \in T$, if $s<t$ then there is a $z \in T$ such that $s<z$ and $z<t$
- Discreteness: for all $s, t \in T$, if $s<t$ then there is a z such that ($s<z$ and there is no u such that $s<u$ and $u<z$)

Branching Time

Each moment $t \in T$ can be decided into the $\operatorname{Past}(t)=\{s \in T \mid s<t\}$ and the Future $(t)=\{s \in T \mid t<s\}$

Typically, it is assumed that the past is linear, but the future may be branching.

Branching Time

Each moment $t \in T$ can be decided into the $\operatorname{Past}(t)=\{s \in T \mid s<t\}$ and the Future $(t)=\{s \in T \mid t<s\}$

Typically, it is assumed that the past is linear, but the future may be branching.
$F \varphi$: "it will be the case that φ "
φ will be the case "in the case in the actual course of events" or "no matter what course of events"

Branching Time Logics

A branch b in $\langle T,<\rangle$ is a maximal linearly ordered subset of T
$s \in T$ is on a branch b of T provided $s \in b$ (we also say " b is a branch going through $\left.t^{\prime \prime}\right)$.

Temporal Logics

Temporal Logics

- Linear Time Temporal Logic: Reasoning about computation paths:
$F \varphi: \varphi$ is true some time in the future.
A. Pnuelli. A Temporal Logic of Programs. in Proc. 18th IEEE Symposium on Foundations of Computer Science (1977).

Temporal Logics

- Linear Time Temporal Logic: Reasoning about computation paths:
$F \varphi: \varphi$ is true some time in the future.
A. Pnuelli. A Temporal Logic of Programs. in Proc. 18th IEEE Symposium on Foundations of Computer Science (1977).
- Branching Time Temporal Logic: Allows quantification over paths: $\exists F \varphi$: there is a path in which φ is eventually true.
E. M. Clarke and E. A. Emerson. Design and Synthesis of Synchronization Skeletons using Branching-time Temporal-logic Specifications. In Proceedings Workshop on Logic of Programs, LNCS (1981).

Interval Values

J. Allen and G. Ferguson. Actions and Events in Interval Temporal Logics. Journal of Logic and Computation, 1994.
J. Halpern and Y. Shoham. A Propositional Modal Logic of Time Intervals. Journal of the ACM, 38:4, pp. 935-962, 1991.
J. van Benthem. Logics of Time. Kluwer, 1991.

Interval Temporal Logics

Let $\mathcal{T}=\langle T,<\rangle$ be a frame and $I(\mathcal{T})=\{[a, b] \mid a, b \in T$ and $a \leq b\}$ be the set of intervals over T

Interval-based relational structure: $\left\langle I(\mathcal{T}),\left\{R_{X}\right\}\right\rangle$ where $R_{X} \subseteq I(\mathcal{T}) \times I(\mathcal{T})$.

Interval Temporal Logics

$$
\begin{array}{l|l}
\langle A\rangle & {[a, b] R_{A}[c, d] \Leftrightarrow b=c} \\
\langle L\rangle & {[a, b] R_{L}[c, d] \Leftrightarrow b<c} \\
\langle B\rangle & {[a, b] R_{B}[c, d] \Leftrightarrow a=c, d<b} \\
\langle E\rangle & {[a, b] R_{E}[c, d] \Leftrightarrow b=d, a<c} \\
\langle D\rangle & {[a, b] R_{D}[c, d] \Leftrightarrow a<c, d<b} \\
\langle O\rangle & {[a, b] R_{O}[c, d] \Leftrightarrow a<c<b<d}
\end{array}
$$

Actions

1. Actions as transitions between states, or situations:

Actions

1. Actions as transitions between states, or situations:

Actions

1. Actions as transitions between states, or situations:

2. Actions restrict the set of possible future histories.

Computational vs. Behavioral Structures

Examples

Examples

Examples

Programs

Act is a set of primitive actions, or programs

A program is generated by the following grammar:

$$
a|\alpha ; \beta| \alpha \cup \beta \mid \alpha^{*}
$$

- $\alpha ; \beta$: concatenation, do α then β
- $\alpha \cup \beta$: non-deterministic choice: choose to execute α or β
- α^{*} : iteration: execute α some finite number of times.

Propositional Dynamic Logic

$\left\langle W,\left\{R_{a}\right\}_{a \in \mathrm{Act}}\right\rangle$
If α is a program, then $R_{\alpha} \subseteq W \times W$ where $w R_{\alpha} v$ means executing α in state w leads to state v.

Propositional Dynamic Logic

$\left\langle W,\left\{R_{a}\right\}_{a \in A c t}\right\rangle$
If α is a program, then $R_{\alpha} \subseteq W \times W$ where $w R_{\alpha} v$ means executing α in state w leads to state v.

$$
\begin{aligned}
& R_{\alpha ; \beta}=R \circ R=\left\{(w, v) \mid \text { there is a } u \text { such that } w R_{\alpha} u \text { and } u R_{\beta} v\right\} \\
& R_{\alpha \cup \beta}=R_{\alpha} \cup R_{\beta} \\
& R_{\alpha^{*}}=\cup_{n \geq 1} R_{\alpha}^{n}, \text { where } R^{1}=R \text { and } R^{n+1}=R \circ R^{n}
\end{aligned}
$$

D. Harel, D. Kozen and Tiuryn. Dynamic Logic. 2001.

Examples

\checkmark Epistemic models
\checkmark Temporal models
\checkmark Transition systems

- Social networks
- Other examples (see [ML], Section 1.1)

Relational Model

1. Set of states

Relational Model

Relational Model

Relational Model

Frame: $\langle W, R\rangle$, where $W \neq \emptyset$ and $R \subseteq W \times W$

Frame: $\langle W, R\rangle$, where $W \neq \emptyset$ and $R \subseteq W \times W$

Model: Suppose that $\mathcal{F}=\langle W, R\rangle$ is a frame. The tuple $\langle W, R, V\rangle$ is a model based on \mathcal{F} where $V:$ At $\rightarrow \wp(W)$ is a valuation function.

- $w \in V(p)$ means that p is true at w.

Frame: $\langle W, R\rangle$, where $W \neq \emptyset$ and $R \subseteq W \times W$

Model: Suppose that $\mathcal{F}=\langle W, R\rangle$ is a frame. The tuple $\langle W, R, V\rangle$ is a model based on \mathcal{F} where $V:$ At $\rightarrow \wp(W)$ is a valuation function.

- $w \in V(p)$ means that p is true at w.

Pointed Model Suppose that $\mathcal{M}=\langle W, R, V\rangle$ is a model. If $w \in W$, then (\mathcal{M}, w) is called a pointed model.

Truth of Modal Formulas

Suppose that $\mathcal{M}=\langle W, R, V\rangle$ is a model. Truth of a modal formula $\varphi \in \mathcal{L}(\mathrm{At})$ at a state w in \mathcal{M}, denoted $\mathcal{M}, w \models \varphi$, is defined as follows:

- $\mathcal{M}, w \vDash p$ iff $w \in V(p)$ (where $p \in A t$)
- $\mathcal{M}, w \not \vDash \perp$
- $\mathcal{M}, w \vDash \neg \varphi$ iff $\mathcal{M}, w \not \vDash \varphi$
- $\mathcal{M}, w \models \varphi \vee \psi$ iff $\mathcal{M}, w \vDash \varphi$ or $\mathcal{M}, w \vDash \psi$
- $\mathcal{M}, w \models \diamond \varphi$ iff there is a $v \in W$ such that $w R v$ and $\mathcal{M}, v \models \varphi$

Truth of Modal Formulas

- $\mathcal{M}, w \models \varphi \wedge \psi$ iff $\mathcal{M}, w \models \varphi$ and $\mathcal{M}, w \models \psi$
- $\mathcal{M}, w \models \varphi \rightarrow \psi$ iff if $\mathcal{M}, w \models \varphi$, then $\mathcal{M}, w \models \psi$ iff either $\mathcal{M}, w \not \vDash \varphi$ or $\mathcal{M}, w \models \psi$
- $\mathcal{M}, w \vDash \square \varphi$ iff for all $v \in W$, if $w R v$ then $\mathcal{M}, v \vDash \varphi$

Example

φ is satisfiable means that there is a model $\mathcal{M}=\langle W, R, V\rangle$ and $w \in W$ such that $\mathcal{M}, w \models \varphi$.

Validity

Valid on a model $\mathcal{M}=\langle W, V, R\rangle$
$\mathcal{M} \models \varphi:$ for all $w \in W, \mathcal{M}, w \models \varphi$

Validity

Valid on a model $\mathcal{M}=\langle W, V, R\rangle$

$$
\mathcal{M} \equiv \varphi: \text { for all } w \in W, \mathcal{M}, w \models \varphi
$$

Valid on a frame $\mathcal{F}=\langle W, R\rangle$
$\mathcal{F} \models \varphi$: for all \mathcal{M} based on \mathcal{F}, for all $w \in W, \mathcal{M}, w \models \varphi$

Validity

Valid on a model $\mathcal{M}=\langle W, V, R\rangle$

$$
\mathcal{M} \models \varphi: \text { for all } w \in W, \mathcal{M}, w \models \varphi
$$

Valid on a frame $\mathcal{F}=\langle W, R\rangle$
$\mathcal{F} \models \varphi$: for all \mathcal{M} based on \mathcal{F}, for all $w \in W, \mathcal{M}, w \models \varphi$ for all functions V, for all $w \in W,\langle W, R, V\rangle, w \models \varphi$

Validity

Valid on a model $\mathcal{M}=\langle W, V, R\rangle$

$$
\mathcal{M} \equiv \varphi: \text { for all } w \in W, \mathcal{M}, w \models \varphi
$$

Valid on a frame $\mathcal{F}=\langle W, R\rangle$
$\mathcal{F} \models \varphi$: for all \mathcal{M} based on \mathcal{F}, for all $w \in W, \mathcal{M}, w \models \varphi$ for all functions V, for all $w \in W,\langle W, R, V\rangle, w \models \varphi$

Valid at a state on a frame $\mathcal{F}=\langle W, R\rangle$ with $w \in W$
$\mathcal{F}, w \vDash \varphi$: for all \mathcal{M} based on $\mathcal{F}, \mathcal{M}, w \vDash \varphi$

Validity

Valid on a model $\mathcal{M}=\langle W, V, R\rangle$

$$
\mathcal{M} \models \varphi: \text { for all } w \in W, \mathcal{M}, w \models \varphi
$$

Valid on a frame $\mathcal{F}=\langle W, R\rangle$
$\mathcal{F} \models \varphi$: for all \mathcal{M} based on \mathcal{F}, for all $w \in W, \mathcal{M}, w \models \varphi$ for all functions V, for all $w \in W,\langle W, R, V\rangle, w \models \varphi$

Valid at a state on a frame $\mathcal{F}=\langle W, R\rangle$ with $w \in W$
$\mathcal{F}, w \vDash \varphi$: for all \mathcal{M} based on $\mathcal{F}, \mathcal{M}, w \vDash \varphi$
Valid in a class F of frames:
$\models \mathrm{F} \varphi$: for all $\mathcal{F} \in \mathrm{F}, \mathcal{F} \models \varphi$

Model validity

validity on a model is not closed under substitution ($\mathcal{M} \not \vDash \square p$)

Frame validity

Some frame validities:

- $(\square q \wedge \square q) \rightarrow \square(p \wedge q)$
- \square T
- $\square p \leftrightarrow \neg \diamond \neg p$
- $\square(p \rightarrow q) \rightarrow(\square p \rightarrow \square q)$

Some frame non-validities:

- $\square p \vee \square \neg p$ (compare with the validity $\square p \vee \neg \square p$)
- $(\diamond p \wedge \diamond q) \rightarrow \diamond(p \wedge q)$
- $\square(p \vee q) \rightarrow(\square p \vee \square q)$
- $\square p \rightarrow p$

Valid at a state

$$
\mathcal{F}, w_{1} \models \square \diamond \varphi \rightarrow \diamond \square \varphi
$$

Valid at a state

$$
\mathcal{F}, w_{1} \mid=\square \diamond \varphi \rightarrow \diamond \square \varphi
$$

Valid at a state

$$
\mathcal{F}, w_{1} \models \square \diamond \varphi \rightarrow \diamond \square \varphi
$$

Propositional Dynamic Logic

Let Act be a set of atomic programs and At a set of atomic propositions.

Formulas of PDL have the following syntactic form:

$$
\begin{aligned}
& \varphi:=p|\perp| \neg \varphi|\varphi \vee \psi|[\alpha] \varphi \\
& \alpha:=a|\alpha \cup \beta| \alpha ; \beta\left|\alpha^{*}\right| \varphi ?
\end{aligned}
$$

where $p \in$ At and $a \in$ Act.
$[\alpha] \varphi$ is intended to mean "after executing the program α, φ is true"

Propositional Dynamic Logic

Semantics: $\mathcal{M}=\left\langle W,\left\{R_{a} \mid a \in \mathrm{P}\right\}, V\right\rangle$ where for each $a \in \mathrm{P}$, $R_{a} \subseteq W \times W$ and $V: A t \rightarrow \wp(W)$

- $R_{\alpha \cup \beta}:=R_{\alpha} \cup R_{\beta}$
- $R_{\alpha ; \beta}:=R_{\alpha} \circ R_{\beta}$
- $R_{\alpha^{*}}:=\cup_{n \geq 0} R_{\alpha}^{n}$
- $R_{\varphi ?}=\{(w, w) \mid \mathcal{M}, w \models \varphi\}$
$\mathcal{M}, w \models[\alpha] \varphi$ iff for each v, if $w R_{\alpha} v$ then $\mathcal{M}, v \models \varphi$

Propositional Dynamic Logic

Some validities:

1. $[\alpha \cup \beta] \varphi \leftrightarrow[\alpha] \varphi \wedge[\beta] \varphi$
2. $[\alpha ; \beta] \varphi \leftrightarrow[\alpha][\beta] \varphi$
3. $[\psi ?] \varphi \leftrightarrow(\psi \rightarrow \varphi)$
4. $\varphi \wedge[\alpha]\left[\alpha^{*}\right] \varphi \leftrightarrow\left[\alpha^{*}\right] \varphi$
5. $\varphi \wedge\left[\alpha^{*}\right](\varphi \rightarrow[\alpha] \varphi) \rightarrow\left[\alpha^{*}\right] \varphi$

Propositional Dynamic Logic

Some validities:

1. $[\alpha \cup \beta] \varphi \leftrightarrow[\alpha] \varphi \wedge[\beta] \varphi$
2. $[\alpha ; \beta] \varphi \leftrightarrow[\alpha][\beta] \varphi$
3. $[\psi ?] \varphi \leftrightarrow(\psi \rightarrow \varphi)$
4. $\varphi \wedge[\alpha]\left[\alpha^{*}\right] \varphi \leftrightarrow\left[\alpha^{*}\right] \varphi$ (Fixed-Point Axiom)
5. $\varphi \wedge\left[\alpha^{*}\right](\varphi \rightarrow[\alpha] \varphi) \rightarrow\left[\alpha^{*}\right] \varphi$ (Induction Axiom)

Logical consequence

Suppose that Γ is a set of formulas and F is a set of frames. We write $\mathcal{M}, w \vDash \Gamma$ iff $\mathcal{M}, w \models \alpha$ for all $\alpha \in \Gamma$.

Logical consequence

Suppose that Γ is a set of formulas and F is a set of frames. We write $\mathcal{M}, w \mid=\Gamma$ iff $\mathcal{M}, w=\alpha$ for all $\alpha \in \Gamma$.

Local: $\Gamma \models_{\mathrm{F}} \varphi$ iff for all frames $\mathcal{F} \in \mathrm{F}$, for all models \mathcal{M} based on \mathcal{F} and all states w in $\mathcal{M}, \mathcal{M}, w \models \Gamma$ implies $\mathcal{M}, w \models \varphi$

Logical consequence

Suppose that Γ is a set of formulas and F is a set of frames. We write $\mathcal{M}, w \mid=\Gamma$ iff $\mathcal{M}, w=\alpha$ for all $\alpha \in \Gamma$.

Local: $\Gamma=_{\mathrm{F}} \varphi$ iff for all frames $\mathcal{F} \in \mathrm{F}$, for all models \mathcal{M} based on \mathcal{F} and all states w in $\mathcal{M}, \mathcal{M}, w \models \Gamma$ implies $\mathcal{M}, w \models \varphi$

Global: $\Gamma \models_{\mathrm{F}}^{g} \varphi$ iff for all frames $\mathcal{F} \in \mathrm{F}$, for all models \mathcal{M} based on \mathcal{F}, $\mathcal{M} \models \Gamma$ implies $\mathcal{M} \models \varphi$

$$
\{p\} \models^{g} \square p \quad\{p\} \not \models \square p
$$

Definability

Suppose that $\mathcal{M}=\langle W, R, V\rangle$ is a relational model.
$\llbracket \cdot \rrbracket_{\mathcal{M}}: \mathcal{L} \rightarrow \wp(W)$ defined as $\llbracket \varphi \rrbracket_{\mathcal{M}}=\{w \mid \mathcal{M}, w \models \varphi\}$.

$$
\begin{aligned}
\llbracket p \rrbracket_{\mathcal{M}} & =V(p) \\
\llbracket \neg \varphi \rrbracket_{\mathcal{M}} & =W-\llbracket \varphi \rrbracket_{\mathcal{M}} \\
\llbracket \varphi \wedge \psi \rrbracket_{\mathcal{M}}= & \llbracket \varphi \rrbracket_{\mathcal{M}} \cap \llbracket \psi \rrbracket_{\mathcal{M}} \\
\llbracket \square \varphi \rrbracket_{\mathcal{M}}= & m_{R}\left(\llbracket \varphi \rrbracket_{\mathcal{M}}\right) \\
& \text { where } m_{R}(X)=\{w \mid R(w) \subseteq X\}
\end{aligned}
$$

Definability

Suppose that $\mathcal{M}=\langle W, R, V\rangle$ is a relational model.
$\llbracket \cdot \rrbracket_{\mathcal{M}}: \mathcal{L} \rightarrow \wp(W)$ defined as $\llbracket \varphi \rrbracket_{\mathcal{M}}=\{w \mid \mathcal{M}, w \models \varphi\}$.

$$
\begin{aligned}
\llbracket p \rrbracket_{\mathcal{M}} & =V(p) \\
\llbracket \neg \varphi \rrbracket_{\mathcal{M}}= & W-\llbracket \varphi \rrbracket_{\mathcal{M}} \\
\llbracket \varphi \wedge \psi \rrbracket_{\mathcal{M}}= & \llbracket \varphi \rrbracket_{\mathcal{M}} \cap \llbracket \psi \rrbracket_{\mathcal{M}} \\
\llbracket \square \varphi \rrbracket_{\mathcal{M}}= & m_{R}\left(\llbracket \varphi \rrbracket_{\mathcal{M}}\right) \\
& \text { where } m_{R}(X)=\{w \mid R(w) \subseteq X\}
\end{aligned}
$$

$X \subseteq W$ is definable by modal formula if there is some $\varphi \in \mathcal{L}$ such that $X=\llbracket \varphi \rrbracket_{\mathcal{M}}$.

Defining States

Distinguishing States

What is the difference between states w_{1} and v_{1} ?

Distinguishing States

What is the difference between states w_{1} and v_{1} ?

Distinguishing States

Is there a modal formula true at w_{1} but not at v_{1} ?

Distinguishing States

$w_{1} \models \square \diamond \neg A$ but $v_{1} \not \vDash \square \diamond \neg A$.

Distinguishing States

$w_{1} \models \square \diamond \neg A$ but $v_{1} \not \vDash \square \diamond \neg A$.

Distinguishing States

$$
w_{1} \models \square \diamond \neg A \text { but } v_{1} \not \vDash \square \diamond \neg A .
$$

Distinguishing States

$w_{1} \models \square \diamond \neg A$ but $v_{1} \not \vDash \square \diamond \neg A$.

Distinguishing States

$$
w_{1} \models \square \diamond \neg A \text { but } v_{1} \not \models \square \diamond \neg A .
$$

Distinguishing States

What about now? Is there a modal formula true at w_{1} but not v_{1} ?

Distinguishing States

No modal formula can distinguish w_{1} and v_{1} !

A More Complicated Example

Which pair of states cannot be distinguished by a modal formula?

\mathcal{K}

\mathcal{M}

\mathcal{N}

A More Complicated Example

Which pair of states cannot be distinguished by a modal formula?

\mathcal{K}

\mathcal{M}

\mathcal{N}

$$
\square(\square \perp \vee \diamond \square \perp)
$$

A More Complicated Example

Which pair of states cannot be distinguished by a modal formula?

\mathcal{K}

\mathcal{M}

N

$$
\square(\square \perp \vee \diamond \square \perp)
$$

A More Complicated Example

Which pair of states cannot be distinguished by a modal formula?

\mathcal{K}

\mathcal{M}

N

$$
\square(\square \perp \vee \diamond \square \perp)
$$

A More Complicated Example

Which pair of states cannot be distinguished by a modal formula?

\mathcal{K}

\mathcal{M}

N

$$
\square(\square \perp \vee \diamond \square \perp)
$$

A More Complicated Example

Which pair of states cannot be distinguished by a modal formula?

\mathcal{K}

\mathcal{M}

N

$$
\square(\square \perp \vee \diamond \square \perp)
$$

A More Complicated Example

Which pair of states cannot be distinguished by a modal formula?

\mathcal{K}

\mathcal{M}

N

$$
\square(\square \perp \vee \diamond \square \perp)
$$

A More Complicated Example

Which pair of states cannot be distinguished by a modal formula?

\mathcal{K}

\mathcal{M}

N

$$
\square(\square \perp \vee \diamond \square \perp)
$$

A More Complicated Example

Which pair of states cannot be distinguished by a modal formula?

\mathcal{K}

\mathcal{M}

\mathcal{N}

- Logical issues: expressive power; axiomatizing logical consequence; proof theory; decidability/complexity of satisfiability/model checking
- Language extensions: Hybrid logic; First-order extensions; Propositional quantifiers; Fixed-point operators
- Alternative semantics: Topological models; Neighborhood models; Algebraic models; Possibility semantics
- Applications: Temporal logic; (Dynamic) Epistemic logic

Conferences/Journals

TARK (www.tark.org): July 17-19, 2019, Toulouse, Deadline: early April

LORI (golori.org/lori2019): October 18-21, 2019, Southwest University, Chongqing, China, Deadline: May 13

LOFT (faculty.econ.ucdavis.edu/faculty/bonanno/loft.html): next conference in 2020

AiML (www.aiml.net): next conference in 2020
ESSLLI (esslli2019.folli.info): Summer school, Riga, Latvia, August 5-16 (also see NASSLLI)

Journals: Review of Symbolic Logic; Journal of Philosophical Logic; Journal of Logic, Language and Information; Synthese?; Journal of Symbolic Logic?

